1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qapi/error.h" 47 #include "hw/hw.h" 48 #include "disas/disas.h" 49 #include "monitor/monitor.h" 50 #include "sysemu/sysemu.h" 51 #include "uboot_image.h" 52 #include "hw/loader.h" 53 #include "hw/nvram/fw_cfg.h" 54 #include "exec/memory.h" 55 #include "exec/address-spaces.h" 56 #include "hw/boards.h" 57 #include "qemu/cutils.h" 58 59 #include <zlib.h> 60 61 static int roms_loaded; 62 63 /* return the size or -1 if error */ 64 int64_t get_image_size(const char *filename) 65 { 66 int fd; 67 int64_t size; 68 fd = open(filename, O_RDONLY | O_BINARY); 69 if (fd < 0) 70 return -1; 71 size = lseek(fd, 0, SEEK_END); 72 close(fd); 73 return size; 74 } 75 76 /* return the size or -1 if error */ 77 ssize_t load_image_size(const char *filename, void *addr, size_t size) 78 { 79 int fd; 80 ssize_t actsize; 81 82 fd = open(filename, O_RDONLY | O_BINARY); 83 if (fd < 0) { 84 return -1; 85 } 86 87 actsize = read(fd, addr, size); 88 if (actsize < 0) { 89 close(fd); 90 return -1; 91 } 92 close(fd); 93 94 return actsize; 95 } 96 97 /* read()-like version */ 98 ssize_t read_targphys(const char *name, 99 int fd, hwaddr dst_addr, size_t nbytes) 100 { 101 uint8_t *buf; 102 ssize_t did; 103 104 buf = g_malloc(nbytes); 105 did = read(fd, buf, nbytes); 106 if (did > 0) 107 rom_add_blob_fixed("read", buf, did, dst_addr); 108 g_free(buf); 109 return did; 110 } 111 112 int load_image_targphys(const char *filename, 113 hwaddr addr, uint64_t max_sz) 114 { 115 return load_image_targphys_as(filename, addr, max_sz, NULL); 116 } 117 118 /* return the size or -1 if error */ 119 int load_image_targphys_as(const char *filename, 120 hwaddr addr, uint64_t max_sz, AddressSpace *as) 121 { 122 int size; 123 124 size = get_image_size(filename); 125 if (size < 0 || size > max_sz) { 126 return -1; 127 } 128 if (size > 0) { 129 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 130 return -1; 131 } 132 } 133 return size; 134 } 135 136 int load_image_mr(const char *filename, MemoryRegion *mr) 137 { 138 int size; 139 140 if (!memory_access_is_direct(mr, false)) { 141 /* Can only load an image into RAM or ROM */ 142 return -1; 143 } 144 145 size = get_image_size(filename); 146 147 if (size < 0 || size > memory_region_size(mr)) { 148 return -1; 149 } 150 if (size > 0) { 151 if (rom_add_file_mr(filename, mr, -1) < 0) { 152 return -1; 153 } 154 } 155 return size; 156 } 157 158 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 159 const char *source) 160 { 161 const char *nulp; 162 char *ptr; 163 164 if (buf_size <= 0) return; 165 nulp = memchr(source, 0, buf_size); 166 if (nulp) { 167 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 168 } else { 169 rom_add_blob_fixed(name, source, buf_size, dest); 170 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 171 *ptr = 0; 172 } 173 } 174 175 /* A.OUT loader */ 176 177 struct exec 178 { 179 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 180 uint32_t a_text; /* length of text, in bytes */ 181 uint32_t a_data; /* length of data, in bytes */ 182 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 183 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 184 uint32_t a_entry; /* start address */ 185 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 186 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 187 }; 188 189 static void bswap_ahdr(struct exec *e) 190 { 191 bswap32s(&e->a_info); 192 bswap32s(&e->a_text); 193 bswap32s(&e->a_data); 194 bswap32s(&e->a_bss); 195 bswap32s(&e->a_syms); 196 bswap32s(&e->a_entry); 197 bswap32s(&e->a_trsize); 198 bswap32s(&e->a_drsize); 199 } 200 201 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 202 #define OMAGIC 0407 203 #define NMAGIC 0410 204 #define ZMAGIC 0413 205 #define QMAGIC 0314 206 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 207 #define N_TXTOFF(x) \ 208 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 209 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 210 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 211 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 212 213 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 214 215 #define N_DATADDR(x, target_page_size) \ 216 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 217 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 218 219 220 int load_aout(const char *filename, hwaddr addr, int max_sz, 221 int bswap_needed, hwaddr target_page_size) 222 { 223 int fd; 224 ssize_t size, ret; 225 struct exec e; 226 uint32_t magic; 227 228 fd = open(filename, O_RDONLY | O_BINARY); 229 if (fd < 0) 230 return -1; 231 232 size = read(fd, &e, sizeof(e)); 233 if (size < 0) 234 goto fail; 235 236 if (bswap_needed) { 237 bswap_ahdr(&e); 238 } 239 240 magic = N_MAGIC(e); 241 switch (magic) { 242 case ZMAGIC: 243 case QMAGIC: 244 case OMAGIC: 245 if (e.a_text + e.a_data > max_sz) 246 goto fail; 247 lseek(fd, N_TXTOFF(e), SEEK_SET); 248 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 249 if (size < 0) 250 goto fail; 251 break; 252 case NMAGIC: 253 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 254 goto fail; 255 lseek(fd, N_TXTOFF(e), SEEK_SET); 256 size = read_targphys(filename, fd, addr, e.a_text); 257 if (size < 0) 258 goto fail; 259 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 260 e.a_data); 261 if (ret < 0) 262 goto fail; 263 size += ret; 264 break; 265 default: 266 goto fail; 267 } 268 close(fd); 269 return size; 270 fail: 271 close(fd); 272 return -1; 273 } 274 275 /* ELF loader */ 276 277 static void *load_at(int fd, off_t offset, size_t size) 278 { 279 void *ptr; 280 if (lseek(fd, offset, SEEK_SET) < 0) 281 return NULL; 282 ptr = g_malloc(size); 283 if (read(fd, ptr, size) != size) { 284 g_free(ptr); 285 return NULL; 286 } 287 return ptr; 288 } 289 290 #ifdef ELF_CLASS 291 #undef ELF_CLASS 292 #endif 293 294 #define ELF_CLASS ELFCLASS32 295 #include "elf.h" 296 297 #define SZ 32 298 #define elf_word uint32_t 299 #define elf_sword int32_t 300 #define bswapSZs bswap32s 301 #include "hw/elf_ops.h" 302 303 #undef elfhdr 304 #undef elf_phdr 305 #undef elf_shdr 306 #undef elf_sym 307 #undef elf_rela 308 #undef elf_note 309 #undef elf_word 310 #undef elf_sword 311 #undef bswapSZs 312 #undef SZ 313 #define elfhdr elf64_hdr 314 #define elf_phdr elf64_phdr 315 #define elf_note elf64_note 316 #define elf_shdr elf64_shdr 317 #define elf_sym elf64_sym 318 #define elf_rela elf64_rela 319 #define elf_word uint64_t 320 #define elf_sword int64_t 321 #define bswapSZs bswap64s 322 #define SZ 64 323 #include "hw/elf_ops.h" 324 325 const char *load_elf_strerror(int error) 326 { 327 switch (error) { 328 case 0: 329 return "No error"; 330 case ELF_LOAD_FAILED: 331 return "Failed to load ELF"; 332 case ELF_LOAD_NOT_ELF: 333 return "The image is not ELF"; 334 case ELF_LOAD_WRONG_ARCH: 335 return "The image is from incompatible architecture"; 336 case ELF_LOAD_WRONG_ENDIAN: 337 return "The image has incorrect endianness"; 338 default: 339 return "Unknown error"; 340 } 341 } 342 343 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 344 { 345 int fd; 346 uint8_t e_ident_local[EI_NIDENT]; 347 uint8_t *e_ident; 348 size_t hdr_size, off; 349 bool is64l; 350 351 if (!hdr) { 352 hdr = e_ident_local; 353 } 354 e_ident = hdr; 355 356 fd = open(filename, O_RDONLY | O_BINARY); 357 if (fd < 0) { 358 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 359 return; 360 } 361 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 362 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 363 goto fail; 364 } 365 if (e_ident[0] != ELFMAG0 || 366 e_ident[1] != ELFMAG1 || 367 e_ident[2] != ELFMAG2 || 368 e_ident[3] != ELFMAG3) { 369 error_setg(errp, "Bad ELF magic"); 370 goto fail; 371 } 372 373 is64l = e_ident[EI_CLASS] == ELFCLASS64; 374 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 375 if (is64) { 376 *is64 = is64l; 377 } 378 379 off = EI_NIDENT; 380 while (hdr != e_ident_local && off < hdr_size) { 381 size_t br = read(fd, hdr + off, hdr_size - off); 382 switch (br) { 383 case 0: 384 error_setg(errp, "File too short: %s", filename); 385 goto fail; 386 case -1: 387 error_setg_errno(errp, errno, "Failed to read file: %s", 388 filename); 389 goto fail; 390 } 391 off += br; 392 } 393 394 fail: 395 close(fd); 396 } 397 398 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 399 int load_elf(const char *filename, uint64_t (*translate_fn)(void *, uint64_t), 400 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 401 uint64_t *highaddr, int big_endian, int elf_machine, 402 int clear_lsb, int data_swab) 403 { 404 return load_elf_as(filename, translate_fn, translate_opaque, pentry, 405 lowaddr, highaddr, big_endian, elf_machine, clear_lsb, 406 data_swab, NULL); 407 } 408 409 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 410 int load_elf_as(const char *filename, 411 uint64_t (*translate_fn)(void *, uint64_t), 412 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 413 uint64_t *highaddr, int big_endian, int elf_machine, 414 int clear_lsb, int data_swab, AddressSpace *as) 415 { 416 return load_elf_ram(filename, translate_fn, translate_opaque, 417 pentry, lowaddr, highaddr, big_endian, elf_machine, 418 clear_lsb, data_swab, as, true); 419 } 420 421 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 422 int load_elf_ram(const char *filename, 423 uint64_t (*translate_fn)(void *, uint64_t), 424 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 425 uint64_t *highaddr, int big_endian, int elf_machine, 426 int clear_lsb, int data_swab, AddressSpace *as, 