xref: /openbmc/qemu/hw/core/loader.c (revision b14df228)
1 /*
2  * QEMU Executable loader
3  *
4  * Copyright (c) 2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  *
24  * Gunzip functionality in this file is derived from u-boot:
25  *
26  * (C) Copyright 2008 Semihalf
27  *
28  * (C) Copyright 2000-2005
29  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
30  *
31  * This program is free software; you can redistribute it and/or
32  * modify it under the terms of the GNU General Public License as
33  * published by the Free Software Foundation; either version 2 of
34  * the License, or (at your option) any later version.
35  *
36  * This program is distributed in the hope that it will be useful,
37  * but WITHOUT ANY WARRANTY; without even the implied warranty of
38  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
39  * GNU General Public License for more details.
40  *
41  * You should have received a copy of the GNU General Public License along
42  * with this program; if not, see <http://www.gnu.org/licenses/>.
43  */
44 
45 #include "qemu/osdep.h"
46 #include "qemu/datadir.h"
47 #include "qapi/error.h"
48 #include "qapi/qapi-commands-machine.h"
49 #include "qapi/type-helpers.h"
50 #include "trace.h"
51 #include "hw/hw.h"
52 #include "disas/disas.h"
53 #include "migration/vmstate.h"
54 #include "monitor/monitor.h"
55 #include "sysemu/reset.h"
56 #include "sysemu/sysemu.h"
57 #include "uboot_image.h"
58 #include "hw/loader.h"
59 #include "hw/nvram/fw_cfg.h"
60 #include "exec/memory.h"
61 #include "hw/boards.h"
62 #include "qemu/cutils.h"
63 #include "sysemu/runstate.h"
64 
65 #include <zlib.h>
66 
67 static int roms_loaded;
68 
69 /* return the size or -1 if error */
70 int64_t get_image_size(const char *filename)
71 {
72     int fd;
73     int64_t size;
74     fd = open(filename, O_RDONLY | O_BINARY);
75     if (fd < 0)
76         return -1;
77     size = lseek(fd, 0, SEEK_END);
78     close(fd);
79     return size;
80 }
81 
82 /* return the size or -1 if error */
83 ssize_t load_image_size(const char *filename, void *addr, size_t size)
84 {
85     int fd;
86     ssize_t actsize, l = 0;
87 
88     fd = open(filename, O_RDONLY | O_BINARY);
89     if (fd < 0) {
90         return -1;
91     }
92 
93     while ((actsize = read(fd, addr + l, size - l)) > 0) {
94         l += actsize;
95     }
96 
97     close(fd);
98 
99     return actsize < 0 ? -1 : l;
100 }
101 
102 /* read()-like version */
103 ssize_t read_targphys(const char *name,
104                       int fd, hwaddr dst_addr, size_t nbytes)
105 {
106     uint8_t *buf;
107     ssize_t did;
108 
109     buf = g_malloc(nbytes);
110     did = read(fd, buf, nbytes);
111     if (did > 0)
112         rom_add_blob_fixed("read", buf, did, dst_addr);
113     g_free(buf);
114     return did;
115 }
116 
117 ssize_t load_image_targphys(const char *filename,
118                             hwaddr addr, uint64_t max_sz)
119 {
120     return load_image_targphys_as(filename, addr, max_sz, NULL);
121 }
122 
123 /* return the size or -1 if error */
124 ssize_t load_image_targphys_as(const char *filename,
125                                hwaddr addr, uint64_t max_sz, AddressSpace *as)
126 {
127     ssize_t size;
128 
129     size = get_image_size(filename);
130     if (size < 0 || size > max_sz) {
131         return -1;
132     }
133     if (size > 0) {
134         if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
135             return -1;
136         }
137     }
138     return size;
139 }
140 
141 ssize_t load_image_mr(const char *filename, MemoryRegion *mr)
142 {
143     ssize_t size;
144 
145     if (!memory_access_is_direct(mr, false)) {
146         /* Can only load an image into RAM or ROM */
147         return -1;
148     }
149 
150     size = get_image_size(filename);
151 
152     if (size < 0 || size > memory_region_size(mr)) {
153         return -1;
154     }
155     if (size > 0) {
156         if (rom_add_file_mr(filename, mr, -1) < 0) {
157             return -1;
158         }
159     }
160     return size;
161 }
162 
163 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
164                       const char *source)
165 {
166     const char *nulp;
167     char *ptr;
168 
169     if (buf_size <= 0) return;
170     nulp = memchr(source, 0, buf_size);
171     if (nulp) {
172         rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
173     } else {
174         rom_add_blob_fixed(name, source, buf_size, dest);
175         ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
176         *ptr = 0;
177     }
178 }
179 
180 /* A.OUT loader */
181 
182 struct exec
183 {
184   uint32_t a_info;   /* Use macros N_MAGIC, etc for access */
185   uint32_t a_text;   /* length of text, in bytes */
186   uint32_t a_data;   /* length of data, in bytes */
187   uint32_t a_bss;    /* length of uninitialized data area, in bytes */
188   uint32_t a_syms;   /* length of symbol table data in file, in bytes */
189   uint32_t a_entry;  /* start address */
190   uint32_t a_trsize; /* length of relocation info for text, in bytes */
191   uint32_t a_drsize; /* length of relocation info for data, in bytes */
192 };
193 
194 static void bswap_ahdr(struct exec *e)
195 {
196     bswap32s(&e->a_info);
197     bswap32s(&e->a_text);
198     bswap32s(&e->a_data);
199     bswap32s(&e->a_bss);
200     bswap32s(&e->a_syms);
201     bswap32s(&e->a_entry);
202     bswap32s(&e->a_trsize);
203     bswap32s(&e->a_drsize);
204 }
205 
206 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
207 #define OMAGIC 0407
208 #define NMAGIC 0410
209 #define ZMAGIC 0413
210 #define QMAGIC 0314
211 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
212 #define N_TXTOFF(x)							\
213     (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) :	\
214      (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
215 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
216 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
217 
218 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
219 
220 #define N_DATADDR(x, target_page_size) \
221     (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
222      : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
223 
224 
225 ssize_t load_aout(const char *filename, hwaddr addr, int max_sz,
226                   int bswap_needed, hwaddr target_page_size)
227 {
228     int fd;
229     ssize_t size, ret;
230     struct exec e;
231     uint32_t magic;
232 
233     fd = open(filename, O_RDONLY | O_BINARY);
234     if (fd < 0)
235         return -1;
236 
237     size = read(fd, &e, sizeof(e));
238     if (size < 0)
239         goto fail;
240 
241     if (bswap_needed) {
242         bswap_ahdr(&e);
243     }
244 
245     magic = N_MAGIC(e);
246     switch (magic) {
247     case ZMAGIC:
248     case QMAGIC:
249     case OMAGIC:
250         if (e.a_text + e.a_data > max_sz)
251             goto fail;
252         lseek(fd, N_TXTOFF(e), SEEK_SET);
253         size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
254         if (size < 0)
255             goto fail;
256         break;
257     case NMAGIC:
