1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "hw/hw.h" 46 #include "disas/disas.h" 47 #include "monitor/monitor.h" 48 #include "sysemu/sysemu.h" 49 #include "uboot_image.h" 50 #include "hw/loader.h" 51 #include "hw/nvram/fw_cfg.h" 52 #include "exec/memory.h" 53 #include "exec/address-spaces.h" 54 55 #include <zlib.h> 56 57 static int roms_loaded; 58 59 /* return the size or -1 if error */ 60 int get_image_size(const char *filename) 61 { 62 int fd, size; 63 fd = open(filename, O_RDONLY | O_BINARY); 64 if (fd < 0) 65 return -1; 66 size = lseek(fd, 0, SEEK_END); 67 close(fd); 68 return size; 69 } 70 71 /* return the size or -1 if error */ 72 /* deprecated, because caller does not specify buffer size! */ 73 int load_image(const char *filename, uint8_t *addr) 74 { 75 int fd, size; 76 fd = open(filename, O_RDONLY | O_BINARY); 77 if (fd < 0) 78 return -1; 79 size = lseek(fd, 0, SEEK_END); 80 lseek(fd, 0, SEEK_SET); 81 if (read(fd, addr, size) != size) { 82 close(fd); 83 return -1; 84 } 85 close(fd); 86 return size; 87 } 88 89 /* read()-like version */ 90 ssize_t read_targphys(const char *name, 91 int fd, hwaddr dst_addr, size_t nbytes) 92 { 93 uint8_t *buf; 94 ssize_t did; 95 96 buf = g_malloc(nbytes); 97 did = read(fd, buf, nbytes); 98 if (did > 0) 99 rom_add_blob_fixed("read", buf, did, dst_addr); 100 g_free(buf); 101 return did; 102 } 103 104 /* return the size or -1 if error */ 105 int load_image_targphys(const char *filename, 106 hwaddr addr, uint64_t max_sz) 107 { 108 int size; 109 110 size = get_image_size(filename); 111 if (size > max_sz) { 112 return -1; 113 } 114 if (size > 0) { 115 rom_add_file_fixed(filename, addr, -1); 116 } 117 return size; 118 } 119 120 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 121 const char *source) 122 { 123 const char *nulp; 124 char *ptr; 125 126 if (buf_size <= 0) return; 127 nulp = memchr(source, 0, buf_size); 128 if (nulp) { 129 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 130 } else { 131 rom_add_blob_fixed(name, source, buf_size, dest); 132 ptr = rom_ptr(dest + buf_size - 1); 133 *ptr = 0; 134 } 135 } 136 137 /* A.OUT loader */ 138 139 struct exec 140 { 141 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 142 uint32_t a_text; /* length of text, in bytes */ 143 uint32_t a_data; /* length of data, in bytes */ 144 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 145 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 146 uint32_t a_entry; /* start address */ 147 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 148 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 149 }; 150 151 static void bswap_ahdr(struct exec *e) 152 { 153 bswap32s(&e->a_info); 154 bswap32s(&e->a_text); 155 bswap32s(&e->a_data); 156 bswap32s(&e->a_bss); 157 bswap32s(&e->a_syms); 158 bswap32s(&e->a_entry); 159 bswap32s(&e->a_trsize); 160 bswap32s(&e->a_drsize); 161 } 162 163 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 164 #define OMAGIC 0407 165 #define NMAGIC 0410 166 #define ZMAGIC 0413 167 #define QMAGIC 0314 168 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 169 #define N_TXTOFF(x) \ 170 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 171 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 172 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 