427 bool load_rom) 428 { 429 return load_elf_ram_sym(filename, translate_fn, translate_opaque, 430 pentry, lowaddr, highaddr, big_endian, 431 elf_machine, clear_lsb, data_swab, as, 432 load_rom, NULL); 433 } 434 435 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 436 int load_elf_ram_sym(const char *filename, 437 uint64_t (*translate_fn)(void *, uint64_t), 438 void *translate_opaque, uint64_t *pentry, 439 uint64_t *lowaddr, uint64_t *highaddr, int big_endian, 440 int elf_machine, int clear_lsb, int data_swab, 441 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 442 { 443 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; 444 uint8_t e_ident[EI_NIDENT]; 445 446 fd = open(filename, O_RDONLY | O_BINARY); 447 if (fd < 0) { 448 perror(filename); 449 return -1; 450 } 451 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 452 goto fail; 453 if (e_ident[0] != ELFMAG0 || 454 e_ident[1] != ELFMAG1 || 455 e_ident[2] != ELFMAG2 || 456 e_ident[3] != ELFMAG3) { 457 ret = ELF_LOAD_NOT_ELF; 458 goto fail; 459 } 460 #ifdef HOST_WORDS_BIGENDIAN 461 data_order = ELFDATA2MSB; 462 #else 463 data_order = ELFDATA2LSB; 464 #endif 465 must_swab = data_order != e_ident[EI_DATA]; 466 if (big_endian) { 467 target_data_order = ELFDATA2MSB; 468 } else { 469 target_data_order = ELFDATA2LSB; 470 } 471 472 if (target_data_order != e_ident[EI_DATA]) { 473 ret = ELF_LOAD_WRONG_ENDIAN; 474 goto fail; 475 } 476 477 lseek(fd, 0, SEEK_SET); 478 if (e_ident[EI_CLASS] == ELFCLASS64) { 479 ret = load_elf64(filename, fd, translate_fn, translate_opaque, must_swab, 480 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 481 data_swab, as, load_rom, sym_cb); 482 } else { 483 ret = load_elf32(filename, fd, translate_fn, translate_opaque, must_swab, 484 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 485 data_swab, as, load_rom, sym_cb); 486 } 487 488 fail: 489 close(fd); 490 return ret; 491 } 492 493 static void bswap_uboot_header(uboot_image_header_t *hdr) 494 { 495 #ifndef HOST_WORDS_BIGENDIAN 496 bswap32s(&hdr->ih_magic); 497 bswap32s(&hdr->ih_hcrc); 498 bswap32s(&hdr->ih_time); 499 bswap32s(&hdr->ih_size); 500 bswap32s(&hdr->ih_load); 501 bswap32s(&hdr->ih_ep); 502 bswap32s(&hdr->ih_dcrc); 503 #endif 504 } 505 506 507 #define ZALLOC_ALIGNMENT 16 508 509 static void *zalloc(void *x, unsigned items, unsigned size) 510 { 511 void *p; 512 513 size *= items; 514 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 515 516 p = g_malloc(size); 517 518 return (p); 519 } 520 521 static void zfree(void *x, void *addr) 522 { 523 g_free(addr); 524 } 525 526 527 #define HEAD_CRC 2 528 #define EXTRA_FIELD 4 529 #define ORIG_NAME 8 530 #define COMMENT 0x10 531 #define RESERVED 0xe0 532 533 #define DEFLATED 8 534 535 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 536 { 537 z_stream s; 538 ssize_t dstbytes; 539 int r, i, flags; 540 541 /* skip header */ 542 i = 10; 543 flags = src[3]; 544 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 545 puts ("Error: Bad gzipped data\n"); 546 return -1; 547 } 548 if ((flags & EXTRA_FIELD) != 0) 549 i = 12 + src[10] + (src[11] << 8); 550 if ((flags & ORIG_NAME) != 0) 551 while (src[i++] != 0) 552 ; 553 if ((flags & COMMENT) != 0) 554 while (src[i++] != 0) 555 ; 556 if ((flags & HEAD_CRC) != 0) 557 i += 2; 558 if (i >= srclen) { 559 puts ("Error: gunzip out of data in header\n"); 560 return -1; 561 } 562 563 s.zalloc = zalloc; 564 s.zfree = zfree; 565 566 r = inflateInit2(&s, -MAX_WBITS); 567 if (r != Z_OK) { 568 printf ("Error: inflateInit2() returned %d\n", r); 569 return (-1); 570 } 571 s.next_in = src + i; 572 s.avail_in = srclen - i; 573 s.next_out = dst; 574 s.avail_out = dstlen; 575 r = inflate(&s, Z_FINISH); 576 if (r != Z_OK && r != Z_STREAM_END) { 577 printf ("Error: inflate() returned %d\n", r); 578 return -1; 579 } 580 dstbytes = s.next_out - (unsigned char *) dst; 581 inflateEnd(&s); 582 583 return dstbytes; 584 } 585 586 /* Load a U-Boot image. */ 587 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 588 int *is_linux, uint8_t image_type, 589 uint64_t (*translate_fn)(void *, uint64_t), 590 void *translate_opaque, AddressSpace *as) 591 { 592 int fd; 593 int size; 594 hwaddr address; 595 uboot_image_header_t h; 596 uboot_image_header_t *hdr = &h; 597 uint8_t *data = NULL; 598 int ret = -1; 599 int do_uncompress = 0; 600 601 fd = open(filename, O_RDONLY | O_BINARY); 602 if (fd < 0) 603 return -1; 604 605 size = read(fd, hdr, sizeof(uboot_image_header_t)); 606 if (size < sizeof(uboot_image_header_t)) { 607 goto out; 608 } 609 610 bswap_uboot_header(hdr); 611 612 if (hdr->ih_magic != IH_MAGIC) 613 goto out; 614 615 if (hdr->ih_type != image_type) { 616 if (!