1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qapi/error.h" 47 #include "hw/hw.h" 48 #include "disas/disas.h" 49 #include "monitor/monitor.h" 50 #include "sysemu/sysemu.h" 51 #include "uboot_image.h" 52 #include "hw/loader.h" 53 #include "hw/nvram/fw_cfg.h" 54 #include "exec/memory.h" 55 #include "exec/address-spaces.h" 56 #include "hw/boards.h" 57 #include "qemu/cutils.h" 58 59 #include <zlib.h> 60 61 static int roms_loaded; 62 63 /* return the size or -1 if error */ 64 int get_image_size(const char *filename) 65 { 66 int fd, size; 67 fd = open(filename, O_RDONLY | O_BINARY); 68 if (fd < 0) 69 return -1; 70 size = lseek(fd, 0, SEEK_END); 71 close(fd); 72 return size; 73 } 74 75 /* return the size or -1 if error */ 76 /* deprecated, because caller does not specify buffer size! */ 77 int load_image(const char *filename, uint8_t *addr) 78 { 79 int fd, size; 80 fd = open(filename, O_RDONLY | O_BINARY); 81 if (fd < 0) 82 return -1; 83 size = lseek(fd, 0, SEEK_END); 84 if (size == -1) { 85 fprintf(stderr, "file %-20s: get size error: %s\n", 86 filename, strerror(errno)); 87 close(fd); 88 return -1; 89 } 90 91 lseek(fd, 0, SEEK_SET); 92 if (read(fd, addr, size) != size) { 93 close(fd); 94 return -1; 95 } 96 close(fd); 97 return size; 98 } 99 100 /* return the size or -1 if error */ 101 ssize_t load_image_size(const char *filename, void *addr, size_t size) 102 { 103 int fd; 104 ssize_t actsize; 105 106 fd = open(filename, O_RDONLY | O_BINARY); 107 if (fd < 0) { 108 return -1; 109 } 110 111 actsize = read(fd, addr, size); 112 if (actsize < 0) { 113 close(fd); 114 return -1; 115 } 116 close(fd); 117 118 return actsize; 119 } 120 121 /* read()-like version */ 122 ssize_t read_targphys(const char *name, 123 int fd, hwaddr dst_addr, size_t nbytes) 124 { 125 uint8_t *buf; 126 ssize_t did; 127 128 buf = g_malloc(nbytes); 129 did = read(fd, buf, nbytes); 130 if (did > 0) 131 rom_add_blob_fixed("read", buf, did, dst_addr); 132 g_free(buf); 133 return did; 134 } 135 136 int load_image_targphys(const char *filename, 137 hwaddr addr, uint64_t max_sz) 138 { 139 return load_image_targphys_as(filename, addr, max_sz, NULL); 140 } 141 142 /* return the size or -1 if error */ 143 int load_image_targphys_as(const char *filename, 144 hwaddr addr, uint64_t max_sz, AddressSpace *as) 145 { 146 int size; 147 148 size = get_image_size(filename); 149 if (size < 0 || size > max_sz) { 150 return -1; 151 } 152 if (size > 0) { 153 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 154 return -1; 155 } 156 } 157 return size; 158 } 159 160 int load_image_mr(const char *filename, MemoryRegion *mr) 161 { 162 int size; 163 164 if (!memory_access_is_direct(mr, false)) { 165 /* Can only load an image into RAM or ROM */ 166 return -1; 167 } 168 169 size = get_image_size(filename); 170 171 if (size < 0 || size > memory_region_size(mr)) { 172 return -1; 173 } 174 if (size > 0) { 175 if (rom_add_file_mr(filename, mr, -1) < 0) { 176 return -1; 177 } 178 } 179 return size; 180 } 181 182 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 183 const char *source) 184 { 185 const char *nulp; 186 char *ptr; 187 188 if (buf_size <= 0) return; 189 nulp = memchr(source, 0, buf_size); 190 if (nulp) { 191 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 192 } else { 193 rom_add_blob_fixed(name, source, buf_size, dest); 194 ptr = rom_ptr(dest + buf_size - 1); 195 *ptr = 0; 196 } 197 } 198 199 /* A.OUT loader */ 200 201 struct exec 202 { 203 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 204 uint32_t a_text; /* length of text, in bytes */ 205 uint32_t a_data; /* length of data, in bytes */ 206 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 207 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 