173 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 174 175 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 176 177 #define N_DATADDR(x, target_page_size) \ 178 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 179 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 180 181 182 int load_aout(const char *filename, hwaddr addr, int max_sz, 183 int bswap_needed, hwaddr target_page_size) 184 { 185 int fd; 186 ssize_t size, ret; 187 struct exec e; 188 uint32_t magic; 189 190 fd = open(filename, O_RDONLY | O_BINARY); 191 if (fd < 0) 192 return -1; 193 194 size = read(fd, &e, sizeof(e)); 195 if (size < 0) 196 goto fail; 197 198 if (bswap_needed) { 199 bswap_ahdr(&e); 200 } 201 202 magic = N_MAGIC(e); 203 switch (magic) { 204 case ZMAGIC: 205 case QMAGIC: 206 case OMAGIC: 207 if (e.a_text + e.a_data > max_sz) 208 goto fail; 209 lseek(fd, N_TXTOFF(e), SEEK_SET); 210 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 211 if (size < 0) 212 goto fail; 213 break; 214 case NMAGIC: 215 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 216 goto fail; 217 lseek(fd, N_TXTOFF(e), SEEK_SET); 218 size = read_targphys(filename, fd, addr, e.a_text); 219 if (size < 0) 220 goto fail; 221 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 222 e.a_data); 223 if (ret < 0) 224 goto fail; 225 size += ret; 226 break; 227 default: 228 goto fail; 229 } 230 close(fd); 231 return size; 232 fail: 233 close(fd); 234 return -1; 235 } 236 237 /* ELF loader */ 238 239 static void *load_at(int fd, int offset, int size) 240 { 241 void *ptr; 242 if (lseek(fd, offset, SEEK_SET) < 0) 243 return NULL; 244 ptr = g_malloc(size); 245 if (read(fd, ptr, size) != size) { 246 g_free(ptr); 247 return NULL; 248 } 249 return ptr; 250 } 251 252 #ifdef ELF_CLASS 253 #undef ELF_CLASS 254 #endif 255 256 #define ELF_CLASS ELFCLASS32 257 #include "elf.h" 258 259 #define SZ 32 260 #define elf_word uint32_t 261 #define elf_sword int32_t 262 #define bswapSZs bswap32s 263 #include "hw/elf_ops.h" 264 265 #undef elfhdr 266 #undef elf_phdr 267 #undef elf_shdr 268 #undef elf_sym 269 #undef elf_note 270 #undef elf_word 271 #undef elf_sword 272 #undef bswapSZs 273 #undef SZ 274 #define elfhdr elf64_hdr 275 #define elf_phdr elf64_phdr 276 #define elf_note elf64_note 277 #define elf_shdr elf64_shdr 278 #define elf_sym elf64_sym 279 #define elf_word uint64_t 280 #define elf_sword int64_t 281 #define bswapSZs bswap64s 282 #define SZ 64 283 #include "hw/elf_ops.h" 284 285 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 286 int load_elf(const char *filename, uint64_t (*translate_fn)(void *, uint64_t), 287 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 288 uint64_t *highaddr, int big_endian, int elf_machine, int clear_lsb) 289 { 290 int fd, data_order, target_data_order, must_swab, ret; 291 uint8_t e_ident[EI_NIDENT]; 292 293 fd = open(filename, O_RDONLY | O_BINARY); 294 if (fd < 0) { 295 perror(filename); 296 return -1; 297 } 298 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 299 goto fail; 300 if (e_ident[0] != ELFMAG0 || 301 e_ident[1] != ELFMAG1 || 302 e_ident[2] != ELFMAG2 || 303 e_ident[3] != ELFMAG3) 304 goto fail; 305 #ifdef HOST_WORDS_BIGENDIAN 306 data_order = ELFDATA2MSB; 307 #else 308 data_order = ELFDATA2LSB; 309 #endif 310 