(image_type == IH_TYPE_KERNEL && 617 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 618 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 619 image_type); 620 goto out; 621 } 622 } 623 624 /* TODO: Implement other image types. */ 625 switch (hdr->ih_type) { 626 case IH_TYPE_KERNEL_NOLOAD: 627 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 628 fprintf(stderr, "this image format (kernel_noload) cannot be " 629 "loaded on this machine type"); 630 goto out; 631 } 632 633 hdr->ih_load = *loadaddr + sizeof(*hdr); 634 hdr->ih_ep += hdr->ih_load; 635 /* fall through */ 636 case IH_TYPE_KERNEL: 637 address = hdr->ih_load; 638 if (translate_fn) { 639 address = translate_fn(translate_opaque, address); 640 } 641 if (loadaddr) { 642 *loadaddr = hdr->ih_load; 643 } 644 645 switch (hdr->ih_comp) { 646 case IH_COMP_NONE: 647 break; 648 case IH_COMP_GZIP: 649 do_uncompress = 1; 650 break; 651 default: 652 fprintf(stderr, 653 "Unable to load u-boot images with compression type %d\n", 654 hdr->ih_comp); 655 goto out; 656 } 657 658 if (ep) { 659 *ep = hdr->ih_ep; 660 } 661 662 /* TODO: Check CPU type. */ 663 if (is_linux) { 664 if (hdr->ih_os == IH_OS_LINUX) { 665 *is_linux = 1; 666 } else { 667 *is_linux = 0; 668 } 669 } 670 671 break; 672 case IH_TYPE_RAMDISK: 673 address = *loadaddr; 674 break; 675 default: 676 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 677 goto out; 678 } 679 680 data = g_malloc(hdr->ih_size); 681 682 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 683 fprintf(stderr, "Error reading file\n"); 684 goto out; 685 } 686 687 if (do_uncompress) { 688 uint8_t *compressed_data; 689 size_t max_bytes; 690 ssize_t bytes; 691 692 compressed_data = data; 693 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 694 data = g_malloc(max_bytes); 695 696 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 697 g_free(compressed_data); 698 if (bytes < 0) { 699 fprintf(stderr, "Unable to decompress gzipped image!\n"); 700 goto out; 701 } 702 hdr->ih_size = bytes; 703 } 704 705 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 706 707 ret = hdr->ih_size; 708 709 out: 710 g_free(data); 711 close(fd); 712 return ret; 713 } 714 715 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 716 int *is_linux, 717 uint64_t (*translate_fn)(void *, uint64_t), 718 void *translate_opaque) 719 { 720 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 721 translate_fn, translate_opaque, NULL); 722 } 723 724 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 725 int *is_linux, 726 uint64_t (*translate_fn)(void *, uint64_t), 727 void *translate_opaque, AddressSpace *as) 728 { 729 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 730 translate_fn, translate_opaque, as); 731 } 732 733 /* Load a ramdisk. */ 734 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 735 { 736 return load_ramdisk_as(filename, addr, max_sz, NULL); 737 } 738 739 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 740 AddressSpace *as) 741 { 742 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 743 NULL, NULL, as); 744 } 745 746 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 747 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 748 uint8_t **buffer) 749 { 750 uint8_t *compressed_data = NULL; 751 uint8_t *data = NULL; 752 gsize len; 753 ssize_t bytes; 754 int ret = -1; 755 756 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 757 NULL)) { 758 goto out; 759 } 760 761 /* Is it a gzip-compressed file? */ 762 if (len < 2 || 763 compressed_data[0] != 0x1f || 764 compressed_data[1] != 0x8b) { 765 goto out; 766 } 767 768 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 769 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 770 } 771 772 data = g_malloc(max_sz); 773 bytes = gunzip(data, max_sz, compressed_data, len); 774 if (bytes < 0) { 775 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 776 filename); 777 goto out; 778 } 779 780 /* trim to actual size and return to caller */ 781 *buffer = g_realloc(data, bytes); 782 ret = bytes; 783 /* ownership has been transferred to caller */ 784 data = NULL; 785 786 out: 787 g_free(compressed_data); 788 g_free(data); 789 return ret; 790 } 791 792 /* Load a gzip-compressed kernel. */ 793 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 794 { 795 int bytes; 796 uint8_t *data; 797 798 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 799 if (bytes != -1) { 800 rom_add_blob_fixed(filename, data, bytes, addr); 801 g_free(data); 802 } 803 return bytes; 804 } 805 806 /* 807 * Functions for reboot-persistent memory regions. 808 * - used for vga bios and option roms. 809 * - also linux kernel (-kernel / -initrd). 810 */ 811 812 typedef struct Rom Rom; 813 814 struct Rom { 815 char *name; 816 char *path; 817 818 /* datasize is the amount of memory allocated in "data". If datasize is less 819 * than romsize, it means that the area from datasize to romsize is filled 820 * with zeros. 