1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qapi/error.h" 47 #include "hw/hw.h" 48 #include "disas/disas.h" 49 #include "monitor/monitor.h" 50 #include "sysemu/sysemu.h" 51 #include "uboot_image.h" 52 #include "hw/loader.h" 53 #include "hw/nvram/fw_cfg.h" 54 #include "exec/memory.h" 55 #include "exec/address-spaces.h" 56 #include "hw/boards.h" 57 #include "qemu/cutils.h" 58 59 #include <zlib.h> 60 61 static int roms_loaded; 62 63 /* return the size or -1 if error */ 64 int get_image_size(const char *filename) 65 { 66 int fd, size; 67 fd = open(filename, O_RDONLY | O_BINARY); 68 if (fd < 0) 69 return -1; 70 size = lseek(fd, 0, SEEK_END); 71 close(fd); 72 return size; 73 } 74 75 /* return the size or -1 if error */ 76 /* deprecated, because caller does not specify buffer size! */ 77 int load_image(const char *filename, uint8_t *addr) 78 { 79 int fd, size; 80 fd = open(filename, O_RDONLY | O_BINARY); 81 if (fd < 0) 82 return -1; 83 size = lseek(fd, 0, SEEK_END); 84 if (size == -1) { 85 fprintf(stderr, "file %-20s: get size error: %s\n", 86 filename, strerror(errno)); 87 close(fd); 88 return -1; 89 } 90 91 lseek(fd, 0, SEEK_SET); 92 if (read(fd, addr, size) != size) { 93 close(fd); 94 return -1; 95 } 96 close(fd); 97 return size; 98 } 99 100 /* return the size or -1 if error */ 101 ssize_t load_image_size(const char *filename, void *addr, size_t size) 102 { 103 int fd; 104 ssize_t actsize; 105 106 fd = open(filename, O_RDONLY | O_BINARY); 107 if (fd < 0) { 108 return -1; 109 } 110 111 actsize = read(fd, addr, size); 112 if (actsize < 0) { 113 close(fd); 114 return -1; 115 } 116 close(fd); 117 118 return actsize; 119 } 120 121 /* read()-like version */ 122 ssize_t read_targphys(const char *name, 123 int fd, hwaddr dst_addr, size_t nbytes) 124 { 125 uint8_t *buf; 126 ssize_t did; 127 128 buf = g_malloc(nbytes); 129 did = read(fd, buf, nbytes); 130 if (did > 0) 131 rom_add_blob_fixed("read", buf, did, dst_addr); 132 g_free(buf); 133 return did; 134 } 135 136 int load_image_targphys(const char *filename, 137 hwaddr addr, uint64_t max_sz) 138 { 139 return load_image_targphys_as(filename, addr, max_sz, NULL); 140 } 141 142 /* return the size or -1 if error */ 143 int load_image_targphys_as(const char *filename, 144 hwaddr addr, uint64_t max_sz, AddressSpace *as) 145 { 146 int size; 147 148 size = get_image_size(filename); 149 if (size < 0 || size > max_sz) { 150 return -1; 151 } 152 if (size > 0) { 153 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 154 return -1; 155 } 156 } 157 return size; 158 } 159 160 int load_image_mr(const char *filename, MemoryRegion *mr) 161 { 162 int size; 163 164 if (!memory_access_is_direct(mr, false)) { 165 /* Can only load an image into RAM or ROM */ 166 return -1; 167 } 168 169 size = get_image_size(filename); 170 171 if (size < 0 || size > memory_region_size(mr)) { 172 return -1; 173 } 174 if (size > 0) { 175 if (rom_add_file_mr(filename, mr, -1) < 0) { 176 return -1; 177 } 178 } 179 return size; 180 } 181 182 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 183 const char *source) 184 { 185 const char *nulp; 186 char *ptr; 187 188 if (buf_size <= 0) return; 189 nulp = memchr(source, 0, buf_size); 190 if (nulp) { 191 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 192 } else { 193 rom_add_blob_fixed(name, source, buf_size, dest); 194 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 195 *ptr = 0; 196 } 197 } 198 199 /* A.OUT loader */ 200 201 struct exec 202 { 203 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 204 uint32_t a_text; /* length of text, in bytes */ 205 uint32_t a_data; /* length of data, in bytes */ 206 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 207 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 208 uint32_t a_entry; /* start address */ 209 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 210 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 211 }; 212 213 static void bswap_ahdr(struct exec *e) 214 { 215 bswap32s(&e->a_info); 216 bswap32s(&e->a_text); 217 bswap32s(&e->a_data); 218 bswap32s(&e->a_bss); 219 bswap32s(&e->a_syms); 220 bswap32s(&e->a_entry); 221 bswap32s(&e->a_trsize); 222 bswap32s(&e->a_drsize); 223 } 224 225 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 226 #define OMAGIC 0407 227 #define NMAGIC 0410 228 #define ZMAGIC 0413 229 #define QMAGIC 0314 230 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 231 #define N_TXTOFF(x) \ 232 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 233 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 234 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 235 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 236 237 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 238 239 #define N_DATADDR(x, target_page_size) \ 240 