208 uint32_t a_entry; /* start address */ 209 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 210 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 211 }; 212 213 static void bswap_ahdr(struct exec *e) 214 { 215 bswap32s(&e->a_info); 216 bswap32s(&e->a_text); 217 bswap32s(&e->a_data); 218 bswap32s(&e->a_bss); 219 bswap32s(&e->a_syms); 220 bswap32s(&e->a_entry); 221 bswap32s(&e->a_trsize); 222 bswap32s(&e->a_drsize); 223 } 224 225 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 226 #define OMAGIC 0407 227 #define NMAGIC 0410 228 #define ZMAGIC 0413 229 #define QMAGIC 0314 230 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 231 #define N_TXTOFF(x) \ 232 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 233 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 234 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 235 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 236 237 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 238 239 #define N_DATADDR(x, target_page_size) \ 240 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 241 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 242 243 244 int load_aout(const char *filename, hwaddr addr, int max_sz, 245 int bswap_needed, hwaddr target_page_size) 246 { 247 int fd; 248 ssize_t size, ret; 249 struct exec e; 250 uint32_t magic; 251 252 fd = open(filename, O_RDONLY | O_BINARY); 253 if (fd < 0) 254 return -1; 255 256 size = read(fd, &e, sizeof(e)); 257 if (size < 0) 258 goto fail; 259 260 if (bswap_needed) { 261 bswap_ahdr(&e); 262 } 263 264 magic = N_MAGIC(e); 265 switch (magic) { 266 case ZMAGIC: 267 case QMAGIC: 268 case OMAGIC: 269 if (e.a_text + e.a_data > max_sz) 270 goto fail; 271 lseek(fd, N_TXTOFF(e), SEEK_SET); 272 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 273 if (size < 0) 274 goto fail; 275 break; 276 case NMAGIC: 277 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 278 goto fail; 279 lseek(fd, N_TXTOFF(e), SEEK_SET); 280 size = read_targphys(filename, fd, addr, e.a_text); 281 if (size < 0) 282 goto fail; 283 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 284 e.a_data); 285 if (ret < 0) 286 goto fail; 287 size += ret; 288 break; 289 default: 290 goto fail; 291 } 292 close(fd); 293 return size; 294 fail: 295 close(fd); 296 return -1; 297 } 298 299 /* ELF loader */ 300 301 static void *load_at(int fd, off_t offset, size_t size) 302 { 303 void *ptr; 304 if (lseek(fd, offset, SEEK_SET) < 0) 305 return NULL; 306 ptr = g_malloc(size); 307 if (read(fd, ptr, size) != size) { 308 g_free(ptr); 309 return NULL; 310 } 311 return ptr; 312 } 313 314 #ifdef ELF_CLASS 315 #undef ELF_CLASS 316 #endif 317 318 #define ELF_CLASS ELFCLASS32 319 #include "elf.h" 320 321 #define SZ 32 322 #define elf_word uint32_t 323 #define elf_sword int32_t 324 #define bswapSZs bswap32s 325 #include "hw/elf_ops.h" 326 327 #undef elfhdr 328 #undef elf_phdr 329 #undef elf_shdr 330 #undef elf_sym 331 #undef elf_rela 332 #undef elf_note 333 #undef elf_word 334 #undef elf_sword 335 #undef bswapSZs 336 #undef SZ 337 #define elfhdr elf64_hdr 338 #define elf_phdr elf64_phdr 339 #define elf_note elf64_note 340 #define elf_shdr elf64_shdr 341 #define elf_sym elf64_sym 342 #define elf_rela elf64_rela 343 #define elf_word uint64_t 344 #define elf_sword int64_t 345 #define bswapSZs bswap64s 346 #define SZ 64 347 #include "hw/elf_ops.h" 348 349 const char *load_elf_strerror(int error) 350 { 351 switch (error) { 352 case 0: 353 return "No error"; 354 case ELF_LOAD_FAILED: 355 return "Failed to load ELF"; 356 case ELF_LOAD_NOT_ELF: 357 return "The image is not ELF"; 358 case ELF_LOAD_WRONG_ARCH: 359 return "The image is from incompatible architecture"; 360 case