821 */ 822 size_t romsize; 823 size_t datasize; 824 825 uint8_t *data; 826 MemoryRegion *mr; 827 AddressSpace *as; 828 int isrom; 829 char *fw_dir; 830 char *fw_file; 831 832 bool committed; 833 834 hwaddr addr; 835 QTAILQ_ENTRY(Rom) next; 836 }; 837 838 static FWCfgState *fw_cfg; 839 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 840 841 /* rom->data must be heap-allocated (do not use with rom_add_elf_program()) */ 842 static void rom_free(Rom *rom) 843 { 844 g_free(rom->data); 845 g_free(rom->path); 846 g_free(rom->name); 847 g_free(rom->fw_dir); 848 g_free(rom->fw_file); 849 g_free(rom); 850 } 851 852 static inline bool rom_order_compare(Rom *rom, Rom *item) 853 { 854 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 855 (rom->as == item->as && rom->addr >= item->addr); 856 } 857 858 static void rom_insert(Rom *rom) 859 { 860 Rom *item; 861 862 if (roms_loaded) { 863 hw_error ("ROM images must be loaded at startup\n"); 864 } 865 866 /* The user didn't specify an address space, this is the default */ 867 if (!rom->as) { 868 rom->as = &address_space_memory; 869 } 870 871 rom->committed = false; 872 873 /* List is ordered by load address in the same address space */ 874 QTAILQ_FOREACH(item, &roms, next) { 875 if (rom_order_compare(rom, item)) { 876 continue; 877 } 878 QTAILQ_INSERT_BEFORE(item, rom, next); 879 return; 880 } 881 QTAILQ_INSERT_TAIL(&roms, rom, next); 882 } 883 884 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 885 { 886 if (fw_cfg) { 887 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 888 } 889 } 890 891 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 892 { 893 void *data; 894 895 rom->mr = g_malloc(sizeof(*rom->mr)); 896 memory_region_init_resizeable_ram(rom->mr, owner, name, 897 rom->datasize, rom->romsize, 898 fw_cfg_resized, 899 &error_fatal); 900 memory_region_set_readonly(rom->mr, ro); 901 vmstate_register_ram_global(rom->mr); 902 903 data = memory_region_get_ram_ptr(rom->mr); 904 memcpy(data, rom->data, rom->datasize); 905 906 return data; 907 } 908 909 int rom_add_file(const char *file, const char *fw_dir, 910 hwaddr addr, int32_t bootindex, 911 bool option_rom, MemoryRegion *mr, 912 AddressSpace *as) 913 { 914 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 915 Rom *rom; 916 int rc, fd = -1; 917 char devpath[100]; 918 919 if (as && mr) { 920 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 921 "not valid when loading a rom\n"); 922 /* We haven't allocated anything so we don't need any cleanup */ 923 return -1; 924 } 925 926 rom = g_malloc0(sizeof(*rom)); 927 rom->name = g_strdup(file); 928 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 929 rom->as = as; 930 if (rom->path == NULL) { 931 rom->path = g_strdup(file); 932 } 933 934 fd = open(rom->path, O_RDONLY | O_BINARY); 935 if (fd == -1) { 936 fprintf(stderr, "Could not open option rom '%s': %s\n", 937 rom->path, strerror(errno)); 938 goto err; 939 } 940 941 if (fw_dir) { 942 rom->fw_dir = g_strdup(fw_dir); 943 rom->fw_file = g_strdup(file); 944 } 945 rom->addr = addr; 946 rom->romsize = lseek(fd, 0, SEEK_END); 947 if (rom->romsize == -1) { 948 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 949 rom->name, strerror(errno)); 950 goto err; 951 } 952 953 rom->datasize = rom->romsize; 954 rom->data = g_malloc0(rom->datasize); 955 lseek(fd, 0, SEEK_SET); 956 rc = read(fd, rom->data, rom->datasize); 957 if (rc != rom->datasize) { 958 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 959 rom->name, rc, rom->datasize); 960 goto err; 961 } 962 close(fd); 963 rom_insert(rom); 964 if (rom->fw_file && fw_cfg) { 965 const char *basename; 966 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 967 void *data; 968 969 basename = strrchr(rom->fw_file, '/'); 970 if (basename) { 971 basename++; 972 } else { 973 basename = rom->fw_file; 974 } 975 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 976 basename); 977 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 978 979 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 980 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 981 } else { 982 data = rom->data; 983 } 984 985 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 986 } else { 987 if (mr) { 988 rom->mr = mr; 989 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 990 } else { 991 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 992 } 993 } 994 995 add_boot_device_path(bootindex, NULL, devpath); 996 return 0; 997 998 err: 999 if (fd != -1) 1000 close(fd); 1001 1002 rom_free(rom); 1003 return -1; 1004 } 1005 1006 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1007 size_t max_len, hwaddr addr, const char *fw_file_name, 1008 FWCfgCallback fw_callback, void *callback_opaque, 1009 AddressSpace *as, bool read_only) 1010 { 1011 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1012 Rom *rom; 1013 MemoryRegion *mr = NULL; 1014 1015 rom = g_malloc0(sizeof(*rom)); 1016 rom->name = g_strdup(name); 1017 rom->as = as; 1018 rom->addr = addr; 1019 rom->romsize = max_len ? max_len : len; 1020 rom->datasize = len; 1021 rom->data = g_malloc0(rom->datasize); 1022 memcpy(rom->data, blob, len); 1023 rom_insert(rom); 1024 if (fw_file_name && fw_cfg) { 1025 char devpath[100]; 1026 void *data; 1027 1028 if (read_only) { 1029 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1030 } else { 1031 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1032 } 1033 1034 if (mc->rom_file_has_mr) { 1035 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1036 mr = rom->mr; 1037 } else { 1038 data = rom->data; 1039 } 1040 1041 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1042 fw_callback, NULL, callback_opaque, 1043 data, rom->datasize, read_only); 1044 } 1045 return mr; 1046 } 1047 1048 /* This function is specific for elf program because we don't need to allocate 1049 * all the rom. We just allocate the first part and the rest is just zeros. This 1050 * is why romsize and datasize are different. Also, this function seize the 1051 * memory ownership of "data", so we don't have to allocate and copy the buffer. 1052 */ 1053 int rom_add_elf_program(const char *name, void *data, size_t datasize, 1054 size_t romsize, hwaddr addr, AddressSpace *as) 1055 { 1056 Rom *rom; 1057 1058 rom = g_malloc0(sizeof(*rom)); 1059 rom->name = g_strdup(name); 1060 rom->addr = addr; 1061 rom->datasize = datasize; 1062 rom->romsize = romsize; 1063 rom->data = data; 1064 rom->as = as; 1065 rom_insert(rom); 1066 return 0; 1067 } 1068 1069 int rom_add_vga(const char *file) 1070 { 1071 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1072 } 1073 1074 int rom_add_option(const char *file, int32_t bootindex) 1075 { 1076 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1077 } 1078 1079 static void rom_reset(void *unused) 1080 { 1081 Rom *rom; 1082 1083 QTAILQ_FOREACH(rom, &roms, next) { 1084 if (rom->fw_file) { 1085 continue; 1086 } 1087 if (rom->data == NULL) { 1088 continue; 1089 } 1090 if (rom->mr) { 1091 void *host = memory_region_get_ram_ptr(rom->mr); 1092 memcpy(host, rom->data, rom->datasize); 1093 } else { 1094 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1095 rom->data, rom->datasize); 1096 } 1097 if (rom->isrom) { 1098 /* rom needs to be written only once */ 1099 g_free(rom->data); 1100 rom->data = NULL; 1101 } 1102 /* 1103 * The rom loader is really on the same level as firmware in the guest 1104 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1105 * that the instruction cache for that new region is clear, so that the 1106 * CPU definitely fetches its instructions from the just written data. 1107 */ 1108 cpu_flush_icache_range(rom->addr, rom->datasize); 1109 } 1110 } 1111 1112 int rom_check_and_register_reset(void) 1113 { 1114 hwaddr addr = 0; 1115 MemoryRegionSection section; 1116 Rom *rom; 1117 AddressSpace *as = NULL; 1118 1119 QTAILQ_FOREACH(rom, &roms, next) { 1120 if (rom->fw_file) { 1121 continue; 1122 } 1123 if (!rom->mr) { 1124 if ((addr > rom->addr) && (as == rom->as)) { 1125 fprintf(stderr, "rom: requested regions overlap " 1126 "(rom %s. free=0x" TARGET_FMT_plx 1127 ", addr=0x" TARGET_FMT_plx ")\n", 1128 rom->name, addr, rom->addr); 1129 return -1; 1130 } 1131 addr = rom->addr; 1132 addr += rom->romsize; 1133 as = rom->as; 1134 } 1135 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1136 rom->addr, 1); 1137 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1138 memory_region_unref(section.mr); 1139 } 1140 qemu_register_reset(rom_reset, NULL); 1141 roms_loaded = 1; 1142 return 0; 1143 } 1144 1145 void rom_set_fw(FWCfgState *f) 1146 { 1147 fw_cfg = f; 1148 } 1149 1150 void rom_set_order_override(int order) 1151 { 1152 if (!fw_cfg) 1153 return; 1154 fw_cfg_set_order_override(fw_cfg, order); 1155 } 1156 1157 void rom_reset_order_override(void) 1158 { 1159 if (!fw_cfg) 1160 return; 1161 fw_cfg_reset_order_override(fw_cfg); 1162 } 1163 1164 void rom_transaction_begin(void) 1165 { 1166 Rom *rom; 1167 1168 /* Ignore ROMs added without the transaction API */ 1169 QTAILQ_FOREACH(rom, &roms, next) { 1170 rom->committed = true; 1171 } 1172 } 1173 1174 void rom_transaction_end(bool commit) 1175 { 1176 Rom *rom; 1177 Rom *tmp; 1178 1179 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1180 if (rom->committed) { 1181 continue; 1182 } 1183 if (commit) { 1184 rom->committed = true; 1185 } else { 1186 QTAILQ_REMOVE(&roms, rom, next); 1187 rom_free(rom); 1188 } 1189 } 1190 } 1191 1192 static Rom *find_rom(hwaddr addr, size_t size) 1193 { 1194 