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 241 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 242 243 244 int load_aout(const char *filename, hwaddr addr, int max_sz, 245 int bswap_needed, hwaddr target_page_size) 246 { 247 int fd; 248 ssize_t size, ret; 249 struct exec e; 250 uint32_t magic; 251 252 fd = open(filename, O_RDONLY | O_BINARY); 253 if (fd < 0) 254 return -1; 255 256 size = read(fd, &e, sizeof(e)); 257 if (size < 0) 258 goto fail; 259 260 if (bswap_needed) { 261 bswap_ahdr(&e); 262 } 263 264 magic = N_MAGIC(e); 265 switch (magic) { 266 case ZMAGIC: 267 case QMAGIC: 268 case OMAGIC: 269 if (e.a_text + e.a_data > max_sz) 270 goto fail; 271 lseek(fd, N_TXTOFF(e), SEEK_SET); 272 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 273 if (size < 0) 274 goto fail; 275 break; 276 case NMAGIC: 277 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 278 goto fail; 279 lseek(fd, N_TXTOFF(e), SEEK_SET); 280 size = read_targphys(filename, fd, addr, e.a_text); 281 if (size < 0) 282 goto fail; 283 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 284 e.a_data); 285 if (ret < 0) 286 goto fail; 287 size += ret; 288 break; 289 default: 290 goto fail; 291 } 292 close(fd); 293 return size; 294 fail: 295 close(fd); 296 return -1; 297 } 298 299 /* ELF loader */ 300 301 static void *load_at(int fd, off_t offset, size_t size) 302 { 303 void *ptr; 304 if (lseek(fd, offset, SEEK_SET) < 0) 305 return NULL; 306 ptr = g_malloc(size); 307 if (read(fd, ptr, size) != size) { 308 g_free(ptr); 309 return NULL; 310 } 311 return ptr; 312 } 313 314 #ifdef ELF_CLASS 315 #undef ELF_CLASS 316 #endif 317 318 #define ELF_CLASS ELFCLASS32 319 #include "elf.h" 320 321 #define SZ 32 322 #define elf_word uint32_t 323 #define elf_sword int32_t 324 #define bswapSZs bswap32s 325 #include "hw/elf_ops.h" 326 327 #undef elfhdr 328 #undef elf_phdr 329 #undef elf_shdr 330 #undef elf_sym 331 #undef elf_rela 332 #undef elf_note 333 #undef elf_word 334 #undef elf_sword 335 #undef bswapSZs 336 #undef SZ 337 #define elfhdr elf64_hdr 338 #define elf_phdr elf64_phdr 339 #define elf_note elf64_note 340 #define elf_shdr elf64_shdr 341 #define elf_sym elf64_sym 342 #define elf_rela elf64_rela 343 #define elf_word uint64_t 344 #define elf_sword int64_t 345 #define bswapSZs bswap64s 346 #define SZ 64 347 #include "hw/elf_ops.h" 348 349 const char *load_elf_strerror(int error) 350 { 351 switch (error) { 352 case 0: 353 return "No error"; 354 case ELF_LOAD_FAILED: 355 return "Failed to load ELF"; 356 case ELF_LOAD_NOT_ELF: 357 return "The image is not ELF"; 358 case ELF_LOAD_WRONG_ARCH: 359 return "The image is from incompatible architecture"; 360 case ELF_LOAD_WRONG_ENDIAN: 361 return "The image has incorrect endianness"; 362 default: 363 return "Unknown error"; 364 } 365 } 366 367 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 368 { 369 int fd; 370 uint8_t e_ident_local[EI_NIDENT]; 371 uint8_t *e_ident; 372 size_t hdr_size, off; 373 bool is64l; 374 375 if (!hdr) { 376 hdr = e_ident_local; 377 } 378 e_ident = hdr; 379 380 fd = open(filename, O_RDONLY | O_BINARY); 381 if (fd < 0) { 382 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 383 return; 384 } 385 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 386 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 387 goto fail; 388 } 389 if (e_ident[0] != ELFMAG0 || 390 e_ident[1] != ELFMAG1 || 391 e_ident[2] != ELFMAG2 || 392 e_ident[3] != ELFMAG3) { 393 error_setg(errp, "Bad ELF magic"); 394 goto fail; 395 } 396 397 is64l = e_ident[EI_CLASS] == ELFCLASS64; 398 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 399 if (is64) { 400 *is64 = is64l; 401 } 402 403 off = EI_NIDENT; 404 while (hdr != e_ident_local && off < hdr_size) { 405 size_t br = read(fd, hdr + off, hdr_size - off); 406 switch (br) { 407 case 0: 408 error_setg(errp, "File too short: %s", filename); 409 goto fail; 410 case -1: 411 error_setg_errno(errp, errno, "Failed to read file: %s", 412 filename); 413 goto fail; 414 } 415 off += br; 416 } 417 418 fail: 419 close(fd); 420 } 421 422 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 423 int load_elf(const char *filename, uint64_t (*translate_fn)(void *, uint64_t), 424 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 425 uint64_t *highaddr, int big_endian, int elf_machine, 426 int clear_lsb, int data_swab) 427 { 428 return load_elf_as(filename, translate_fn, translate_opaque, pentry, 429 lowaddr, highaddr, big_endian, elf_machine, clear_lsb, 430 data_swab, NULL); 431 } 432 433 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 434 int load_elf_as(const char *filename, 435 uint64_t (*translate_fn)(void *, uint64_t), 436 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 437 uint64_t *highaddr, int big_endian, int elf_machine, 438 