ELF_LOAD_WRONG_ENDIAN: 361 return "The image has incorrect endianness"; 362 default: 363 return "Unknown error"; 364 } 365 } 366 367 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 368 { 369 int fd; 370 uint8_t e_ident_local[EI_NIDENT]; 371 uint8_t *e_ident; 372 size_t hdr_size, off; 373 bool is64l; 374 375 if (!hdr) { 376 hdr = e_ident_local; 377 } 378 e_ident = hdr; 379 380 fd = open(filename, O_RDONLY | O_BINARY); 381 if (fd < 0) { 382 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 383 return; 384 } 385 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 386 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 387 goto fail; 388 } 389 if (e_ident[0] != ELFMAG0 || 390 e_ident[1] != ELFMAG1 || 391 e_ident[2] != ELFMAG2 || 392 e_ident[3] != ELFMAG3) { 393 error_setg(errp, "Bad ELF magic"); 394 goto fail; 395 } 396 397 is64l = e_ident[EI_CLASS] == ELFCLASS64; 398 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 399 if (is64) { 400 *is64 = is64l; 401 } 402 403 off = EI_NIDENT; 404 while (hdr != e_ident_local && off < hdr_size) { 405 size_t br = read(fd, hdr + off, hdr_size - off); 406 switch (br) { 407 case 0: 408 error_setg(errp, "File too short: %s", filename); 409 goto fail; 410 case -1: 411 error_setg_errno(errp, errno, "Failed to read file: %s", 412 filename); 413 goto fail; 414 } 415 off += br; 416 } 417 418 fail: 419 close(fd); 420 } 421 422 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 423 int load_elf(const char *filename, uint64_t (*translate_fn)(void *, uint64_t), 424 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 425 uint64_t *highaddr, int big_endian, int elf_machine, 426 int clear_lsb, int data_swab) 427 { 428 return load_elf_as(filename, translate_fn, translate_opaque, pentry, 429 lowaddr, highaddr, big_endian, elf_machine, clear_lsb, 430 data_swab, NULL); 431 } 432 433 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 434 int load_elf_as(const char *filename, 435 uint64_t (*translate_fn)(void *, uint64_t), 436 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 437 uint64_t *highaddr, int big_endian, int elf_machine, 438 int clear_lsb, int data_swab, AddressSpace *as) 439 { 440 return load_elf_ram(filename, translate_fn, translate_opaque, 441 pentry, lowaddr, highaddr, big_endian, elf_machine, 442 clear_lsb, data_swab, as, true); 443 } 444 445 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 446 int load_elf_ram(const char *filename, 447 uint64_t (*translate_fn)(void *, uint64_t), 448 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 449 uint64_t *highaddr, int big_endian, int elf_machine, 450 int clear_lsb, int data_swab, AddressSpace *as, 451 bool load_rom) 452 { 453 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; 454 uint8_t e_ident[EI_NIDENT]; 455 456 fd = open(filename, O_RDONLY | O_BINARY); 457 if (fd < 0) { 458 perror(filename); 459 return -1; 460 } 461 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 462 goto fail; 463 if (e_ident[0] != ELFMAG0 || 464 e_ident[1] != ELFMAG1 || 465 e_ident[2] != ELFMAG2 || 466 e_ident[3] != ELFMAG3) { 467 ret = ELF_LOAD_NOT_ELF; 468 goto fail; 469 } 470 #ifdef HOST_WORDS_BIGENDIAN 471 data_order = ELFDATA2MSB; 472 #else 473 data_order = ELFDATA2LSB; 474 #endif 475 must_swab = data_order != e_ident[EI_DATA]; 476 if (big_endian) { 477 target_data_order = ELFDATA2MSB; 478 } else { 479 target_data_order = ELFDATA2LSB; 480 } 481 482 if (target_data_order != e_ident[EI_DATA]) { 483 ret = ELF_LOAD_WRONG_ENDIAN; 484 goto fail; 485 } 486 487 lseek(fd, 0, SEEK_SET); 488 if (e_ident[EI_CLASS] == ELFCLASS64) { 489 ret = load_elf64(filename, fd, translate_fn, translate_opaque, must_swab, 490 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 491 