Rom *rom; 1195 1196 QTAILQ_FOREACH(rom, &roms, next) { 1197 if (rom->fw_file) { 1198 continue; 1199 } 1200 if (rom->mr) { 1201 continue; 1202 } 1203 if (rom->addr > addr) { 1204 continue; 1205 } 1206 if (rom->addr + rom->romsize < addr + size) { 1207 continue; 1208 } 1209 return rom; 1210 } 1211 return NULL; 1212 } 1213 1214 /* 1215 * Copies memory from registered ROMs to dest. Any memory that is contained in 1216 * a ROM between addr and addr + size is copied. Note that this can involve 1217 * multiple ROMs, which need not start at addr and need not end at addr + size. 1218 */ 1219 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1220 { 1221 hwaddr end = addr + size; 1222 uint8_t *s, *d = dest; 1223 size_t l = 0; 1224 Rom *rom; 1225 1226 QTAILQ_FOREACH(rom, &roms, next) { 1227 if (rom->fw_file) { 1228 continue; 1229 } 1230 if (rom->mr) { 1231 continue; 1232 } 1233 if (rom->addr + rom->romsize < addr) { 1234 continue; 1235 } 1236 if (rom->addr > end) { 1237 break; 1238 } 1239 1240 d = dest + (rom->addr - addr); 1241 s = rom->data; 1242 l = rom->datasize; 1243 1244 if ((d + l) > (dest + size)) { 1245 l = dest - d; 1246 } 1247 1248 if (l > 0) { 1249 memcpy(d, s, l); 1250 } 1251 1252 if (rom->romsize > rom->datasize) { 1253 /* If datasize is less than romsize, it means that we didn't 1254 * allocate all the ROM because the trailing data are only zeros. 1255 */ 1256 1257 d += l; 1258 l = rom->romsize - rom->datasize; 1259 1260 if ((d + l) > (dest + size)) { 1261 /* Rom size doesn't fit in the destination area. Adjust to avoid 1262 * overflow. 1263 */ 1264 l = dest - d; 1265 } 1266 1267 if (l > 0) { 1268 memset(d, 0x0, l); 1269 } 1270 } 1271 } 1272 1273 return (d + l) - dest; 1274 } 1275 1276 void *rom_ptr(hwaddr addr, size_t size) 1277 { 1278 Rom *rom; 1279 1280 rom = find_rom(addr, size); 1281 if (!rom || !rom->data) 1282 return NULL; 1283 return rom->data + (addr - rom->addr); 1284 } 1285 1286 void hmp_info_roms(Monitor *mon, const QDict *qdict) 1287 { 1288 Rom *rom; 1289 1290 QTAILQ_FOREACH(rom, &roms, next) { 1291 if (rom->mr) { 1292 monitor_printf(mon, "%s" 1293 " size=0x%06zx name=\"%s\"\n", 1294 memory_region_name(rom->mr), 1295 rom->romsize, 1296 rom->name); 1297 } else if (!rom->fw_file) { 1298 monitor_printf(mon, "addr=" TARGET_FMT_plx 1299 " size=0x%06zx mem=%s name=\"%s\"\n", 1300 rom->addr, rom->romsize, 1301 rom->isrom ? "rom" : "ram", 1302 rom->name); 1303 } else { 1304 monitor_printf(mon, "fw=%s/%s" 1305 " size=0x%06zx name=\"%s\"\n", 1306 rom->fw_dir, 1307 rom->fw_file, 1308 rom->romsize, 1309 rom->name); 1310 } 1311 } 1312 } 1313 1314 typedef enum HexRecord HexRecord; 1315 enum HexRecord { 1316 DATA_RECORD = 0, 1317 EOF_RECORD, 1318 EXT_SEG_ADDR_RECORD, 1319 START_SEG_ADDR_RECORD, 1320 EXT_LINEAR_ADDR_RECORD, 1321 START_LINEAR_ADDR_RECORD, 1322 }; 1323 1324 /* Each record contains a 16-bit address which is combined with the upper 16 1325 * bits of the implicit "next address" to form a 32-bit address. 1326 */ 1327 #define NEXT_ADDR_MASK 0xffff0000 1328 1329 #define DATA_FIELD_MAX_LEN 0xff 1330 #define LEN_EXCEPT_DATA 0x5 1331 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1332 * sizeof(checksum) */ 1333 typedef struct { 1334 uint8_t byte_count; 1335 uint16_t address; 1336 uint8_t record_type; 1337 uint8_t data[DATA_FIELD_MAX_LEN]; 1338 uint8_t checksum; 1339 } HexLine; 1340 1341 /* return 0 or -1 if error */ 1342 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1343 uint32_t *index, const bool in_process) 1344 { 1345 /* +-------+---------------+-------+---------------------+--------+ 1346 * | byte | |record | | | 1347 * | count | address | type | data |checksum| 1348 * +-------+---------------+-------+---------------------+--------+ 1349 * ^ ^ ^ ^ ^ ^ 1350 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1351 */ 1352 uint8_t value = 0; 1353 uint32_t idx = *index; 1354 /* ignore space */ 1355 if (g_ascii_isspace(c)) { 1356 return true; 1357 } 1358 if (!g_ascii_isxdigit(c) || !in_process) { 1359 return false; 1360 } 1361 value = g_ascii_xdigit_value(c); 1362 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1363 if (idx < 2) { 1364 line->byte_count |= value; 1365 } else if (2 <= idx && idx < 6) { 1366 line->address <<= 4; 1367 line->address += g_ascii_xdigit_value(c); 1368 } else if (6 <= idx && idx < 8) { 1369 line->record_type |= value; 1370 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1371 line->data[(idx - 8) >> 1] |= value; 1372 } else if (8 + 2 * line->byte_count <= idx && 1373 idx < 10 + 2 * line->byte_count) { 1374 line->checksum |= value; 1375 } else { 1376 return false; 1377 } 1378 *our_checksum += value; 1379 ++(*index); 1380 return true; 1381 } 1382 1383 typedef struct { 1384 const char *filename; 1385 HexLine line; 1386 