must_swab = data_order != e_ident[EI_DATA]; 311 if (big_endian) { 312 target_data_order = ELFDATA2MSB; 313 } else { 314 target_data_order = ELFDATA2LSB; 315 } 316 317 if (target_data_order != e_ident[EI_DATA]) { 318 goto fail; 319 } 320 321 lseek(fd, 0, SEEK_SET); 322 if (e_ident[EI_CLASS] == ELFCLASS64) { 323 ret = load_elf64(filename, fd, translate_fn, translate_opaque, must_swab, 324 pentry, lowaddr, highaddr, elf_machine, clear_lsb); 325 } else { 326 ret = load_elf32(filename, fd, translate_fn, translate_opaque, must_swab, 327 pentry, lowaddr, highaddr, elf_machine, clear_lsb); 328 } 329 330 close(fd); 331 return ret; 332 333 fail: 334 close(fd); 335 return -1; 336 } 337 338 static void bswap_uboot_header(uboot_image_header_t *hdr) 339 { 340 #ifndef HOST_WORDS_BIGENDIAN 341 bswap32s(&hdr->ih_magic); 342 bswap32s(&hdr->ih_hcrc); 343 bswap32s(&hdr->ih_time); 344 bswap32s(&hdr->ih_size); 345 bswap32s(&hdr->ih_load); 346 bswap32s(&hdr->ih_ep); 347 bswap32s(&hdr->ih_dcrc); 348 #endif 349 } 350 351 352 #define ZALLOC_ALIGNMENT 16 353 354 static void *zalloc(void *x, unsigned items, unsigned size) 355 { 356 void *p; 357 358 size *= items; 359 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 360 361 p = g_malloc(size); 362 363 return (p); 364 } 365 366 static void zfree(void *x, void *addr) 367 { 368 g_free(addr); 369 } 370 371 372 #define HEAD_CRC 2 373 #define EXTRA_FIELD 4 374 #define ORIG_NAME 8 375 #define COMMENT 0x10 376 #define RESERVED 0xe0 377 378 #define DEFLATED 8 379 380 /* This is the usual maximum in uboot, so if a uImage overflows this, it would 381 * overflow on real hardware too. */ 382 #define UBOOT_MAX_GUNZIP_BYTES (64 << 20) 383 384 static ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, 385 size_t srclen) 386 { 387 z_stream s; 388 ssize_t dstbytes; 389 int r, i, flags; 390 391 /* skip header */ 392 i = 10; 393 flags = src[3]; 394 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 395 puts ("Error: Bad gzipped data\n"); 396 return -1; 397 } 398 if ((flags & EXTRA_FIELD) != 0) 399 i = 12 + src[10] + (src[11] << 8); 400 if ((flags & ORIG_NAME) != 0) 401 while (src[i++] != 0) 402 ; 403 if ((flags & COMMENT) != 0) 404 while (src[i++] != 0) 405 ; 406 if ((flags & HEAD_CRC) != 0) 407 i += 2; 408 if (i >= srclen) { 409 puts ("Error: gunzip out of data in header\n"); 410 return -1; 411 } 412 413 s.zalloc = zalloc; 414 s.zfree = zfree; 415 416 r = inflateInit2(&s, -MAX_WBITS); 417 if (r != Z_OK) { 418 printf ("Error: inflateInit2() returned %d\n", r); 419 return (-1); 420 } 421 s.next_in = src + i; 422 s.avail_in = srclen - i; 423 s.next_out = dst; 424 s.avail_out = dstlen; 425 r = inflate(&s, Z_FINISH); 426 if (r != Z_OK && r != Z_STREAM_END) { 427 printf ("Error: inflate() returned %d\n", r); 428 return -1; 429 } 430 dstbytes = s.next_out - (unsigned char *) dst; 431 inflateEnd(&s); 432 433 return dstbytes; 434 } 435 436 /* Load a U-Boot image. */ 437 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 438 int *is_linux, uint8_t image_type) 439 { 440 int fd; 441 int size; 442 hwaddr address; 443 uboot_image_header_t h; 444 uboot_image_header_t *hdr = &h; 445 uint8_t *data = NULL; 446 int ret = -1; 447 int do_uncompress = 0; 448 449 fd = open(filename, O_RDONLY | O_BINARY); 450 if (fd < 0) 451 return -1; 452 453 size = read(fd, hdr, sizeof(uboot_image_header_t)); 454 if (size < 0) 455 goto out; 456 457 bswap_uboot_header(hdr); 458 459 if (hdr->ih_magic != IH_MAGIC) 460 goto out; 461 462 if (hdr->ih_type != image_type) { 463 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 464 image_type); 465 goto out; 466 } 467 468 /* TODO: Implement other image types. */ 469 switch (hdr->ih_type) { 470 case IH_TYPE_KERNEL: 471 address = hdr->ih_load; 472 if (loadaddr) { 473 *loadaddr = hdr->ih_load; 474 } 475 476 switch (hdr->ih_comp) { 477 case IH_COMP_NONE: 478 break; 479 case IH_COMP_GZIP: 480 do_uncompress = 1; 481 break; 482 default: 483 fprintf(stderr, 484 "Unable to load u-boot images with compression type %d\n", 485 hdr->ih_comp); 486 goto out; 487 } 488 489 if (ep) { 490 *ep = hdr->ih_ep; 491 } 492 493 /* TODO: Check CPU type. */ 494 if (is_linux) { 495 if (hdr->ih_os == IH_OS_LINUX) { 496 *is_linux = 1; 497 } else { 498 *is_linux = 0; 499 } 500 } 501 502 break; 503 case IH_TYPE_RAMDISK: 504 address = *loadaddr; 505 break; 506 default: 507 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 508 goto out; 509 } 510 511 data = g_malloc(hdr->ih_size); 512 513 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 514 fprintf(stderr, "Error reading file\n"); 515 goto out; 516 } 517 518 if (do_uncompress) { 519 uint8_t *compressed_data; 520 size_t max_bytes; 521 ssize_t bytes; 522 523 compressed_data = data; 524 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 525 data = g_malloc(max_bytes); 526 527 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 528 g_free(compressed_data); 529 if (bytes < 0) { 530 fprintf(stderr, "Unable to decompress gzipped image!\n"); 531 goto out; 532 } 533 hdr->ih_size = bytes; 534 } 535 536 rom_add_blob_fixed(filename, data, hdr->ih_size, address); 537 538 ret = hdr->ih_size; 539 540 out: 541 if (data) 542 g_free(data); 543 close(fd); 544 return ret; 545 } 546 547 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 548 int *is_linux) 549 { 550 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL); 551 } 552 553 /* Load a ramdisk. */ 554 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 555 { 556 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK); 557 } 558 559 /* 560 * Functions for reboot-persistent memory regions. 561 * - used for vga bios and option roms. 562 * - also linux kernel (-kernel / -initrd). 563 */ 564 565 typedef struct Rom Rom; 566 567 struct Rom { 568 char *name; 569 char *path; 570 571 /* datasize is the amount of memory allocated in "data". If datasize is less 572 * than romsize, it means that the area from datasize to romsize is filled 573 * with zeros. 574 */ 575 size_t romsize; 576 size_t datasize; 577 578 uint8_t *data; 579 int isrom; 580 char *fw_dir; 581 char *fw_file; 582 583 hwaddr addr; 584 QTAILQ_ENTRY(Rom) next; 585 }; 586 587 static FWCfgState *fw_cfg; 588 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 589 590 static void rom_insert(Rom *rom) 591 { 592 Rom *item; 593 594 if (roms_loaded) { 595 hw_error ("ROM images must be loaded at startup\n"); 596 } 597 598 /* list is ordered by load address */ 599 QTAILQ_FOREACH(item, &roms, next) { 600 if (rom->addr >= item->addr) 601 continue; 602 QTAILQ_INSERT_BEFORE(item, rom, next); 603 