data_swab, as, load_rom); 492 } else { 493 ret = load_elf32(filename, fd, translate_fn, translate_opaque, must_swab, 494 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 495 data_swab, as, load_rom); 496 } 497 498 fail: 499 close(fd); 500 return ret; 501 } 502 503 static void bswap_uboot_header(uboot_image_header_t *hdr) 504 { 505 #ifndef HOST_WORDS_BIGENDIAN 506 bswap32s(&hdr->ih_magic); 507 bswap32s(&hdr->ih_hcrc); 508 bswap32s(&hdr->ih_time); 509 bswap32s(&hdr->ih_size); 510 bswap32s(&hdr->ih_load); 511 bswap32s(&hdr->ih_ep); 512 bswap32s(&hdr->ih_dcrc); 513 #endif 514 } 515 516 517 #define ZALLOC_ALIGNMENT 16 518 519 static void *zalloc(void *x, unsigned items, unsigned size) 520 { 521 void *p; 522 523 size *= items; 524 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 525 526 p = g_malloc(size); 527 528 return (p); 529 } 530 531 static void zfree(void *x, void *addr) 532 { 533 g_free(addr); 534 } 535 536 537 #define HEAD_CRC 2 538 #define EXTRA_FIELD 4 539 #define ORIG_NAME 8 540 #define COMMENT 0x10 541 #define RESERVED 0xe0 542 543 #define DEFLATED 8 544 545 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 546 { 547 z_stream s; 548 ssize_t dstbytes; 549 int r, i, flags; 550 551 /* skip header */ 552 i = 10; 553 flags = src[3]; 554 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 555 puts ("Error: Bad gzipped data\n"); 556 return -1; 557 } 558 if ((flags & EXTRA_FIELD) != 0) 559 i = 12 + src[10] + (src[11] << 8); 560 if ((flags & ORIG_NAME) != 0) 561 while (src[i++] != 0) 562 ; 563 if ((flags & COMMENT) != 0) 564 while (src[i++] != 0) 565 ; 566 if ((flags & HEAD_CRC) != 0) 567 i += 2; 568 if (i >= srclen) { 569 puts ("Error: gunzip out of data in header\n"); 570 return -1; 571 } 572 573 s.zalloc = zalloc; 574 s.zfree = zfree; 575 576 r = inflateInit2(&s, -MAX_WBITS); 577 if (r != Z_OK) { 578 printf ("Error: inflateInit2() returned %d\n", r); 579 return (-1); 580 } 581 s.next_in = src + i; 582 s.avail_in = srclen - i; 583 s.next_out = dst; 584 s.avail_out = dstlen; 585 r = inflate(&s, Z_FINISH); 586 if (r != Z_OK && r != Z_STREAM_END) { 587 printf ("Error: inflate() returned %d\n", r); 588 return -1; 589 } 590 dstbytes = s.next_out - (unsigned char *) dst; 591 inflateEnd(&s); 592 593 return dstbytes; 594 } 595 596 /* Load a U-Boot image. */ 597 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 598 int *is_linux, uint8_t image_type, 599 uint64_t (*translate_fn)(void *, uint64_t), 600 void *translate_opaque, AddressSpace *as) 601 { 602 int fd; 603 int size; 604 hwaddr address; 605 uboot_image_header_t h; 606 uboot_image_header_t *hdr = &h; 607 uint8_t *data = NULL; 608 int ret = -1; 609 int do_uncompress = 0; 610 611 fd = open(filename, O_RDONLY | O_BINARY); 612 if (fd < 0) 613 return -1; 614 615 size = read(fd, hdr, sizeof(uboot_image_header_t)); 616 if (size < sizeof(uboot_image_header_t)) { 617 goto out; 618 } 619 620 bswap_uboot_header(hdr); 621 622 if (hdr->ih_magic != IH_MAGIC) 623 goto out; 624 625 if (hdr->ih_type != image_type) { 626 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 627 image_type); 628 goto out; 629 } 630 631 /* TODO: Implement other image types. */ 632 switch (hdr->ih_type) { 633 case IH_TYPE_KERNEL: 634 address = hdr->ih_load; 635 if (translate_fn) { 636 address = translate_fn(translate_opaque, address); 637 } 638 if (loadaddr) { 639 *loadaddr = hdr->ih_load; 640 } 641 642 switch (hdr->ih_comp) { 643 case IH_COMP_NONE: 644 break; 645 case IH_COMP_GZIP: 646 do_uncompress = 1; 647 break; 648 default: 649 fprintf(stderr, 650 "Unable to load u-boot images with compression type %d\n", 651 hdr->ih_comp); 652 goto out; 653 } 654 655 if (ep) { 656 *ep = hdr->ih_ep; 657 } 658 659 /* TODO: Check CPU type. */ 660 