258         if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
259             goto fail;
260         lseek(fd, N_TXTOFF(e), SEEK_SET);
261         size = read_targphys(filename, fd, addr, e.a_text);
262         if (size < 0)
263             goto fail;
264         ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
265                             e.a_data);
266         if (ret < 0)
267             goto fail;
268         size += ret;
269         break;
270     default:
271         goto fail;
272     }
273     close(fd);
274     return size;
275  fail:
276     close(fd);
277     return -1;
278 }
279 
280 /* ELF loader */
281 
282 static void *load_at(int fd, off_t offset, size_t size)
283 {
284     void *ptr;
285     if (lseek(fd, offset, SEEK_SET) < 0)
286         return NULL;
287     ptr = g_malloc(size);
288     if (read(fd, ptr, size) != size) {
289         g_free(ptr);
290         return NULL;
291     }
292     return ptr;
293 }
294 
295 #ifdef ELF_CLASS
296 #undef ELF_CLASS
297 #endif
298 
299 #define ELF_CLASS   ELFCLASS32
300 #include "elf.h"
301 
302 #define SZ		32
303 #define elf_word        uint32_t
304 #define elf_sword        int32_t
305 #define bswapSZs	bswap32s
306 #include "hw/elf_ops.h"
307 
308 #undef elfhdr
309 #undef elf_phdr
310 #undef elf_shdr
311 #undef elf_sym
312 #undef elf_rela
313 #undef elf_note
314 #undef elf_word
315 #undef elf_sword
316 #undef bswapSZs
317 #undef SZ
318 #define elfhdr		elf64_hdr
319 #define elf_phdr	elf64_phdr
320 #define elf_note	elf64_note
321 #define elf_shdr	elf64_shdr
322 #define elf_sym		elf64_sym
323 #define elf_rela        elf64_rela
324 #define elf_word        uint64_t
325 #define elf_sword        int64_t
326 #define bswapSZs	bswap64s
327 #define SZ		64
328 #include "hw/elf_ops.h"
329 
330 const char *load_elf_strerror(ssize_t error)
331 {
332     switch (error) {
333     case 0:
334         return "No error";
335     case ELF_LOAD_FAILED:
336         return "Failed to load ELF";
337     case ELF_LOAD_NOT_ELF:
338         return "The image is not ELF";
339     case ELF_LOAD_WRONG_ARCH:
340         return "The image is from incompatible architecture";
341     case ELF_LOAD_WRONG_ENDIAN:
342         return "The image has incorrect endianness";
343     case ELF_LOAD_TOO_BIG:
344         return "The image segments are too big to load";
345     default:
346         return "Unknown error";
347     }
348 }
349 
350 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
351 {
352     int fd;
353     uint8_t e_ident_local[EI_NIDENT];
354     uint8_t *e_ident;
355     size_t hdr_size, off;
356     bool is64l;
357 
358     if (!hdr) {
359         hdr = e_ident_local;
360     }
361     e_ident = hdr;
362 
363     fd = open(filename, O_RDONLY | O_BINARY);
364     if (fd < 0) {
365         error_setg_errno(errp, errno, "Failed to open file: %s", filename);
366         return;
367     }
368     if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
369         error_setg_errno(errp, errno, "Failed to read file: %s", filename);
370         goto fail;
371     }
372     if (e_ident[0] != ELFMAG0 ||
373         e_ident[1] != ELFMAG1 ||
374         e_ident[2] != ELFMAG2 ||
375         e_ident[3] != ELFMAG3) {
376         error_setg(errp, "Bad ELF magic");
377         goto fail;
378     }
379 
380     is64l = e_ident[EI_CLASS] == ELFCLASS64;
381     hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
382     if (is64) {
383         *is64 = is64l;
384     }
385 
386     off = EI_NIDENT;
387     while (hdr != e_ident_local && off < hdr_size) {
388         size_t br = read(fd, hdr + off, hdr_size - off);
389         switch (br) {
390         case 0:
391             error_setg(errp, "File too short: %s", filename);
392             goto fail;
393         case -1:
394             error_setg_errno(errp, errno, "Failed to read file: %s",
395                              filename);
396             goto fail;
397         }
398         off += br;
399     }
400 
401 fail:
402     close(fd);
403 }
404 
405 /* return < 0 if error, otherwise the number of bytes loaded in memory */
406 ssize_t load_elf(const char *filename,
407                  uint64_t (*elf_note_fn)(void *, void *, bool),
408                  uint64_t (*translate_fn)(void *, uint64_t),
409                  void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
410                  uint64_t *highaddr, uint32_t *pflags, int big_endian,
411                  int elf_machine, int clear_lsb, int data_swab)
412 {
413     return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
414                        pentry, lowaddr, highaddr, pflags, big_endian,
415                        elf_machine, clear_lsb, data_swab, NULL);
416 }
417 
418 /* return < 0 if error, otherwise the number of bytes loaded in memory */
419 ssize_t load_elf_as(const char *filename,
420                     uint64_t (*elf_note_fn)(void *, void *, bool),
421                     uint64_t (*translate_fn)(void *, uint64_t),
422                     void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
423                     uint64_t *highaddr, uint32_t *pflags, int big_endian,
424                     int elf_machine, int clear_lsb, int data_swab,
425                     AddressSpace *as)
426 {
427     return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
428                         pentry, lowaddr, highaddr, pflags, big_endian,
429                         elf_machine, clear_lsb, data_swab, as, true);
430 }
431 
432 /* return < 0 if error, otherwise the number of bytes loaded in memory */
433 ssize_t load_elf_ram(const char *filename,
434                      uint64_t (*elf_note_fn)(void *, void *, bool),
435                      uint64_t (*translate_fn)(void *, uint64_t),
436                      void *translate_opaque, uint64_t *pentry,
437                      uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags,
438                      int big_endian, int elf_machine, int clear_lsb,
439                      int data_swab, AddressSpace *as, bool load_rom)
440 {
441     return load_elf_ram_sym(filename, elf_note_fn,
442                             translate_fn, translate_opaque,
443                             pentry, lowaddr, highaddr, pflags, big_endian,
444                             elf_machine, clear_lsb, data_swab, as,
445                             load_rom, NULL);
446 }
447 
448 /* return < 0 if error, otherwise the number of bytes loaded in memory */
449 ssize_t load_elf_ram_sym(const char *filename,
450                          uint64_t (*elf_note_fn)(void *, void *, bool),
451                          uint64_t (*translate_fn)(void *, uint64_t),
452                          void *translate_opaque, uint64_t *pentry,
453                          uint64_t *lowaddr, uint64_t *highaddr,
454                          uint32_t *pflags, int big_endian, int elf_machine,
455                          int clear_lsb, int data_swab,
456                          AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
457 {
458     int fd, data_order, target_data_order, must_swab;
459     ssize_t ret = ELF_LOAD_FAILED;
460     uint8_t e_ident[EI_NIDENT];
461 