return; 604 } 605 QTAILQ_INSERT_TAIL(&roms, rom, next); 606 } 607 608 int rom_add_file(const char *file, const char *fw_dir, 609 hwaddr addr, int32_t bootindex) 610 { 611 Rom *rom; 612 int rc, fd = -1; 613 char devpath[100]; 614 615 rom = g_malloc0(sizeof(*rom)); 616 rom->name = g_strdup(file); 617 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 618 if (rom->path == NULL) { 619 rom->path = g_strdup(file); 620 } 621 622 fd = open(rom->path, O_RDONLY | O_BINARY); 623 if (fd == -1) { 624 fprintf(stderr, "Could not open option rom '%s': %s\n", 625 rom->path, strerror(errno)); 626 goto err; 627 } 628 629 if (fw_dir) { 630 rom->fw_dir = g_strdup(fw_dir); 631 rom->fw_file = g_strdup(file); 632 } 633 rom->addr = addr; 634 rom->romsize = lseek(fd, 0, SEEK_END); 635 rom->datasize = rom->romsize; 636 rom->data = g_malloc0(rom->datasize); 637 lseek(fd, 0, SEEK_SET); 638 rc = read(fd, rom->data, rom->datasize); 639 if (rc != rom->datasize) { 640 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 641 rom->name, rc, rom->datasize); 642 goto err; 643 } 644 close(fd); 645 rom_insert(rom); 646 if (rom->fw_file && fw_cfg) { 647 const char *basename; 648 char fw_file_name[56]; 649 650 basename = strrchr(rom->fw_file, '/'); 651 if (basename) { 652 basename++; 653 } else { 654 basename = rom->fw_file; 655 } 656 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 657 basename); 658 fw_cfg_add_file(fw_cfg, fw_file_name, rom->data, rom->romsize); 659 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 660 } else { 661 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 662 } 663 664 add_boot_device_path(bootindex, NULL, devpath); 665 return 0; 666 667 err: 668 if (fd != -1) 669 close(fd); 670 g_free(rom->data); 671 g_free(rom->path); 672 g_free(rom->name); 673 g_free(rom); 674 return -1; 675 } 676 677 int rom_add_blob(const char *name, const void *blob, size_t len, 678 hwaddr addr) 679 { 680 Rom *rom; 681 682 rom = g_malloc0(sizeof(*rom)); 683 rom->name = g_strdup(name); 684 rom->addr = addr; 685 rom->romsize = len; 686 rom->datasize = len; 687 rom->data = g_malloc0(rom->datasize); 688 memcpy(rom->data, blob, len); 689 rom_insert(rom); 690 return 0; 691 } 692 693 /* This function is specific for elf program because we don't need to allocate 694 * all the rom. We just allocate the first part and the rest is just zeros. This 695 * is why romsize and datasize are different. Also, this function seize the 696 * memory ownership of "data", so we don't have to allocate and copy the buffer. 697 */ 698 int rom_add_elf_program(const char *name, void *data, size_t datasize, 699 size_t romsize, hwaddr addr) 700 { 701 Rom *rom; 702 703 rom = g_malloc0(sizeof(*rom)); 704 rom->name = g_strdup(name); 705 rom->addr = addr; 706 rom->datasize = datasize; 707 rom->romsize = romsize; 708 rom->data = data; 709 rom_insert(rom); 710 return 0; 711 } 712 713 int rom_add_vga(const char *file) 714 { 715 return rom_add_file(file, "vgaroms", 0, -1); 716 } 717 718 int rom_add_option(const char *file, int32_t bootindex) 719 { 720 return rom_add_file(file, "genroms", 0, bootindex); 721 } 722 723 static void rom_reset(void *unused) 724 { 725 Rom *rom; 726 727 QTAILQ_FOREACH(rom, &roms, next) { 728 if (rom->fw_file) { 729 continue; 730 } 731 if (rom->data == NULL) { 