uint8_t *bin_buf; 1387 hwaddr *start_addr; 1388 int total_size; 1389 uint32_t next_address_to_write; 1390 uint32_t current_address; 1391 uint32_t current_rom_index; 1392 uint32_t rom_start_address; 1393 AddressSpace *as; 1394 } HexParser; 1395 1396 /* return size or -1 if error */ 1397 static int handle_record_type(HexParser *parser) 1398 { 1399 HexLine *line = &(parser->line); 1400 switch (line->record_type) { 1401 case DATA_RECORD: 1402 parser->current_address = 1403 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1404 /* verify this is a contiguous block of memory */ 1405 if (parser->current_address != parser->next_address_to_write) { 1406 if (parser->current_rom_index != 0) { 1407 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1408 parser->current_rom_index, 1409 parser->rom_start_address, parser->as); 1410 } 1411 parser->rom_start_address = parser->current_address; 1412 parser->current_rom_index = 0; 1413 } 1414 1415 /* copy from line buffer to output bin_buf */ 1416 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1417 line->byte_count); 1418 parser->current_rom_index += line->byte_count; 1419 parser->total_size += line->byte_count; 1420 /* save next address to write */ 1421 parser->next_address_to_write = 1422 parser->current_address + line->byte_count; 1423 break; 1424 1425 case EOF_RECORD: 1426 if (parser->current_rom_index != 0) { 1427 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1428 parser->current_rom_index, 1429 parser->rom_start_address, parser->as); 1430 } 1431 return parser->total_size; 1432 case EXT_SEG_ADDR_RECORD: 1433 case EXT_LINEAR_ADDR_RECORD: 1434 if (line->byte_count != 2 && line->address != 0) { 1435 return -1; 1436 } 1437 1438 if (parser->current_rom_index != 0) { 1439 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1440 parser->current_rom_index, 1441 parser->rom_start_address, parser->as); 1442 } 1443 1444 /* save next address to write, 1445 * in case of non-contiguous block of memory */ 1446 parser->next_address_to_write = (line->data[0] << 12) | 1447 (line->data[1] << 4); 1448 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1449 parser->next_address_to_write <<= 12; 1450 } 1451 1452 parser->rom_start_address = parser->next_address_to_write; 1453 parser->current_rom_index = 0; 1454 break; 1455 1456 case START_SEG_ADDR_RECORD: 1457 if (line->byte_count != 4 && line->address != 0) { 1458 return -1; 1459 } 1460 1461 /* x86 16-bit CS:IP segmented addressing */ 1462 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1463 ((line->data[2] << 8) | line->data[3]); 1464 break; 1465 1466 case START_LINEAR_ADDR_RECORD: 1467 if (line->byte_count != 4 && line->address != 0) { 1468 return -1; 1469 } 1470 1471 *(parser->start_addr) = ldl_be_p(line->data); 1472 break; 1473 1474 default: 1475 return -1; 1476 } 1477 1478 return parser->total_size; 1479 } 1480 1481 /* return size or -1 if error */ 1482 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1483 size_t hex_blob_size, AddressSpace *as) 1484 { 1485 bool in_process = false; /* avoid re-enter and 1486 * check whether record begin with ':' */ 1487 uint8_t *end = hex_blob + hex_blob_size; 1488 uint8_t our_checksum = 0; 1489 uint32_t record_index = 0; 1490 HexParser parser = { 1491 .filename = filename, 1492 .bin_buf = g_malloc(hex_blob_size), 1493 .start_addr = addr, 1494 .as = as, 1495 }; 1496 1497 rom_transaction_begin(); 1498 1499 for (; hex_blob < end; ++hex_blob) { 1500 switch (*hex_blob) { 1501 case '\r': 1502 case '\n': 1503 if (!in_process) { 1504 break; 1505 } 1506 1507 in_process = false; 1508 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1509 record_index || 1510 our_checksum != 0) { 1511 parser.total_size = -1; 1512 goto out; 1513 } 1514 1515 if (handle_record_type(&parser) == -1) { 1516 parser.total_size = -1; 1517 goto out; 1518 } 1519 break; 1520 1521 /* start of a new record. */ 1522 case ':': 1523 memset(&parser.line, 0, sizeof(HexLine)); 1524 in_process = true; 1525 record_index = 0; 1526 break; 1527 1528 /* decoding lines */ 1529 default: 1530 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1531 &record_index, in_process)) { 1532 parser.total_size = -1; 1533 goto out; 1534 } 1535 break; 1536 } 1537 } 1538 1539 out: 1540 g_free(parser.bin_buf); 1541 rom_transaction_end(parser.total_size != -1); 1542 return parser.total_size; 1543 } 1544 1545 /* return size or -1 if error */ 1546 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as) 1547 { 1548 gsize hex_blob_size; 1549 gchar *hex_blob; 1550 int total_size = 0; 1551 1552 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1553 return -1; 1554 } 1555 1556 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1557 hex_blob_size, as); 1558 1559 g_free(hex_blob); 1560 return total_size; 1561 } 1562