462     fd = open(filename, O_RDONLY | O_BINARY);
463     if (fd < 0) {
464         perror(filename);
465         return -1;
466     }
467     if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
468         goto fail;
469     if (e_ident[0] != ELFMAG0 ||
470         e_ident[1] != ELFMAG1 ||
471         e_ident[2] != ELFMAG2 ||
472         e_ident[3] != ELFMAG3) {
473         ret = ELF_LOAD_NOT_ELF;
474         goto fail;
475     }
476 #if HOST_BIG_ENDIAN
477     data_order = ELFDATA2MSB;
478 #else
479     data_order = ELFDATA2LSB;
480 #endif
481     must_swab = data_order != e_ident[EI_DATA];
482     if (big_endian) {
483         target_data_order = ELFDATA2MSB;
484     } else {
485         target_data_order = ELFDATA2LSB;
486     }
487 
488     if (target_data_order != e_ident[EI_DATA]) {
489         ret = ELF_LOAD_WRONG_ENDIAN;
490         goto fail;
491     }
492 
493     lseek(fd, 0, SEEK_SET);
494     if (e_ident[EI_CLASS] == ELFCLASS64) {
495         ret = load_elf64(filename, fd, elf_note_fn,
496                          translate_fn, translate_opaque, must_swab,
497                          pentry, lowaddr, highaddr, pflags, elf_machine,
498                          clear_lsb, data_swab, as, load_rom, sym_cb);
499     } else {
500         ret = load_elf32(filename, fd, elf_note_fn,
501                          translate_fn, translate_opaque, must_swab,
502                          pentry, lowaddr, highaddr, pflags, elf_machine,
503                          clear_lsb, data_swab, as, load_rom, sym_cb);
504     }
505 
506  fail:
507     close(fd);
508     return ret;
509 }
510 
511 static void bswap_uboot_header(uboot_image_header_t *hdr)
512 {
513 #if !HOST_BIG_ENDIAN
514     bswap32s(&hdr->ih_magic);
515     bswap32s(&hdr->ih_hcrc);
516     bswap32s(&hdr->ih_time);
517     bswap32s(&hdr->ih_size);
518     bswap32s(&hdr->ih_load);
519     bswap32s(&hdr->ih_ep);
520     bswap32s(&hdr->ih_dcrc);
521 #endif
522 }
523 
524 
525 #define ZALLOC_ALIGNMENT	16
526 
527 static void *zalloc(void *x, unsigned items, unsigned size)
528 {
529     void *p;
530 
531     size *= items;
532     size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
533 
534     p = g_malloc(size);
535 
536     return (p);
537 }
538 
539 static void zfree(void *x, void *addr)
540 {
541     g_free(addr);
542 }
543 
544 
545 #define HEAD_CRC	2
546 #define EXTRA_FIELD	4
547 #define ORIG_NAME	8
548 #define COMMENT		0x10
549 #define RESERVED	0xe0
550 
551 #define DEFLATED	8
552 
553 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
554 {
555     z_stream s;
556     ssize_t dstbytes;
557     int r, i, flags;
558 
559     /* skip header */
560     i = 10;
561     if (srclen < 4) {
562         goto toosmall;
563     }
564     flags = src[3];
565     if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
566         puts ("Error: Bad gzipped data\n");
567         return -1;
568     }
569     if ((flags & EXTRA_FIELD) != 0) {
570         if (srclen < 12) {
571             goto toosmall;
572         }
573         i = 12 + src[10] + (src[11] << 8);
574     }
575     if ((flags & ORIG_NAME) != 0) {
576         while (i < srclen && src[i++] != 0) {
577             /* do nothing */
578         }
579     }
580     if ((flags & COMMENT) != 0) {
581         while (i < srclen && src[i++] != 0) {
582             /* do nothing */
583         }
584     }
585     if ((flags & HEAD_CRC) != 0) {
586         i += 2;
587     }
588     if (i >= srclen) {
589         goto toosmall;
590     }
591 
592     s.zalloc = zalloc;
593     s.zfree = zfree;
594 
595     r = inflateInit2(&s, -MAX_WBITS);
596     if (r != Z_OK) {
597         printf ("Error: inflateInit2() returned %d\n", r);
598         return (-1);
599     }
600     s.next_in = src + i;
601     s.avail_in = srclen - i;
602     s.next_out = dst;
603     s.avail_out = dstlen;
604     r = inflate(&s, Z_FINISH);
605     if (r != Z_OK && r != Z_STREAM_END) {
606         printf ("Error: inflate() returned %d\n", r);
607         return -1;
608     }
609     dstbytes = s.next_out - (unsigned char *) dst;
610     inflateEnd(&s);
611 
612     return dstbytes;
613 
614 toosmall:
615     puts("Error: gunzip out of data in header\n");
616     return -1;
617 }
618 
619 /* Load a U-Boot image.  */
620 static ssize_t load_uboot_image(const char *filename, hwaddr *ep,
621                                 hwaddr *loadaddr, int *is_linux,
622                                 uint8_t image_type,
623                                 uint64_t (*translate_fn)(void *, uint64_t),
624                                 void *translate_opaque, AddressSpace *as)
625 {
626     int fd;
627     ssize_t size;
628     hwaddr address;
629     uboot_image_header_t h;
630     uboot_image_header_t *hdr = &h;
631     uint8_t *data = NULL;
632     int ret = -1;
633     int do_uncompress = 0;
634 
635     fd = open(filename, O_RDONLY | O_BINARY);
636     if (fd < 0)
637         return -1;
638 
639     size = read(fd, hdr, sizeof(uboot_image_header_t));
640     if (size < sizeof(uboot_image_header_t)) {
641         goto out;
642     }
643 
644     bswap_uboot_header(hdr);
645 
646     if (hdr->ih_magic != IH_MAGIC)
647         goto out;
648 
649     if (hdr->ih_type != image_type) {
650         if (!(image_type == IH_TYPE_KERNEL &&
651             hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
652             fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
653                     image_type);
654             goto out;
655         }
656     }
657 
658     /* TODO: Implement other image types.  */
659     switch (hdr->ih_type) {
660     case IH_TYPE_KERNEL_NOLOAD:
661         if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
662             fprintf(stderr, "this image format (kernel_noload) cannot be "
663                     "loaded on this machine type");
664             goto out;
665         }
666 
667         hdr->ih_load = *loadaddr + sizeof(*hdr);
668         hdr->ih_ep += hdr->ih_load;
669         /* fall through */
670     case IH_TYPE_KERNEL:
671         address = hdr->ih_load;
672         if (translate_fn) {
673             address = translate_fn(translate_opaque, address);
674         }
675         if (loadaddr) {
676             *loadaddr = hdr->ih_load;
677         }
678 
679         switch (hdr->ih_comp) {
680         case IH_COMP_NONE:
681             break;
682         case IH_COMP_GZIP:
683             do_uncompress = 1;
684             break;
685         default:
686             fprintf(stderr,
687                     "Unable to load u-boot images with compression type %d\n",
688                     hdr->ih_comp);
689             goto out;
690         }
691 
692         if (ep) {
693             *ep = hdr->ih_ep;
694         }
695 
696         /* TODO: Check CPU type.  */
697         if (is_linux) {
698             if (hdr->ih_os == IH_OS_LINUX) {
699                 *is_linux = 1;
700             } else if (hdr->ih_os == IH_OS_VXWORKS) {
701                 /*
702                  * VxWorks 7 uses the same boot interface as the Linux kernel
703                  * on Arm (64-bit only), PowerPC and RISC-V architectures.