732 continue; 733 } 734 cpu_physical_memory_write_rom(rom->addr, rom->data, rom->datasize); 735 if (rom->isrom) { 736 /* rom needs to be written only once */ 737 g_free(rom->data); 738 rom->data = NULL; 739 } 740 } 741 } 742 743 int rom_load_all(void) 744 { 745 hwaddr addr = 0; 746 MemoryRegionSection section; 747 Rom *rom; 748 749 QTAILQ_FOREACH(rom, &roms, next) { 750 if (rom->fw_file) { 751 continue; 752 } 753 if (addr > rom->addr) { 754 fprintf(stderr, "rom: requested regions overlap " 755 "(rom %s. free=0x" TARGET_FMT_plx 756 ", addr=0x" TARGET_FMT_plx ")\n", 757 rom->name, addr, rom->addr); 758 return -1; 759 } 760 addr = rom->addr; 761 addr += rom->romsize; 762 section = memory_region_find(get_system_memory(), rom->addr, 1); 763 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 764 memory_region_unref(section.mr); 765 } 766 qemu_register_reset(rom_reset, NULL); 767 roms_loaded = 1; 768 return 0; 769 } 770 771 void rom_set_fw(FWCfgState *f) 772 { 773 fw_cfg = f; 774 } 775 776 static Rom *find_rom(hwaddr addr) 777 { 778 Rom *rom; 779 780 QTAILQ_FOREACH(rom, &roms, next) { 781 if (rom->fw_file) { 782 continue; 783 } 784 if (rom->addr > addr) { 785 continue; 786 } 787 if (rom->addr + rom->romsize < addr) { 788 continue; 789 } 790 return rom; 791 } 792 return NULL; 793 } 794 795 /* 796 * Copies memory from registered ROMs to dest. Any memory that is contained in 797 * a ROM between addr and addr + size is copied. Note that this can involve 798 * multiple ROMs, which need not start at addr and need not end at addr + size. 799 */ 800 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 801 { 802 hwaddr end = addr + size; 803 uint8_t *s, *d = dest; 804 size_t l = 0; 805 Rom *rom; 806 807 QTAILQ_FOREACH(rom, &roms, next) { 808 if (rom->fw_file) { 809 continue; 810 } 811 if (rom->addr + rom->romsize < addr) { 812 continue; 813 } 814 if (rom->addr > end) { 815 break; 816 } 817 if (!rom->data) { 818 continue; 819 } 820 821 d = dest + (rom->addr - addr); 822 s = rom->data; 823 l = rom->datasize; 824 825 if ((d + l) > (dest + size)) { 826 l = dest - d; 827 } 828 829 memcpy(d, s, l); 830 831 if (rom->romsize > rom->datasize) { 832 /* If datasize is less than romsize, it means that we didn't 833 * allocate all the ROM because the trailing data are only zeros. 834 */ 835 836 d += l; 837 l = rom->romsize - rom->datasize; 838 839 if ((d + l) > (dest + size)) { 840 /* Rom size doesn't fit in the destination area. Adjust to avoid 841 * overflow. 842 */ 843 l = dest - d; 844 } 845 846 if (l > 0) { 847 memset(d, 0x0, l); 848 } 849 } 850 } 851 852 return (d + l) - dest; 853 } 854 855 void *rom_ptr(hwaddr addr) 856 { 857 Rom *rom; 858 859 rom = find_rom(addr); 860 if (!rom || !rom->data) 861 return NULL; 862 return rom->data + (addr - rom->addr); 863 } 864 865 void do_info_roms(Monitor *mon, const QDict *qdict) 866 { 867 Rom *rom; 868 869 QTAILQ_FOREACH(rom, &roms, next) { 870 if (!rom->fw_file) { 871 monitor_printf(mon, "addr=" TARGET_FMT_plx 872 " size=0x%06zx mem=%s name=\"%s\"\n", 873 rom->addr, rom->romsize, 874 rom->isrom ? "rom" : "ram", 875 rom->name); 876 } else { 877 monitor_printf(mon, "fw=%s/%s" 878 " size=0x%06zx name=\"%s\"\n", 879 rom->fw_dir, 880 rom->fw_file, 881 rom->romsize, 882 rom->name); 883 } 884 } 885 } 886