int clear_lsb, int data_swab, AddressSpace *as) 439 { 440 return load_elf_ram(filename, translate_fn, translate_opaque, 441 pentry, lowaddr, highaddr, big_endian, elf_machine, 442 clear_lsb, data_swab, as, true); 443 } 444 445 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 446 int load_elf_ram(const char *filename, 447 uint64_t (*translate_fn)(void *, uint64_t), 448 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 449 uint64_t *highaddr, int big_endian, int elf_machine, 450 int clear_lsb, int data_swab, AddressSpace *as, 451 bool load_rom) 452 { 453 return load_elf_ram_sym(filename, translate_fn, translate_opaque, 454 pentry, lowaddr, highaddr, big_endian, 455 elf_machine, clear_lsb, data_swab, as, 456 load_rom, NULL); 457 } 458 459 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 460 int load_elf_ram_sym(const char *filename, 461 uint64_t (*translate_fn)(void *, uint64_t), 462 void *translate_opaque, uint64_t *pentry, 463 uint64_t *lowaddr, uint64_t *highaddr, int big_endian, 464 int elf_machine, int clear_lsb, int data_swab, 465 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 466 { 467 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; 468 uint8_t e_ident[EI_NIDENT]; 469 470 fd = open(filename, O_RDONLY | O_BINARY); 471 if (fd < 0) { 472 perror(filename); 473 return -1; 474 } 475 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 476 goto fail; 477 if (e_ident[0] != ELFMAG0 || 478 e_ident[1] != ELFMAG1 || 479 e_ident[2] != ELFMAG2 || 480 e_ident[3] != ELFMAG3) { 481 ret = ELF_LOAD_NOT_ELF; 482 goto fail; 483 } 484 #ifdef HOST_WORDS_BIGENDIAN 485 data_order = ELFDATA2MSB; 486 #else 487 data_order = ELFDATA2LSB; 488 #endif 489 must_swab = data_order != e_ident[EI_DATA]; 490 if (big_endian) { 491 target_data_order = ELFDATA2MSB; 492 } else { 493 target_data_order = ELFDATA2LSB; 494 } 495 496 if (target_data_order != e_ident[EI_DATA]) { 497 ret = ELF_LOAD_WRONG_ENDIAN; 498 goto fail; 499 } 500 501 lseek(fd, 0, SEEK_SET); 502 if (e_ident[EI_CLASS] == ELFCLASS64) { 503 ret = load_elf64(filename, fd, translate_fn, translate_opaque, must_swab, 504 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 505 data_swab, as, load_rom, sym_cb); 506 } else { 507 ret = load_elf32(filename, fd, translate_fn, translate_opaque, must_swab, 508 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 509 data_swab, as, load_rom, sym_cb); 510 } 511 512 fail: 513 close(fd); 514 return ret; 515 } 516 517 static void bswap_uboot_header(uboot_image_header_t *hdr) 518 { 519 #ifndef HOST_WORDS_BIGENDIAN 520 bswap32s(&hdr->ih_magic); 521 bswap32s(&hdr->ih_hcrc); 522 bswap32s(&hdr->ih_time); 523 bswap32s(&hdr->ih_size); 524 bswap32s(&hdr->ih_load); 525 bswap32s(&hdr->ih_ep); 526 bswap32s(&hdr->ih_dcrc); 527 #endif 528 } 529 530 531 #define ZALLOC_ALIGNMENT 16 532 533 static void *zalloc(void *x, unsigned items, unsigned size) 534 { 535 void *p; 536 537 size *= items; 538 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 539 540 p = g_malloc(size); 541 542 return (p); 543 } 544 545 static void zfree(void *x, void *addr) 546 { 547 g_free(addr); 548 } 549 550 551 #define HEAD_CRC 2 552 #define EXTRA_FIELD 4 553 #define ORIG_NAME 8 554 #define COMMENT 0x10 555 #define RESERVED 0xe0 556 557 #define DEFLATED 8 558 559 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 560 { 561 z_stream s; 562 ssize_t dstbytes; 563 int r, i, flags; 564 565 /* skip header */ 566 i = 10; 567 flags = src[3]; 568 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 569 puts ("Error: Bad gzipped data\n"); 570 return -1; 571 } 572 if ((flags & EXTRA_FIELD) != 0) 573 i = 12 + src[10] + (src[11] << 8); 574 if ((flags & ORIG_NAME) != 0) 575 while (src[i++] != 0) 576 ; 577 if ((flags & COMMENT) != 0) 578 while (src[i++] != 0) 579 ; 580 if ((flags & HEAD_CRC) != 0) 581 i += 2; 582 if (i >= srclen) { 583 puts ("Error: gunzip out of data in header\n"); 584 return -1; 585 } 586 587 s.zalloc = zalloc; 588 s.zfree = zfree; 589 590 r = inflateInit2(&s, -MAX_WBITS); 591 if (r != Z_OK) { 592 printf ("Error: inflateInit2() returned %d\n", r); 593 return (-1); 594 } 595 s.next_in = src + i; 596 s.avail_in = srclen - i; 597 s.next_out = dst; 598 s.avail_out = dstlen; 599 r = inflate(&s, Z_FINISH); 600 if (r != Z_OK && r != Z_STREAM_END) { 601 printf ("Error: inflate() returned %d\n", r); 602 return -1; 603 } 604 dstbytes = s.next_out - (unsigned char *) dst; 605 inflateEnd(&s); 606 607 return dstbytes; 608 } 609 610 /* Load a U-Boot image. */ 611 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 612 int *is_linux, uint8_t image_type, 613 uint64_t (*translate_fn)(void *, uint64_t), 614 void *translate_opaque, AddressSpace *as) 615 { 616 int fd; 617 int size; 618 hwaddr address; 619 uboot_image_header_t h; 620 uboot_image_header_t *hdr = &h; 621 uint8_t *data = NULL; 622 int ret = -1; 623 int do_uncompress = 0; 624 625 fd = open(filename, O_RDONLY | O_BINARY); 626 if (fd < 0) 627 return -1; 628 629 size = read(fd, hdr, sizeof(uboot_image_header_t)); 630 if (size < sizeof(uboot_image_header_t)) { 631 goto out; 632 } 633 634 bswap_uboot_header(hdr); 635 636 if (hdr->ih_magic != IH_MAGIC) 637 goto out; 638 639 if (hdr->ih_type != image_type) { 640 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 641 image_type); 642 goto out; 643 } 644 645 /* TODO: Implement other image types. */ 646 switch (hdr->ih_type) { 647 case IH_TYPE_KERNEL: 648 address = hdr->ih_load; 649 if (translate_fn) { 650 address = translate_fn(translate_opaque, address); 651 } 652 if (loadaddr) { 653 *loadaddr = hdr->ih_load; 654 } 655 656 switch (hdr->ih_comp) { 657 case IH_COMP_NONE: 658 break; 659 case IH_COMP_GZIP: 660 do_uncompress = 1; 661 break; 662 default: 663 fprintf(stderr, 664 "Unable to load u-boot images with compression type %d\n", 665 hdr->ih_comp); 666 goto out; 667 } 668 669 if (ep) { 670 *ep = hdr->ih_ep; 671 } 672 673 /* TODO: Check CPU type. */ 674 if (is_linux) { 675 if (hdr->ih_os == IH_OS_LINUX) { 676 *is_linux = 1; 677 } else { 678 *is_linux = 0; 679 } 680 } 681 682 break; 683 case IH_TYPE_RAMDISK: 684 address = *loadaddr; 685 break; 686 default: 687 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 688 goto out; 689 } 690 691 data = g_malloc(hdr->ih_size); 692 693 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 694 fprintf(stderr, "Error reading file\n"); 695 goto out; 696 } 697 698 if (do_uncompress) { 699 uint8_t *compressed_data; 700 size_t max_bytes; 701 ssize_t bytes; 702 703 compressed_data = data; 704 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 705 data = g_malloc(max_bytes); 706 707 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 708 g_free(compressed_data); 709 if (bytes < 0) { 710 fprintf(stderr, "Unable to decompress gzipped image!\n"); 711 goto out; 712 } 713 hdr->ih_size = bytes; 714 } 715 716 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 717 718 ret = hdr->ih_size; 719 720 out: 721 g_free(data); 722 close(fd); 723 return ret; 724 } 725 726 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 727 int *is_linux, 728 uint64_t (*translate_fn)(void *, uint64_t), 729 void *translate_opaque) 730 { 731 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 732 translate_fn, translate_opaque, NULL); 733 } 734 735 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 736 int *is_linux, 737 uint64_t (*translate_fn)(void *, uint64_t), 738 void *translate_opaque, AddressSpace *as) 739 { 740 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 741 translate_fn, translate_opaque, as); 742 } 743 744 /* Load a ramdisk. */ 745 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 746 { 747 return load_ramdisk_as(filename, addr, max_sz, NULL); 748 } 749 750 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 751 AddressSpace *as) 752 { 753 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 754 NULL, NULL, as); 755 } 756 757 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 758 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 759 uint8_t **buffer) 760 { 761 uint8_t *compressed_data = NULL; 762 uint8_t *data = NULL; 763 gsize len; 764 ssize_t bytes; 765 int ret = -1; 766 767 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 768 NULL)) { 769 goto out; 770 } 771 772 /* Is it a gzip-compressed file? */ 773 if (len < 2 || 774 compressed_data[0] != 0x1f || 775 compressed_data[1] != 0x8b) { 776 goto out; 777 } 778 779 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 780 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 781 } 782 783 data = g_malloc(max_sz); 784 bytes = gunzip(data, max_sz, compressed_data, len); 785 if (bytes < 0) { 786 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 787 filename); 788 goto out; 789 } 790 791 /* trim to actual size and return to caller */ 792 *buffer = g_realloc(data, bytes); 793 ret = bytes; 794 /* ownership has been transferred to caller */ 795 data = NULL; 796 797 out: 798 g_free(compressed_data); 799 g_free(data); 800 return ret; 801 } 802 803 /* Load a gzip-compressed kernel. */ 804 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 805 { 806 int bytes; 807 uint8_t *data; 808 809 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 810 if (bytes != -1) { 811 rom_add_blob_fixed(filename, data, bytes, addr); 812 g_free(data); 813 } 814 return bytes; 815 } 816 817 /* 818 * Functions for reboot-persistent memory regions. 819 * - used for vga bios and option roms. 820 * - also linux kernel (-kernel / -initrd). 