704                  */
705                 switch (hdr->ih_arch) {
706                 case IH_ARCH_ARM64:
707                 case IH_ARCH_PPC:
708                 case IH_ARCH_RISCV:
709                     *is_linux = 1;
710                     break;
711                 default:
712                     *is_linux = 0;
713                     break;
714                 }
715             } else {
716                 *is_linux = 0;
717             }
718         }
719 
720         break;
721     case IH_TYPE_RAMDISK:
722         address = *loadaddr;
723         break;
724     default:
725         fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
726         goto out;
727     }
728 
729     data = g_malloc(hdr->ih_size);
730 
731     if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
732         fprintf(stderr, "Error reading file\n");
733         goto out;
734     }
735 
736     if (do_uncompress) {
737         uint8_t *compressed_data;
738         size_t max_bytes;
739         ssize_t bytes;
740 
741         compressed_data = data;
742         max_bytes = UBOOT_MAX_GUNZIP_BYTES;
743         data = g_malloc(max_bytes);
744 
745         bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
746         g_free(compressed_data);
747         if (bytes < 0) {
748             fprintf(stderr, "Unable to decompress gzipped image!\n");
749             goto out;
750         }
751         hdr->ih_size = bytes;
752     }
753 
754     rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
755 
756     ret = hdr->ih_size;
757 
758 out:
759     g_free(data);
760     close(fd);
761     return ret;
762 }
763 
764 ssize_t load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
765                     int *is_linux,
766                     uint64_t (*translate_fn)(void *, uint64_t),
767                     void *translate_opaque)
768 {
769     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
770                             translate_fn, translate_opaque, NULL);
771 }
772 
773 ssize_t load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
774                        int *is_linux,
775                        uint64_t (*translate_fn)(void *, uint64_t),
776                        void *translate_opaque, AddressSpace *as)
777 {
778     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
779                             translate_fn, translate_opaque, as);
780 }
781 
782 /* Load a ramdisk.  */
783 ssize_t load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
784 {
785     return load_ramdisk_as(filename, addr, max_sz, NULL);
786 }
787 
788 ssize_t load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
789                         AddressSpace *as)
790 {
791     return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
792                             NULL, NULL, as);
793 }
794 
795 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
796 ssize_t load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
797                                   uint8_t **buffer)
798 {
799     uint8_t *compressed_data = NULL;
800     uint8_t *data = NULL;
801     gsize len;
802     ssize_t bytes;
803     int ret = -1;
804 
805     if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
806                              NULL)) {
807         goto out;
808     }
809 
810     /* Is it a gzip-compressed file? */
811     if (len < 2 ||
812         compressed_data[0] != 0x1f ||
813         compressed_data[1] != 0x8b) {
814         goto out;
815     }
816 
817     if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
818         max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
819     }
820 
821     data = g_malloc(max_sz);
822     bytes = gunzip(data, max_sz, compressed_data, len);
823     if (bytes < 0) {
824         fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
825                 filename);
826         goto out;
827     }
828 
829     /* trim to actual size and return to caller */
830     *buffer = g_realloc(data, bytes);
831     ret = bytes;
832     /* ownership has been transferred to caller */
833     data = NULL;
834 
835  out:
836     g_free(compressed_data);
837     g_free(data);
838     return ret;
839 }
840 
841 /* Load a gzip-compressed kernel. */
842 ssize_t load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
843 {
844     ssize_t bytes;
845     uint8_t *data;
846 
847     bytes = load_image_gzipped_buffer(filename, max_sz, &data);
848     if (bytes != -1) {
849         rom_add_blob_fixed(filename, data, bytes, addr);
850         g_free(data);
851     }
852     return bytes;
853 }
854 
855 /*
856  * Functions for reboot-persistent memory regions.
857  *  - used for vga bios and option roms.
858  *  - also linux kernel (-kernel / -initrd).
859  */
860 
861 typedef struct Rom Rom;
862 
863 struct Rom {
864     char *name;
865     char *path;
866 
867     /* datasize is the amount of memory allocated in "data". If datasize is less
868      * than romsize, it means that the area from datasize to romsize is filled
869      * with zeros.
870      */
871     size_t romsize;
872     size_t datasize;
873 
874     uint8_t *data;
875     MemoryRegion *mr;
876     AddressSpace *as;
877     int isrom;
878     char *fw_dir;
879     char *fw_file;
880     GMappedFile *mapped_file;
881 
882     bool committed;
883 
884     hwaddr addr;
885     QTAILQ_ENTRY(Rom) next;
886 };
887 
888 static FWCfgState *fw_cfg;
889 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
890 
891 /*
892  * rom->data can be heap-allocated or memory-mapped (e.g. when added with
893  * rom_add_elf_program())
894  */
895 static void rom_free_data(Rom *rom)
896 {
897     if (rom->mapped_file) {
898         g_mapped_file_unref(rom->mapped_file);
899         rom->mapped_file = NULL;
900     } else {
901         g_free(rom->data);
902     }
903 
904     rom->data = NULL;
905 }
906 
907 static void rom_free(Rom *rom)
908 {
909     rom_free_data(rom);
910     g_free(rom->path);
911     g_free(rom->name);
912     g_free(rom->fw_dir);
913     g_free(rom->fw_file);
914     g_free(rom);
915 }
916 
917 static inline bool rom_order_compare(Rom *rom, Rom *item)
918 {
919     return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
920            (rom->as == item->as && rom->addr >= item->addr);
921 }
922 
923 static void rom_insert(Rom *rom)
924 {
925     Rom *item;
926 
927     if (roms_loaded) {
928         hw_error ("ROM images must be loaded at startup\n");
929     }
930 
931     /* The user didn't specify an address space, this is the default */
932     if (!rom->as) {
933         rom->as = &address_space_memory;
934     }
935 
936     rom->committed = false;
937 
938     /* List is ordered by load address in the same address space */
939     QTAILQ_FOREACH(item, &roms, next) {
940         if (rom_order_compare(rom, item)) {
941             continue;
942         }
943         QTAILQ_INSERT_BEFORE(item, rom, next);
944         return;
945     }
946     QTAILQ_INSERT_TAIL(&roms, rom, next);
947 }
948 
949 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
950 {
951     if (fw_cfg) {
952         fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
953     }
954 }
955 
956 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
957 {
958     void *data;
959 
960     rom->mr = g_malloc(sizeof(*rom->mr));
961     memory_region_init_resizeable_ram(rom->mr, owner, name,
962                                       rom->datasize, rom->romsize,
963                                       fw_cfg_resized,
964                                       &error_fatal);
965     memory_region_set_readonly(rom->mr, ro);
966     vmstate_register_ram_global(rom->mr);
967 
968     data = memory_region_get_ram_ptr(rom->mr);
969     memcpy(data, rom->data, rom->datasize);
970 
971     return data;
972 }
973 
974 ssize_t rom_add_file(const char *file, const char *fw_dir,
975                      hwaddr addr, int32_t bootindex,
976                      bool option_rom, MemoryRegion *mr,