if (is_linux) { 661 if (hdr->ih_os == IH_OS_LINUX) { 662 *is_linux = 1; 663 } else { 664 *is_linux = 0; 665 } 666 } 667 668 break; 669 case IH_TYPE_RAMDISK: 670 address = *loadaddr; 671 break; 672 default: 673 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 674 goto out; 675 } 676 677 data = g_malloc(hdr->ih_size); 678 679 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 680 fprintf(stderr, "Error reading file\n"); 681 goto out; 682 } 683 684 if (do_uncompress) { 685 uint8_t *compressed_data; 686 size_t max_bytes; 687 ssize_t bytes; 688 689 compressed_data = data; 690 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 691 data = g_malloc(max_bytes); 692 693 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 694 g_free(compressed_data); 695 if (bytes < 0) { 696 fprintf(stderr, "Unable to decompress gzipped image!\n"); 697 goto out; 698 } 699 hdr->ih_size = bytes; 700 } 701 702 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 703 704 ret = hdr->ih_size; 705 706 out: 707 g_free(data); 708 close(fd); 709 return ret; 710 } 711 712 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 713 int *is_linux, 714 uint64_t (*translate_fn)(void *, uint64_t), 715 void *translate_opaque) 716 { 717 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 718 translate_fn, translate_opaque, NULL); 719 } 720 721 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 722 int *is_linux, 723 uint64_t (*translate_fn)(void *, uint64_t), 724 void *translate_opaque, AddressSpace *as) 725 { 726 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 727 translate_fn, translate_opaque, as); 728 } 729 730 /* Load a ramdisk. */ 731 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 732 { 733 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 734 NULL, NULL, NULL); 735 } 736 737 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 738 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 739 uint8_t **buffer) 740 { 741 uint8_t *compressed_data = NULL; 742 uint8_t *data = NULL; 743 gsize len; 744 ssize_t bytes; 745 int ret = -1; 746 747 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 748 NULL)) { 749 goto out; 750 } 751 752 /* Is it a gzip-compressed file? */ 753 if (len < 2 || 754 compressed_data[0] != 0x1f || 755 compressed_data[1] != 0x8b) { 756 goto out; 757 } 758 759 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 760 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 761 } 762 763 data = g_malloc(max_sz); 764 bytes = gunzip(data, max_sz, compressed_data, len); 765 if (bytes < 0) { 766 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 767 filename); 768 goto out; 769 } 770 771 /* trim to actual size and return to caller */ 772 *buffer = g_realloc(data, bytes); 773 ret = bytes; 774 /* ownership has been transferred to caller */ 775 data = NULL; 776 777 out: 778 g_free(compressed_data); 779 g_free(data); 780 return ret; 781 } 782 783 /* Load a gzip-compressed kernel. */ 784 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 785 { 786 int bytes; 787 uint8_t *data; 788 789 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 790 if (bytes != -1) { 791 rom_add_blob_fixed(filename, data, bytes, addr); 792 g_free(data); 793 } 794 return bytes; 795 } 796 797 /* 798 * Functions for reboot-persistent memory regions. 799 * - used for vga bios and option roms. 800 * - also linux kernel (-kernel / -initrd). 801 */ 802 803 typedef struct Rom Rom; 804 805 struct Rom { 806 char *name; 807 char *path; 808 809 /* datasize is the amount of memory allocated in "data". If datasize is less 810 * than romsize, it means that the area from datasize to romsize is filled 811 * with zeros. 