821 */ 822 823 typedef struct Rom Rom; 824 825 struct Rom { 826 char *name; 827 char *path; 828 829 /* datasize is the amount of memory allocated in "data". If datasize is less 830 * than romsize, it means that the area from datasize to romsize is filled 831 * with zeros. 832 */ 833 size_t romsize; 834 size_t datasize; 835 836 uint8_t *data; 837 MemoryRegion *mr; 838 AddressSpace *as; 839 int isrom; 840 char *fw_dir; 841 char *fw_file; 842 843 bool committed; 844 845 hwaddr addr; 846 QTAILQ_ENTRY(Rom) next; 847 }; 848 849 static FWCfgState *fw_cfg; 850 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 851 852 /* rom->data must be heap-allocated (do not use with rom_add_elf_program()) */ 853 static void rom_free(Rom *rom) 854 { 855 g_free(rom->data); 856 g_free(rom->path); 857 g_free(rom->name); 858 g_free(rom->fw_dir); 859 g_free(rom->fw_file); 860 g_free(rom); 861 } 862 863 static inline bool rom_order_compare(Rom *rom, Rom *item) 864 { 865 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 866 (rom->as == item->as && rom->addr >= item->addr); 867 } 868 869 static void rom_insert(Rom *rom) 870 { 871 Rom *item; 872 873 if (roms_loaded) { 874 hw_error ("ROM images must be loaded at startup\n"); 875 } 876 877 /* The user didn't specify an address space, this is the default */ 878 if (!rom->as) { 879 rom->as = &address_space_memory; 880 } 881 882 rom->committed = false; 883 884 /* List is ordered by load address in the same address space */ 885 QTAILQ_FOREACH(item, &roms, next) { 886 if (rom_order_compare(rom, item)) { 887 continue; 888 } 889 QTAILQ_INSERT_BEFORE(item, rom, next); 890 return; 891 } 892 QTAILQ_INSERT_TAIL(&roms, rom, next); 893 } 894 895 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 896 { 897 if (fw_cfg) { 898 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 899 } 900 } 901 902 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 903 { 904 void *data; 905 906 rom->mr = g_malloc(sizeof(*rom->mr)); 907 memory_region_init_resizeable_ram(rom->mr, owner, name, 908 rom->datasize, rom->romsize, 909 fw_cfg_resized, 910 &error_fatal); 911 memory_region_set_readonly(rom->mr, ro); 912 vmstate_register_ram_global(rom->mr); 913 914 data = memory_region_get_ram_ptr(rom->mr); 915 memcpy(data, rom->data, rom->datasize); 916 917 return data; 918 } 919 920 int rom_add_file(const char *file, const char *fw_dir, 921 hwaddr addr, int32_t bootindex, 922 bool option_rom, MemoryRegion *mr, 923 AddressSpace *as) 924 { 925 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 926 Rom *rom; 927 int rc, fd = -1; 928 char devpath[100]; 929 930 if (as && mr) { 931 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 932 "not valid when loading a rom\n"); 933 /* We haven't allocated anything so we don't need any cleanup */ 934 return -1; 935 } 936 937 rom = g_malloc0(sizeof(*rom)); 938 rom->name = g_strdup(file); 939 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 940 rom->as = as; 941 if (rom->path == NULL) { 942 rom->path = g_strdup(file); 943 } 944 945 fd = open(rom->path, O_RDONLY | O_BINARY); 946 if (fd == -1) { 947 fprintf(stderr, "Could not open option rom '%s': %s\n", 948 rom->path, strerror(errno)); 949 goto err; 950 } 951 952 if (fw_dir) { 953 rom->fw_dir = g_strdup(fw_dir); 954 rom->fw_file = g_strdup(file); 955 } 956 rom->addr = addr; 957 rom->romsize = lseek(fd, 0, SEEK_END); 958 if (rom->romsize == -1) { 959 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 960 rom->name, strerror(errno)); 961 goto err; 962 } 963 964 rom->datasize = rom->romsize; 965 rom->data = g_malloc0(rom->datasize); 966 lseek(fd, 0, SEEK_SET); 967 rc = read(fd, rom->data, rom->datasize); 968 if (rc != rom->datasize) { 969 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 970 rom->name, rc, rom->datasize); 971 goto err; 972 } 973 close(fd); 974 rom_insert(rom); 975 if (rom->fw_file && fw_cfg) { 976 const char *basename; 977 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 978 void *data; 979 980 basename = strrchr(rom->fw_file, '/'); 981 if (basename) { 982 basename++; 983 } else { 984 basename = rom->fw_file; 985 } 986 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 987 basename); 988 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 989 990 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 991 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 992 } else { 993 data = rom->data; 994 } 995 996 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 997 } else { 998 if (mr) { 999 rom->mr = mr; 1000 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 1001 } else { 1002 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 1003 } 1004 } 1005 1006 add_boot_device_path(bootindex, NULL, devpath); 1007 return 0; 1008 1009 err: 1010 if (fd != -1) 1011 close(fd); 1012 1013 rom_free(rom); 1014 return -1; 1015 } 1016 1017 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1018 size_t max_len, hwaddr addr, const