977                      AddressSpace *as)
978 {
979     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
980     Rom *rom;
981     ssize_t rc;
982     int fd = -1;
983     char devpath[100];
984 
985     if (as && mr) {
986         fprintf(stderr, "Specifying an Address Space and Memory Region is " \
987                 "not valid when loading a rom\n");
988         /* We haven't allocated anything so we don't need any cleanup */
989         return -1;
990     }
991 
992     rom = g_malloc0(sizeof(*rom));
993     rom->name = g_strdup(file);
994     rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
995     rom->as = as;
996     if (rom->path == NULL) {
997         rom->path = g_strdup(file);
998     }
999 
1000     fd = open(rom->path, O_RDONLY | O_BINARY);
1001     if (fd == -1) {
1002         fprintf(stderr, "Could not open option rom '%s': %s\n",
1003                 rom->path, strerror(errno));
1004         goto err;
1005     }
1006 
1007     if (fw_dir) {
1008         rom->fw_dir  = g_strdup(fw_dir);
1009         rom->fw_file = g_strdup(file);
1010     }
1011     rom->addr     = addr;
1012     rom->romsize  = lseek(fd, 0, SEEK_END);
1013     if (rom->romsize == -1) {
1014         fprintf(stderr, "rom: file %-20s: get size error: %s\n",
1015                 rom->name, strerror(errno));
1016         goto err;
1017     }
1018 
1019     rom->datasize = rom->romsize;
1020     rom->data     = g_malloc0(rom->datasize);
1021     lseek(fd, 0, SEEK_SET);
1022     rc = read(fd, rom->data, rom->datasize);
1023     if (rc != rom->datasize) {
1024         fprintf(stderr, "rom: file %-20s: read error: rc=%zd (expected %zd)\n",
1025                 rom->name, rc, rom->datasize);
1026         goto err;
1027     }
1028     close(fd);
1029     rom_insert(rom);
1030     if (rom->fw_file && fw_cfg) {
1031         const char *basename;
1032         char fw_file_name[FW_CFG_MAX_FILE_PATH];
1033         void *data;
1034 
1035         basename = strrchr(rom->fw_file, '/');
1036         if (basename) {
1037             basename++;
1038         } else {
1039             basename = rom->fw_file;
1040         }
1041         snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
1042                  basename);
1043         snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1044 
1045         if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
1046             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
1047         } else {
1048             data = rom->data;
1049         }
1050 
1051         fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
1052     } else {
1053         if (mr) {
1054             rom->mr = mr;
1055             snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1056         } else {
1057             snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
1058         }
1059     }
1060 
1061     add_boot_device_path(bootindex, NULL, devpath);
1062     return 0;
1063 
1064 err:
1065     if (fd != -1)
1066         close(fd);
1067 
1068     rom_free(rom);
1069     return -1;
1070 }
1071 
1072 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1073                    size_t max_len, hwaddr addr, const char *fw_file_name,
1074                    FWCfgCallback fw_callback, void *callback_opaque,
1075                    AddressSpace *as, bool read_only)
1076 {
1077     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1078     Rom *rom;
1079     MemoryRegion *mr = NULL;
1080 
1081     rom           = g_malloc0(sizeof(*rom));
1082     rom->name     = g_strdup(name);
1083     rom->as       = as;
1084     rom->addr     = addr;
1085     rom->romsize  = max_len ? max_len : len;
1086     rom->datasize = len;
1087     g_assert(rom->romsize >= rom->datasize);
1088     rom->data     = g_malloc0(rom->datasize);
1089     memcpy(rom->data, blob, len);
1090     rom_insert(rom);
1091     if (fw_file_name && fw_cfg) {
1092         char devpath[100];
1093         void *data;
1094 
1095         if (read_only) {
1096             snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1097         } else {
1098             snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1099         }
1100 
1101         if (mc->rom_file_has_mr) {
1102             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1103             mr = rom->mr;
1104         } else {
1105             data = rom->data;
1106         }
1107 
1108         fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1109                                  fw_callback, NULL, callback_opaque,
1110                                  data, rom->datasize, read_only);
1111     }
1112     return mr;
1113 }
1114 
1115 /* This function is specific for elf program because we don't need to allocate
1116  * all the rom. We just allocate the first part and the rest is just zeros. This
1117  * is why romsize and datasize are different. Also, this function takes its own
1118  * reference to "mapped_file", so we don't have to allocate and copy the buffer.
1119  */
1120 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
1121                         size_t datasize, size_t romsize, hwaddr addr,
1122                         AddressSpace *as)
1123 {
1124     Rom *rom;
1125 
1126     rom           = g_malloc0(sizeof(*rom));
1127     rom->name     = g_strdup(name);
1128     rom->addr     = addr;
1129     rom->datasize = datasize;
1130     rom->romsize  = romsize;
1131     rom->data     = data;
1132     rom->as       = as;
1133 
1134     if (mapped_file && data) {
1135         g_mapped_file_ref(mapped_file);
1136         rom->mapped_file = mapped_file;
1137     }
1138 
1139     rom_insert(rom);
1140     return 0;
1141 }
1142 
1143 ssize_t rom_add_vga(const char *file)
1144 {
1145     return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1146 }
1147 
1148 ssize_t rom_add_option(const char *file, int32_t bootindex)
1149 {
1150     return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1151 }
1152 
1153 static void rom_reset(void *unused)
1154 {
1155     Rom *rom;
1156 
1157     QTAILQ_FOREACH(rom, &roms, next) {
1158         if (rom->fw_file) {
1159             continue;
1160         }
1161         /*
1162          * We don't need to fill in the RAM with ROM data because we'll fill
1163          * the data in during the next incoming migration in all cases.  Note
1164          * that some of those RAMs can actually be modified by the guest.
1165          */
1166         if (runstate_check(RUN_STATE_INMIGRATE)) {
1167             if (rom->data && rom->isrom) {
1168                 /*
1169                  * Free it so that a rom_reset after migration doesn't
1170                  * overwrite a potentially modified 'rom'.
1171                  */
1172                 rom_free_data(rom);
1173             }
1174             continue;
1175         }
1176 
1177         if (rom->data == NULL) {
1178             continue;
1179         }
1180         if (rom->mr) {
1181             void *host = memory_region_get_ram_ptr(rom->mr);
1182             memcpy(host, rom->data, rom->datasize);
1183             memset(host + rom->datasize, 0, rom->romsize - rom->datasize);
1184         } else {
1185             address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1186                                     rom->data, rom->datasize);
1187             address_space_set(rom->as, rom->addr + rom->datasize, 0,
1188                               rom->romsize - rom->datasize,
1189                               MEMTXATTRS_UNSPECIFIED);
1190         }
1191         if (rom->isrom) {
1192             /* rom needs to be written only once */
1193             rom_free_data(rom);
1194         }
1195         /*
1196          * The rom loader is really on the same level as firmware in the guest
1197          * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1198          * that the instruction cache for that new region is clear, so that the
1199          * CPU definitely fetches its instructions from the just written data.