812 */ 813 size_t romsize; 814 size_t datasize; 815 816 uint8_t *data; 817 MemoryRegion *mr; 818 AddressSpace *as; 819 int isrom; 820 char *fw_dir; 821 char *fw_file; 822 823 hwaddr addr; 824 QTAILQ_ENTRY(Rom) next; 825 }; 826 827 static FWCfgState *fw_cfg; 828 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 829 830 static inline bool rom_order_compare(Rom *rom, Rom *item) 831 { 832 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 833 (rom->as == item->as && rom->addr >= item->addr); 834 } 835 836 static void rom_insert(Rom *rom) 837 { 838 Rom *item; 839 840 if (roms_loaded) { 841 hw_error ("ROM images must be loaded at startup\n"); 842 } 843 844 /* The user didn't specify an address space, this is the default */ 845 if (!rom->as) { 846 rom->as = &address_space_memory; 847 } 848 849 /* List is ordered by load address in the same address space */ 850 QTAILQ_FOREACH(item, &roms, next) { 851 if (rom_order_compare(rom, item)) { 852 continue; 853 } 854 QTAILQ_INSERT_BEFORE(item, rom, next); 855 return; 856 } 857 QTAILQ_INSERT_TAIL(&roms, rom, next); 858 } 859 860 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 861 { 862 if (fw_cfg) { 863 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 864 } 865 } 866 867 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 868 { 869 void *data; 870 871 rom->mr = g_malloc(sizeof(*rom->mr)); 872 memory_region_init_resizeable_ram(rom->mr, owner, name, 873 rom->datasize, rom->romsize, 874 fw_cfg_resized, 875 &error_fatal); 876 memory_region_set_readonly(rom->mr, ro); 877 vmstate_register_ram_global(rom->mr); 878 879 data = memory_region_get_ram_ptr(rom->mr); 880 memcpy(data, rom->data, rom->datasize); 881 882 return data; 883 } 884 885 int rom_add_file(const char *file, const char *fw_dir, 886 hwaddr addr, int32_t bootindex, 887 bool option_rom, MemoryRegion *mr, 888 AddressSpace *as) 889 { 890 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 891 Rom *rom; 892 int rc, fd = -1; 893 char devpath[100]; 894 895 if (as && mr) { 896 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 897 "not valid when loading a rom\n"); 898 /* We haven't allocated anything so we don't need any cleanup */ 899 return -1; 900 } 901 902 rom = g_malloc0(sizeof(*rom)); 903 rom->name = g_strdup(file); 904 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 905 rom->as = as; 906 if (rom->path == NULL) { 907 rom->path = g_strdup(file); 908 } 909 910 fd = open(rom->path, O_RDONLY | O_BINARY); 911 if (fd == -1) { 912 fprintf(stderr, "Could not open option rom '%s': %s\n", 913 rom->path, strerror(errno)); 914 goto err; 915 } 916 917 if (fw_dir) { 918 rom->fw_dir = g_strdup(fw_dir); 919 rom->fw_file = g_strdup(file); 920 } 921 rom->addr = addr; 922 rom->romsize = lseek(fd, 0, SEEK_END); 923 if (rom->romsize == -1) { 924 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 925 rom->name, strerror(errno)); 926 goto err; 927 } 928 929 rom->datasize = rom->romsize; 930 rom->data = g_malloc0(rom->datasize); 931 lseek(fd, 0, SEEK_SET); 932 rc = read(fd, rom->data, rom->datasize); 933 if (rc != rom->datasize) { 934 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 935 rom->name, rc, rom->datasize); 936 goto err; 937 } 938 close(fd); 939 rom_insert(rom); 940 if (rom->fw_file && fw_cfg) { 941 const char *basename; 942 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 943 void *data; 944 945 basename = strrchr(rom->fw_file, '/'); 946 if (basename) { 947 basename++; 948 } else { 949 basename = rom->fw_file; 950 } 951 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 952 basename); 953 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 954 955 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 956 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 957 } else { 958 data = rom->data; 959 } 960 