char *fw_file_name, 1019 FWCfgCallback fw_callback, void *callback_opaque, 1020 AddressSpace *as, bool read_only) 1021 { 1022 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1023 Rom *rom; 1024 MemoryRegion *mr = NULL; 1025 1026 rom = g_malloc0(sizeof(*rom)); 1027 rom->name = g_strdup(name); 1028 rom->as = as; 1029 rom->addr = addr; 1030 rom->romsize = max_len ? max_len : len; 1031 rom->datasize = len; 1032 rom->data = g_malloc0(rom->datasize); 1033 memcpy(rom->data, blob, len); 1034 rom_insert(rom); 1035 if (fw_file_name && fw_cfg) { 1036 char devpath[100]; 1037 void *data; 1038 1039 if (read_only) { 1040 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1041 } else { 1042 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1043 } 1044 1045 if (mc->rom_file_has_mr) { 1046 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1047 mr = rom->mr; 1048 } else { 1049 data = rom->data; 1050 } 1051 1052 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1053 fw_callback, NULL, callback_opaque, 1054 data, rom->datasize, read_only); 1055 } 1056 return mr; 1057 } 1058 1059 /* This function is specific for elf program because we don't need to allocate 1060 * all the rom. We just allocate the first part and the rest is just zeros. This 1061 * is why romsize and datasize are different. Also, this function seize the 1062 * memory ownership of "data", so we don't have to allocate and copy the buffer. 1063 */ 1064 int rom_add_elf_program(const char *name, void *data, size_t datasize, 1065 size_t romsize, hwaddr addr, AddressSpace *as) 1066 { 1067 Rom *rom; 1068 1069 rom = g_malloc0(sizeof(*rom)); 1070 rom->name = g_strdup(name); 1071 rom->addr = addr; 1072 rom->datasize = datasize; 1073 rom->romsize = romsize; 1074 rom->data = data; 1075 rom->as = as; 1076 rom_insert(rom); 1077 return 0; 1078 } 1079 1080 int rom_add_vga(const char *file) 1081 { 1082 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1083 } 1084 1085 int rom_add_option(const char *file, int32_t bootindex) 1086 { 1087 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1088 } 1089 1090 static void rom_reset(void *unused) 1091 { 1092 Rom *rom; 1093 1094 QTAILQ_FOREACH(rom, &roms, next) { 1095 if (rom->fw_file) { 1096 continue; 1097 } 1098 if (rom->data == NULL) { 1099 continue; 1100 } 1101 if (rom->mr) { 1102 void *host = memory_region_get_ram_ptr(rom->mr); 1103 memcpy(host, rom->data, rom->datasize); 1104 } else { 1105 cpu_physical_memory_write_rom(rom->as, rom->addr, rom->data, 1106 rom->datasize); 1107 } 1108 if (rom->isrom) { 1109 /* rom needs to be written only once */ 1110 g_free(rom->data); 1111 rom->data = NULL; 1112 } 1113 /* 1114 * The rom loader is really on the same level as firmware in the guest 1115 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1116 * that the instruction cache for that new region is clear, so that the 1117 * CPU definitely fetches its instructions from the just written data. 1118 */ 1119 cpu_flush_icache_range(rom->addr, rom->datasize); 1120 } 1121 } 1122 1123 int rom_check_and_register_reset(void) 1124 { 1125 hwaddr addr = 0; 1126 MemoryRegionSection section; 1127 Rom *rom; 1128 AddressSpace *as = NULL; 1129 1130 QTAILQ_FOREACH(rom, &roms, next) { 1131 if (rom->fw_file) { 1132 continue; 1133 } 1134 if (!rom->mr) { 1135 if ((addr > rom->addr) && (as == rom->as)) { 1136 fprintf(stderr, "rom: requested regions overlap " 1137 "(rom %s. free=0x" TARGET_FMT_plx 1138 ", addr=0x" TARGET_FMT_plx ")\n", 1139 rom->name, addr, rom->addr); 1140 return -1; 1141 } 1142 addr = rom->addr; 1143 addr += rom->romsize; 1144 as = rom->as; 1145 } 1146 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1147 rom->addr, 1); 1148 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1149 memory_region_unref(section.mr); 1150 } 1151 qemu_register_reset(rom_reset, NULL); 1152 roms_loaded = 1; 1153 return 0; 1154 } 1155 1156 void rom_set_fw(FWCfgState *f) 1157 { 1158 fw_cfg = f; 1159 } 1160 1161 void rom_set_order_override(int order) 1162 { 1163 if (!fw_cfg) 1164 return; 1165 fw_cfg_set_order_override(fw_cfg, order); 1166 } 1167 1168 void rom_reset_order_override(void) 1169 { 1170 if (!fw_cfg) 1171 return; 1172 fw_cfg_reset_order_override(fw_cfg); 1173 } 1174 1175 void rom_transaction_begin(void) 1176 { 1177 Rom *rom; 1178 1179 /* Ignore ROMs added without the transaction API */ 1180 QTAILQ_FOREACH(rom, &roms, next) { 1181 rom->committed = true; 1182 } 1183 } 1184 1185 void rom_transaction_end(bool commit) 1186 { 1187 Rom *rom; 1188 Rom *tmp; 1189 1190 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1191 if (rom->committed) { 1192 continue; 1193 } 1194 if (commit) { 1195 rom->committed = true; 1196 } else { 1197 QTAILQ_REMOVE(&roms, rom, next); 1198 rom_free(rom); 1199 } 1200 } 1201 } 1202 1203 static Rom *find_rom(hwaddr addr, size_t size) 1204 { 1205 Rom *rom; 1206 1207 QTAILQ_FOREACH(rom, &roms, next) { 1208 if (rom->fw_file) { 1209 continue; 1210 } 1211 if (rom->mr) { 1212 continue; 1213 } 1214 if (rom->addr > addr) { 1215 continue; 1216 } 1217 if (rom->addr + rom->romsize < addr + size) { 1218 continue; 1219 } 1220 return rom; 1221 } 1222 return NULL; 1223 } 1224 1225 /* 1226 * Copies memory from registered ROMs to dest. Any memory that is contained in 1227 * a ROM between addr and addr + size is copied. Note that this can involve 1228 * multiple ROMs, which need not start at addr and need not end at addr + size. 1229 */ 1230 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1231 { 1232 hwaddr end = addr + size; 1233 uint8_t *s, *d = dest; 1234 size_t l = 0; 1235 Rom *rom; 1236 1237 QTAILQ_FOREACH(rom, &roms, next) { 1238 if (rom->fw_file) { 1239 continue; 1240 } 1241 if (rom->mr) { 1242 continue; 1243 } 1244 if (rom->addr + rom->romsize < addr) { 1245 continue; 1246 } 1247 if (rom->addr > end) { 1248 break; 1249 } 1250 1251 d = dest + (rom->addr - addr); 1252 s = rom->data; 1253 l = rom->datasize; 1254 1255 if ((d + l) > (dest + size)) { 1256 l = dest - d; 1257 } 1258 1259 if (l > 0) { 1260 memcpy(d, s, l); 1261 } 1262 1263 if (rom->romsize > rom->datasize) { 1264 /* If datasize is less than romsize, it means that we didn't 1265 * allocate all the ROM because the trailing data are only zeros. 1266 */ 1267 1268 d += l; 1269 l = rom->romsize - rom->datasize; 1270 1271 if ((d + l) > (dest + size)) { 1272 /* Rom size doesn't fit in the destination area. Adjust to avoid 1273 * overflow. 1274 */ 1275 l = dest - d; 1276 } 1277 1278 if (l > 0) { 1279 memset(d, 0x0, l); 1280 } 1281 } 1282 } 1283 1284 return (d + l) - dest; 1285 } 1286 1287 void *rom_ptr(hwaddr addr, size_t size) 1288 { 1289 Rom *rom; 1290 1291 rom = find_rom(addr, size); 1292 if (!rom || !rom->data) 1293 return NULL; 1294 return rom->data + (addr - rom->addr); 1295 } 1296 1297 void hmp_info_roms(Monitor *mon, const QDict *qdict) 1298 { 1299 Rom *rom; 1300 1301 QTAILQ_FOREACH(rom, &roms, next) { 1302 if (rom->mr) { 1303 monitor_printf(mon, "%s" 1304 " size=0x%06zx name=\"%s\"\n", 1305 memory_region_name(rom->mr), 1306 rom->romsize, 1307 rom->name); 1308 } else if (!rom->fw_file) { 1309 monitor_printf(mon, "addr=" TARGET_FMT_plx 1310 " size=0x%06zx mem=%s name=\"%s\"\n", 1311 rom->addr, rom->romsize, 1312 rom->isrom ? "rom" : "ram", 1313 rom->name); 1314 } else { 1315 monitor_printf(mon, "fw=%s/%s" 1316 " size=0x%06zx name=\"%s\"\n", 1317 rom->fw_dir, 1318 rom->fw_file, 1319 rom->romsize, 1320 rom->name); 1321 } 1322 } 1323 } 1324 1325 typedef enum HexRecord HexRecord; 1326 enum HexRecord { 1327 DATA_RECORD = 0, 1328 EOF_RECORD, 1329 EXT_SEG_ADDR_RECORD, 1330 START_SEG_ADDR_RECORD, 1331 EXT_LINEAR_ADDR_RECORD, 1332 START_LINEAR_ADDR_RECORD, 1333 }; 1334 1335 /* Each record contains a 16-bit address which is combined with the upper 16 1336 * bits of the implicit "next address" to form a 32-bit address. 1337 */ 1338 #define NEXT_ADDR_MASK 0xffff0000 1339 1340 #define DATA_FIELD_MAX_LEN 0xff 1341 #define LEN_EXCEPT_DATA 0x5 1342 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1343 * sizeof(checksum) */ 1344 typedef struct { 1345 uint8_t byte_count; 1346 uint16_t address; 1347 uint8_t record_type; 1348 uint8_t data[DATA_FIELD_MAX_LEN]; 1349 uint8_t checksum; 1350 } HexLine; 1351 1352 /* return 0 or -1 if error */ 1353 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1354 uint32_t *index, const bool in_process) 1355 { 1356 /* +-------+---------------+-------+---------------------+--------+ 1357 * | byte | |record | | | 1358 * | count | address | type | data |checksum| 1359 * +-------+---------------+-------+---------------------+--------+ 1360 * ^ ^ ^ ^ ^ ^ 1361 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1362 */ 1363 uint8_t value = 0; 1364 uint32_t idx = *index; 1365 /* ignore space */ 1366 if (g_ascii_isspace(c)) { 1367 return true; 1368 } 1369 if (!g_ascii_isxdigit(c) || !in_process) { 1370 return false; 1371 } 1372 value = g_ascii_xdigit_value(c); 1373 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1374 if (idx < 2) { 1375 line->byte_count |= value; 1376 } else if (2 <= idx && idx < 6) { 1377 line->address <<= 4; 1378 line->address += g_ascii_xdigit_value(c); 1379 } else if (6 <= idx && idx < 8) { 1380 line->record_type |= value; 1381 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1382 line->data[(idx - 8) >> 1] |= value; 1383 } else if (8 + 2 * line->byte_count <= idx && 1384 idx < 10 + 2 * line->byte_count) { 1385 line->checksum |= value; 1386 } else { 1387 return false; 1388 } 1389 *our_checksum += value; 1390 ++(*index); 1391 return true; 1392 } 1393 1394 typedef struct { 1395 const char *filename; 1396 