1200          */
1201         cpu_flush_icache_range(rom->addr, rom->datasize);
1202 
1203         trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom);
1204     }
1205 }
1206 
1207 /* Return true if two consecutive ROMs in the ROM list overlap */
1208 static bool roms_overlap(Rom *last_rom, Rom *this_rom)
1209 {
1210     if (!last_rom) {
1211         return false;
1212     }
1213     return last_rom->as == this_rom->as &&
1214         last_rom->addr + last_rom->romsize > this_rom->addr;
1215 }
1216 
1217 static const char *rom_as_name(Rom *rom)
1218 {
1219     const char *name = rom->as ? rom->as->name : NULL;
1220     return name ?: "anonymous";
1221 }
1222 
1223 static void rom_print_overlap_error_header(void)
1224 {
1225     error_report("Some ROM regions are overlapping");
1226     error_printf(
1227         "These ROM regions might have been loaded by "
1228         "direct user request or by default.\n"
1229         "They could be BIOS/firmware images, a guest kernel, "
1230         "initrd or some other file loaded into guest memory.\n"
1231         "Check whether you intended to load all this guest code, and "
1232         "whether it has been built to load to the correct addresses.\n");
1233 }
1234 
1235 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom)
1236 {
1237     error_printf(
1238         "\nThe following two regions overlap (in the %s address space):\n",
1239         rom_as_name(rom));
1240     error_printf(
1241         "  %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1242         last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize);
1243     error_printf(
1244         "  %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1245         rom->name, rom->addr, rom->addr + rom->romsize);
1246 }
1247 
1248 int rom_check_and_register_reset(void)
1249 {
1250     MemoryRegionSection section;
1251     Rom *rom, *last_rom = NULL;
1252     bool found_overlap = false;
1253 
1254     QTAILQ_FOREACH(rom, &roms, next) {
1255         if (rom->fw_file) {
1256             continue;
1257         }
1258         if (!rom->mr) {
1259             if (roms_overlap(last_rom, rom)) {
1260                 if (!found_overlap) {
1261                     found_overlap = true;
1262                     rom_print_overlap_error_header();
1263                 }
1264                 rom_print_one_overlap_error(last_rom, rom);
1265                 /* Keep going through the list so we report all overlaps */
1266             }
1267             last_rom = rom;
1268         }
1269         section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1270                                      rom->addr, 1);
1271         rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1272         memory_region_unref(section.mr);
1273     }
1274     if (found_overlap) {
1275         return -1;
1276     }
1277 
1278     qemu_register_reset(rom_reset, NULL);
1279     roms_loaded = 1;
1280     return 0;
1281 }
1282 
1283 void rom_set_fw(FWCfgState *f)
1284 {
1285     fw_cfg = f;
1286 }
1287 
1288 void rom_set_order_override(int order)
1289 {
1290     if (!fw_cfg)
1291         return;
1292     fw_cfg_set_order_override(fw_cfg, order);
1293 }
1294 
1295 void rom_reset_order_override(void)
1296 {
1297     if (!fw_cfg)
1298         return;
1299     fw_cfg_reset_order_override(fw_cfg);
1300 }
1301 
1302 void rom_transaction_begin(void)
1303 {
1304     Rom *rom;
1305 
1306     /* Ignore ROMs added without the transaction API */
1307     QTAILQ_FOREACH(rom, &roms, next) {
1308         rom->committed = true;
1309     }
1310 }
1311 
1312 void rom_transaction_end(bool commit)
1313 {
1314     Rom *rom;
1315     Rom *tmp;
1316 
1317     QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1318         if (rom->committed) {
1319             continue;
1320         }
1321         if (commit) {
1322             rom->committed = true;
1323         } else {
1324             QTAILQ_REMOVE(&roms, rom, next);
1325             rom_free(rom);
1326         }
1327     }
1328 }
1329 
1330 static Rom *find_rom(hwaddr addr, size_t size)
1331 {
1332     Rom *rom;
1333 
1334     QTAILQ_FOREACH(rom, &roms, next) {
1335         if (rom->fw_file) {
1336             continue;
1337         }
1338         if (rom->mr) {
1339             continue;
1340         }
1341         if (rom->addr > addr) {
1342             continue;
1343         }
1344         if (rom->addr + rom->romsize < addr + size) {
1345             continue;
1346         }
1347         return rom;
1348     }
1349     return NULL;
1350 }
1351 
1352 typedef struct RomSec {
1353     hwaddr base;
1354     int se; /* start/end flag */
1355 } RomSec;
1356 
1357 
1358 /*
1359  * Sort into address order. We break ties between rom-startpoints
1360  * and rom-endpoints in favour of the startpoint, by sorting the 0->1
1361  * transition before the 1->0 transition. Either way round would
1362  * work, but this way saves a little work later by avoiding
1363  * dealing with "gaps" of 0 length.
1364  */
1365 static gint sort_secs(gconstpointer a, gconstpointer b)
1366 {
1367     RomSec *ra = (RomSec *) a;
1368     RomSec *rb = (RomSec *) b;
1369 
1370     if (ra->base == rb->base) {
1371         return ra->se - rb->se;
1372     }
1373     return ra->base > rb->base ? 1 : -1;
1374 }
1375 
1376 static GList *add_romsec_to_list(GList *secs, hwaddr base, int se)
1377 {
1378    RomSec *cand = g_new(RomSec, 1);
1379    cand->base = base;
1380    cand->se = se;
1381    return g_list_prepend(secs, cand);
1382 }
1383 
1384 RomGap rom_find_largest_gap_between(hwaddr base, size_t size)
1385 {
1386     Rom *rom;
1387     RomSec *cand;
1388     RomGap res = {0, 0};
1389     hwaddr gapstart = base;
1390     GList *it, *secs = NULL;
1391     int count = 0;
1392 
1393     QTAILQ_FOREACH(rom, &roms, next) {
1394         /* Ignore blobs being loaded to special places */
1395         if (rom->mr || rom->fw_file) {
1396             continue;
1397         }
1398         /* ignore anything finishing bellow base */
1399         if (rom->addr + rom->romsize <= base) {
1400             continue;
1401         }
1402         /* ignore anything starting above the region */
1403         if (rom->addr >= base + size) {
1404             continue;
1405         }
1406 
1407         /* Save the start and end of each relevant ROM */
1408         secs = add_romsec_to_list(secs, rom->addr, 1);
1409 
1410         if (rom->addr + rom->romsize < base + size) {
1411             secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1);
1412         }
1413     }
1414 
1415     /* sentinel */
1416     secs = add_romsec_to_list(secs, base + size, 1);
1417 
1418     secs = g_list_sort(secs, sort_secs);
1419 
1420     for (it = g_list_first(secs); it; it = g_list_next(it)) {
1421         cand = (RomSec *) it->data;
1422         if (count == 0 && count + cand->se == 1) {
1423             size_t gap = cand->base - gapstart;
1424             if (gap > res.size) {
1425                 res.base = gapstart;
1426                 res.size = gap;
1427             }
1428         } else if (count == 1 && count + cand->se == 0) {
1429             gapstart = cand->base;
1430         }
1431         count += cand->se;
1432     }
1433 
1434     g_list_free_full(secs, g_free);
1435     return res;
1436 }
1437 
1438 /*
1439  * Copies memory from registered ROMs to dest. Any memory that is contained in
1440  * a ROM between addr and addr + size is copied. Note that this can involve
1441  * multiple ROMs, which need not start at addr and need not end at addr + size.