961 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 962 } else { 963 if (mr) { 964 rom->mr = mr; 965 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 966 } else { 967 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 968 } 969 } 970 971 add_boot_device_path(bootindex, NULL, devpath); 972 return 0; 973 974 err: 975 if (fd != -1) 976 close(fd); 977 978 g_free(rom->data); 979 g_free(rom->path); 980 g_free(rom->name); 981 if (fw_dir) { 982 g_free(rom->fw_dir); 983 g_free(rom->fw_file); 984 } 985 g_free(rom); 986 987 return -1; 988 } 989 990 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 991 size_t max_len, hwaddr addr, const char *fw_file_name, 992 FWCfgCallback fw_callback, void *callback_opaque, 993 AddressSpace *as, bool read_only) 994 { 995 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 996 Rom *rom; 997 MemoryRegion *mr = NULL; 998 999 rom = g_malloc0(sizeof(*rom)); 1000 rom->name = g_strdup(name); 1001 rom->as = as; 1002 rom->addr = addr; 1003 rom->romsize = max_len ? max_len : len; 1004 rom->datasize = len; 1005 rom->data = g_malloc0(rom->datasize); 1006 memcpy(rom->data, blob, len); 1007 rom_insert(rom); 1008 if (fw_file_name && fw_cfg) { 1009 char devpath[100]; 1010 void *data; 1011 1012 if (read_only) { 1013 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1014 } else { 1015 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1016 } 1017 1018 if (mc->rom_file_has_mr) { 1019 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1020 mr = rom->mr; 1021 } else { 1022 data = rom->data; 1023 } 1024 1025 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1026 fw_callback, NULL, callback_opaque, 1027 data, rom->datasize, read_only); 1028 } 1029 return mr; 1030 } 1031 1032 /* This function is specific for elf program because we don't need to allocate 1033 * all the rom. We just allocate the first part and the rest is just zeros. This 1034 * is why romsize and datasize are different. Also, this function seize the 1035 * memory ownership of "data", so we don't have to allocate and copy the buffer. 1036 */ 1037 int rom_add_elf_program(const char *name, void *data, size_t datasize, 1038 size_t romsize, hwaddr addr, AddressSpace *as) 1039 { 1040 Rom *rom; 1041 1042 rom = g_malloc0(sizeof(*rom)); 1043 rom->name = g_strdup(name); 1044 rom->addr = addr; 1045 rom->datasize = datasize; 1046 rom->romsize = romsize; 1047 rom->data = data; 1048 rom->as = as; 1049 rom_insert(rom); 1050 return 0; 1051 } 1052 1053 int rom_add_vga(const char *file) 1054 { 1055 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1056 } 1057 1058 int rom_add_option(const char *file, int32_t bootindex) 1059 { 1060 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1061 } 1062 1063 static void rom_reset(void *unused) 1064 { 1065 Rom *rom; 1066 1067 QTAILQ_FOREACH(rom, &roms, next) { 1068 if (rom->fw_file) { 1069 continue; 1070 } 1071 if (rom->data == NULL) { 1072 continue; 1073 } 1074 if (rom->mr) { 1075 void *host = memory_region_get_ram_ptr(rom->mr); 1076 memcpy(host, rom->data, rom->datasize); 1077 } else { 1078 cpu_physical_memory_write_rom(rom->as, rom->addr, rom->data, 1079 rom->datasize); 1080 } 1081 if (rom->isrom) { 1082 /* rom needs to be written only once */ 1083 g_free(rom->data); 1084 rom->data = NULL; 1085 } 1086 /* 1087 * The rom loader is really on the same level as firmware in the guest 1088 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1089 * that the instruction cache for that new region is clear, so that the 1090 * CPU definitely fetches its instructions from the just written data. 1091 */ 1092 cpu_flush_icache_range(rom->addr, rom->datasize); 1093 } 1094 } 1095 1096 int rom_check_and_register_reset(void) 1097 { 1098 hwaddr addr = 0; 1099 MemoryRegionSection section; 1100 Rom *rom; 1101 AddressSpace *as = NULL; 1102 1103 QTAILQ_FOREACH(rom, &roms, next) { 1104 if (rom->fw_file) { 1105 continue; 1106 } 1107 if ((addr > rom->addr) && (as == rom->as)) { 1108 fprintf(stderr, "rom: requested regions overlap " 1109 "(rom %s. free=0x" TARGET_FMT_plx 1110 ", addr=0x" TARGET_FMT_plx ")\n", 1111 rom->name, addr, rom->addr); 1112 return -1; 1113 } 1114 addr = rom->addr; 1115 addr += rom->romsize; 1116 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1117 rom->addr, 1); 1118 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1119 memory_region_unref(section.mr); 1120 as = rom->as; 1121 } 1122 qemu_register_reset(rom_reset, NULL); 1123 roms_loaded = 1; 1124 return 0; 1125 } 1126 1127 void rom_set_fw(FWCfgState *f) 1128 { 1129 fw_cfg = f; 1130 } 1131 1132 void rom_set_order_override(int order) 1133 { 1134 if (!fw_cfg) 1135 return; 1136 fw_cfg_set_order_override(fw_cfg, order); 1137 } 1138 1139 void rom_reset_order_override(void) 1140 { 1141 if (!fw_cfg) 1142 return; 1143 fw_cfg_reset_order_override(fw_cfg); 1144 } 1145 1146 static Rom *find_rom(hwaddr addr) 1147 { 1148 Rom *rom; 1149 1150 QTAILQ_FOREACH(rom, &roms, next) { 1151 if (rom->fw_file) { 1152 continue; 1153 } 1154 if (rom->mr) { 1155 continue; 1156 } 1157 if (rom->addr > addr) { 1158 continue; 1159 } 1160 if (rom->addr + rom->romsize < addr) { 1161 continue; 1162 } 1163 return rom; 1164 } 1165 return NULL; 1166 } 1167 1168 /* 1169 * Copies memory from registered ROMs to dest. Any memory that is contained in 1170 * a ROM between addr and addr + size is copied. Note that this can involve 1171 * multiple ROMs, which need not start at addr and need not end at addr + size. 1172 */ 1173 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1174 { 1175 hwaddr end = addr + size; 1176 uint8_t *s, *d = dest; 1177 size_t l = 0; 1178 Rom *rom; 1179 1180 QTAILQ_FOREACH(rom, &roms, next) { 1181 if (rom->fw_file) { 1182 continue; 1183 } 1184 if (rom->mr) { 1185 continue; 1186 } 1187 if (rom->addr + rom->romsize < addr) { 1188 continue; 1189 } 1190 if (rom->addr > end) { 1191 break; 1192 } 1193 1194 d = dest + (rom->addr - addr); 1195 s = rom->data; 1196 l = rom->datasize; 1197 1198 if ((d + l) > (dest + size)) { 1199 l = dest - d; 1200 } 1201 1202 if (l > 0) { 1203 memcpy(d, s, l); 1204 } 1205 1206 if (rom->romsize > rom->datasize) { 1207 /* If datasize is less than romsize, it means that we didn't 1208 * allocate all the ROM because the trailing data are only zeros. 1209 */ 1210 1211 d += l; 1212 l = rom->romsize - rom->datasize; 1213 1214 if ((d + l) > (dest + size)) { 1215 /* Rom size doesn't fit in the destination area. Adjust to avoid 1216 * overflow. 1217 */ 1218 l = dest - d; 1219 } 1220 1221 if (l > 0) { 1222 memset(d, 0x0, l); 1223 } 1224 } 1225 } 1226 1227 return (d + l) - dest; 1228 } 1229 1230 void *rom_ptr(hwaddr addr) 1231 { 1232 Rom *rom; 1233 1234 rom = find_rom(addr); 1235 if (!rom || !rom->data) 1236 return NULL; 1237 return rom->data + (addr - rom->addr); 1238 } 1239 1240 void hmp_info_roms(Monitor *mon, const QDict *qdict) 1241 { 1242 Rom *rom; 1243 1244 QTAILQ_FOREACH(rom, &roms, next) { 1245 if (rom->mr) { 1246 monitor_printf(mon, "%s" 1247 " size=0x%06zx name=\"%s\"\n", 1248 memory_region_name(rom->mr), 1249 rom->romsize, 1250 rom->name); 1251 } else if (!rom->fw_file) { 1252 monitor_printf(mon, "addr=" TARGET_FMT_plx 1253 " size=0x%06zx mem=%s name=\"%s\"\n", 1254 rom->addr, rom->romsize, 1255 rom->isrom ? "rom" : "ram", 1256 rom->name); 1257 } else { 1258 monitor_printf(mon, "fw=%s/%s" 1259 " size=0x%06zx name=\"%s\"\n", 1260 rom->fw_dir, 1261 rom->fw_file, 1262 rom->romsize, 1263 rom->name); 1264 } 1265 } 1266 } 1267