HexLine line; 1397 uint8_t *bin_buf; 1398 hwaddr *start_addr; 1399 int total_size; 1400 uint32_t next_address_to_write; 1401 uint32_t current_address; 1402 uint32_t current_rom_index; 1403 uint32_t rom_start_address; 1404 AddressSpace *as; 1405 } HexParser; 1406 1407 /* return size or -1 if error */ 1408 static int handle_record_type(HexParser *parser) 1409 { 1410 HexLine *line = &(parser->line); 1411 switch (line->record_type) { 1412 case DATA_RECORD: 1413 parser->current_address = 1414 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1415 /* verify this is a contiguous block of memory */ 1416 if (parser->current_address != parser->next_address_to_write) { 1417 if (parser->current_rom_index != 0) { 1418 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1419 parser->current_rom_index, 1420 parser->rom_start_address, parser->as); 1421 } 1422 parser->rom_start_address = parser->current_address; 1423 parser->current_rom_index = 0; 1424 } 1425 1426 /* copy from line buffer to output bin_buf */ 1427 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1428 line->byte_count); 1429 parser->current_rom_index += line->byte_count; 1430 parser->total_size += line->byte_count; 1431 /* save next address to write */ 1432 parser->next_address_to_write = 1433 parser->current_address + line->byte_count; 1434 break; 1435 1436 case EOF_RECORD: 1437 if (parser->current_rom_index != 0) { 1438 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1439 parser->current_rom_index, 1440 parser->rom_start_address, parser->as); 1441 } 1442 return parser->total_size; 1443 case EXT_SEG_ADDR_RECORD: 1444 case EXT_LINEAR_ADDR_RECORD: 1445 if (line->byte_count != 2 && line->address != 0) { 1446 return -1; 1447 } 1448 1449 if (parser->current_rom_index != 0) { 1450 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1451 parser->current_rom_index, 1452 parser->rom_start_address, parser->as); 1453 } 1454 1455 /* save next address to write, 1456 * in case of non-contiguous block of memory */ 1457 parser->next_address_to_write = (line->data[0] << 12) | 1458 (line->data[1] << 4); 1459 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1460 parser->next_address_to_write <<= 12; 1461 } 1462 1463 parser->rom_start_address = parser->next_address_to_write; 1464 parser->current_rom_index = 0; 1465 break; 1466 1467 case START_SEG_ADDR_RECORD: 1468 if (line->byte_count != 4 && line->address != 0) { 1469 return -1; 1470 } 1471 1472 /* x86 16-bit CS:IP segmented addressing */ 1473 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1474 ((line->data[2] << 8) | line->data[3]); 1475 break; 1476 1477 case START_LINEAR_ADDR_RECORD: 1478 if (line->byte_count != 4 && line->address != 0) { 1479 return -1; 1480 } 1481 1482 *(parser->start_addr) = ldl_be_p(line->data); 1483 break; 1484 1485 default: 1486 return -1; 1487 } 1488 1489 return parser->total_size; 1490 } 1491 1492 /* return size or -1 if error */ 1493 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1494 size_t hex_blob_size, AddressSpace *as) 1495 { 1496 bool in_process = false; /* avoid re-enter and 1497 * check whether record begin with ':' */ 1498 uint8_t *end = hex_blob + hex_blob_size; 1499 uint8_t our_checksum = 0; 1500 uint32_t record_index = 0; 1501 HexParser parser = { 1502 .filename = filename, 1503 .bin_buf = g_malloc(hex_blob_size), 1504 .start_addr = addr, 1505 .as = as, 1506 }; 1507 1508 rom_transaction_begin(); 1509 1510 for (; hex_blob < end; ++hex_blob) { 1511 switch (*hex_blob) { 1512 case '\r': 1513 case '\n': 1514 if (!in_process) { 1515 break; 1516 } 1517 1518 in_process = false; 1519 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1520 record_index || 1521 our_checksum != 0) { 1522 parser.total_size = -1; 1523 goto out; 1524 } 1525 1526 if (handle_record_type(&parser) == -1) { 1527 parser.total_size = -1; 1528 goto out; 1529 } 1530 break; 1531 1532 /* start of a new record. */ 1533 case ':': 1534 memset(&parser.line, 0, sizeof(HexLine)); 1535 in_process = true; 1536 record_index = 0; 1537 break; 1538 1539 /* decoding lines */ 1540 default: 1541 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1542 &record_index, in_process)) { 1543 parser.total_size = -1; 1544 goto out; 1545 } 1546 break; 1547 } 1548 } 1549 1550 out: 1551 g_free(parser.bin_buf); 1552 rom_transaction_end(parser.total_size != -1); 1553 return parser.total_size; 1554 } 1555 1556 /* return size or -1 if error */ 1557 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as) 1558 { 1559 gsize hex_blob_size; 1560 gchar *hex_blob; 1561 int total_size = 0; 1562 1563 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1564 return -1; 1565 } 1566 1567 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1568 hex_blob_size, as); 1569 1570 g_free(hex_blob); 1571 return total_size; 1572 } 1573