1442  */
1443 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1444 {
1445     hwaddr end = addr + size;
1446     uint8_t *s, *d = dest;
1447     size_t l = 0;
1448     Rom *rom;
1449 
1450     QTAILQ_FOREACH(rom, &roms, next) {
1451         if (rom->fw_file) {
1452             continue;
1453         }
1454         if (rom->mr) {
1455             continue;
1456         }
1457         if (rom->addr + rom->romsize < addr) {
1458             continue;
1459         }
1460         if (rom->addr > end || rom->addr < addr) {
1461             break;
1462         }
1463 
1464         d = dest + (rom->addr - addr);
1465         s = rom->data;
1466         l = rom->datasize;
1467 
1468         if ((d + l) > (dest + size)) {
1469             l = dest - d;
1470         }
1471 
1472         if (l > 0) {
1473             memcpy(d, s, l);
1474         }
1475 
1476         if (rom->romsize > rom->datasize) {
1477             /* If datasize is less than romsize, it means that we didn't
1478              * allocate all the ROM because the trailing data are only zeros.
1479              */
1480 
1481             d += l;
1482             l = rom->romsize - rom->datasize;
1483 
1484             if ((d + l) > (dest + size)) {
1485                 /* Rom size doesn't fit in the destination area. Adjust to avoid
1486                  * overflow.
1487                  */
1488                 l = dest - d;
1489             }
1490 
1491             if (l > 0) {
1492                 memset(d, 0x0, l);
1493             }
1494         }
1495     }
1496 
1497     return (d + l) - dest;
1498 }
1499 
1500 void *rom_ptr(hwaddr addr, size_t size)
1501 {
1502     Rom *rom;
1503 
1504     rom = find_rom(addr, size);
1505     if (!rom || !rom->data)
1506         return NULL;
1507     return rom->data + (addr - rom->addr);
1508 }
1509 
1510 typedef struct FindRomCBData {
1511     size_t size; /* Amount of data we want from ROM, in bytes */
1512     MemoryRegion *mr; /* MR at the unaliased guest addr */
1513     hwaddr xlat; /* Offset of addr within mr */
1514     void *rom; /* Output: rom data pointer, if found */
1515 } FindRomCBData;
1516 
1517 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr,
1518                         hwaddr offset_in_region, void *opaque)
1519 {
1520     FindRomCBData *cbdata = opaque;
1521     hwaddr alias_addr;
1522 
1523     if (mr != cbdata->mr) {
1524         return false;
1525     }
1526 
1527     alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region;
1528     cbdata->rom = rom_ptr(alias_addr, cbdata->size);
1529     if (!cbdata->rom) {
1530         return false;
1531     }
1532     /* Found a match, stop iterating */
1533     return true;
1534 }
1535 
1536 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size)
1537 {
1538     /*
1539      * Find any ROM data for the given guest address range.  If there
1540      * is a ROM blob then return a pointer to the host memory
1541      * corresponding to 'addr'; otherwise return NULL.
1542      *
1543      * We look not only for ROM blobs that were loaded directly to
1544      * addr, but also for ROM blobs that were loaded to aliases of
1545      * that memory at other addresses within the AddressSpace.
1546      *
1547      * Note that we do not check @as against the 'as' member in the
1548      * 'struct Rom' returned by rom_ptr(). The Rom::as is the
1549      * AddressSpace which the rom blob should be written to, whereas
1550      * our @as argument is the AddressSpace which we are (effectively)
1551      * reading from, and the same underlying RAM will often be visible
1552      * in multiple AddressSpaces. (A common example is a ROM blob
1553      * written to the 'system' address space but then read back via a
1554      * CPU's cpu->as pointer.) This does mean we might potentially
1555      * return a false-positive match if a ROM blob was loaded into an
1556      * AS which is entirely separate and distinct from the one we're
1557      * querying, but this issue exists also for rom_ptr() and hasn't
1558      * caused any problems in practice.
1559      */
1560     FlatView *fv;
1561     void *rom;
1562     hwaddr len_unused;
1563     FindRomCBData cbdata = {};
1564 
1565     /* Easy case: there's data at the actual address */
1566     rom = rom_ptr(addr, size);
1567     if (rom) {
1568         return rom;
1569     }
1570 
1571     RCU_READ_LOCK_GUARD();
1572 
1573     fv = address_space_to_flatview(as);
1574     cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused,
1575                                    false, MEMTXATTRS_UNSPECIFIED);
1576     if (!cbdata.mr) {
1577         /* Nothing at this address, so there can't be any aliasing */
1578         return NULL;
1579     }
1580     cbdata.size = size;
1581     flatview_for_each_range(fv, find_rom_cb, &cbdata);
1582     return cbdata.rom;
1583 }
1584 
1585 HumanReadableText *qmp_x_query_roms(Error **errp)
1586 {
1587     Rom *rom;
1588     g_autoptr(GString) buf = g_string_new("");
1589 
1590     QTAILQ_FOREACH(rom, &roms, next) {
1591         if (rom->mr) {
1592             g_string_append_printf(buf, "%s"
1593                                    " size=0x%06zx name=\"%s\"\n",
1594                                    memory_region_name(rom->mr),
1595                                    rom->romsize,
1596                                    rom->name);
1597         } else if (!rom->fw_file) {
1598             g_string_append_printf(buf, "addr=" TARGET_FMT_plx
1599                                    " size=0x%06zx mem=%s name=\"%s\"\n",
1600                                    rom->addr, rom->romsize,
1601                                    rom->isrom ? "rom" : "ram",
1602                                    rom->name);
1603         } else {
1604             g_string_append_printf(buf, "fw=%s/%s"
1605                                    " size=0x%06zx name=\"%s\"\n",
1606                                    rom->fw_dir,
1607                                    rom->fw_file,
1608                                    rom->romsize,
1609                                    rom->name);
1610         }
1611     }
1612 
1613     return human_readable_text_from_str(buf);
1614 }
1615 
1616 typedef enum HexRecord HexRecord;
1617 enum HexRecord {
1618     DATA_RECORD = 0,
1619     EOF_RECORD,
1620     EXT_SEG_ADDR_RECORD,
1621     START_SEG_ADDR_RECORD,
1622     EXT_LINEAR_ADDR_RECORD,
1623     START_LINEAR_ADDR_RECORD,
1624 };
1625 
1626 /* Each record contains a 16-bit address which is combined with the upper 16
1627  * bits of the implicit "next address" to form a 32-bit address.
1628  */
1629 #define NEXT_ADDR_MASK 0xffff0000
1630 
1631 #define DATA_FIELD_MAX_LEN 0xff
1632 #define LEN_EXCEPT_DATA 0x5
1633 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1634  *       sizeof(checksum) */
1635 typedef struct {
1636     uint8_t byte_count;
1637     uint16_t address;
1638     uint8_t record_type;
1639     uint8_t data[DATA_FIELD_MAX_LEN];
1640     uint8_t checksum;
1641 } HexLine;
1642 
1643 /* return 0 or -1 if error */
1644 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1645                          uint32_t *index, const bool in_process)
1646 {
1647     /* +-------+---------------+-------+---------------------+--------+
1648      * | byte  |               |record |                     |        |
1649      * | count |    address    | type  |        data         |checksum|
1650      * +-------+---------------+-------+---------------------+--------+
1651      * ^       ^               ^       ^                     ^        ^
1652      * |1 byte |    2 bytes    |1 byte |     0-255 bytes     | 1 byte |
1653      */
1654     uint8_t value = 0;
1655     uint32_t idx = *index;
1656     /* ignore space */
1657     if (g_ascii_isspace(c)) {
1658         return true;
1659     }
1660     if (!g_ascii_isxdigit(c) || !in_process) {
1661         return false;
1662     }
1663     value = g_ascii_xdigit_value(c);
1664     value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1665     if (idx < 2) {
1666         line->byte_count |= value;
1667     } else if (2 <= idx && idx < 6) {
1668         line->address <<= 4;
1669         line->address += g_ascii_xdigit_value(c);
1670     } else if (6 <= idx && idx < 8) {
1671         line->record_type |= value;
1672     } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1673         line->data[(idx - 8) >> 1] |= value;
1674     } else if (8 + 2 * line->byte_count <= idx &&
1675                idx < 10 + 2 * line->byte_count) {
1676         line->checksum |= value;
1677     } else {
1678         return false;
1679     }
1680     *our_checksum += value;
1681     ++(*index);
1682     return true;
1683 }
1684 
1685 typedef struct {
1686     const char *filename;
1687     HexLine line;
1688     uint8_t *bin_buf;
1689     hwaddr *start_addr;
1690     int total_size;
1691     uint32_t next_address_to_write;
1692     uint32_t current_address;
1693     uint32_t current_rom_index;
1694     uint32_t rom_start_address;
1695     AddressSpace *as;
1696     bool complete;
1697 } HexParser;
1698 
1699 /* return size or -1 if error */
1700 static int handle_record_type(HexParser *parser)
1701 {
1702     HexLine *line = &(parser->line);
1703     switch (line->record_type) {
1704     case DATA_RECORD:
1705         parser->current_address =
1706             (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1707         /* verify this is a contiguous block of memory */
1708         if (parser->current_address != parser->next_address_to_write) {
1709             if (parser->current_rom_index != 0) {
1710                 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1711                                       parser->current_rom_index,
1712                                       parser->rom_start_address, parser->as);
1713             }
1714             parser->rom_start_address = parser->current_address;
1715             parser->current_rom_index = 0;
1716         }
1717 
1718         /* copy from line buffer to output bin_buf */
1719         memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1720                line->byte_count);
1721         parser->current_rom_index += line->byte_count;
1722         parser->total_size += line->byte_count;
1723         /* save next address to write */
1724         parser->next_address_to_write =
1725             parser->current_address + line->byte_count;
1726         break;
1727 
1728     case EOF_RECORD:
1729         if (parser->current_rom_index != 0) {
1730             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1731                                   parser->current_rom_index,
1732                                   parser->rom_start_address, parser->as);
1733         }
1734         parser->complete = true;
1735         return parser->total_size;
1736     case EXT_SEG_ADDR_RECORD:
1737     case EXT_LINEAR_ADDR_RECORD:
1738         if (line->byte_count != 2 && line->address != 0) {
1739             return -1;
1740         }
1741 
1742         if (parser->current_rom_index != 0) {
1743             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1744                                   parser->current_rom_index,
1745                                   parser->rom_start_address, parser->as);
1746         }
1747 
1748         /* save next address to write,
1749          * in case of non-contiguous block of memory */
1750         parser->next_address_to_write = (line->data[0] << 12) |
1751                                         (line->data[1] << 4);
1752         if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1753             parser->next_address_to_write <<= 12;
1754         }
1755 
1756         parser->rom_start_address = parser->next_address_to_write;
1757         parser->current_rom_index = 0;
1758         break;
1759 
1760     case START_SEG_ADDR_RECORD:
1761         if (line->byte_count != 4 && line->address != 0) {
1762             return -1;
1763         }
1764 
1765         /* x86 16-bit CS:IP segmented addressing */
1766         *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1767                                 ((line->data[2] << 8) | line->data[3]);
1768         break;
1769 
1770     case START_LINEAR_ADDR_RECORD:
1771         if (line->byte_count != 4 && line->address != 0) {
1772             return -1;
1773         }
1774 
1775         *(parser->start_addr) = ldl_be_p(line->data);
1776         break;
1777 
1778     default:
1779         return -1;
1780     }
1781 
1782     return parser->total_size;
1783 }
1784 
1785 /* return size or -1 if error */
1786 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1787                           size_t hex_blob_size, AddressSpace *as)
1788 {
1789     bool in_process = false; /* avoid re-enter and
1790                               * check whether record begin with ':' */
1791     uint8_t *end = hex_blob + hex_blob_size;
1792     uint8_t our_checksum = 0;
1793     uint32_t record_index = 0;
1794     HexParser parser = {
1795         .filename = filename,
1796         .bin_buf = g_malloc(hex_blob_size),
1797         .start_addr = addr,
1798         .as = as,
1799         .complete = false
1800     };
1801 
1802     rom_transaction_begin();
1803 
1804     for (; hex_blob < end && !parser.complete; ++hex_blob) {
1805         switch (*hex_blob) {
1806         case '\r':
1807         case '\n':
1808             if (!in_process) {
1809                 break;
1810             }
1811 
1812             in_process = false;
1813             if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1814                     record_index ||
1815                 our_checksum != 0) {
1816                 parser.total_size = -1;
1817                 goto out;
1818             }
1819 
1820             if (handle_record_type(&parser) == -1) {
1821                 parser.total_size = -1;
1822                 goto out;
1823             }
1824             break;
1825 
1826         /* start of a new record. */
1827         case ':':
1828             memset(&parser.line, 0, sizeof(HexLine));
1829             in_process = true;
1830             record_index = 0;
1831             break;
1832 
1833         /* decoding lines */
1834         default:
1835             if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1836                               &record_index, in_process)) {
1837                 parser.total_size = -1;
1838                 goto out;
1839             }
1840             break;
1841         }
1842     }
1843 
1844 out:
1845     g_free(parser.bin_buf);
1846     rom_transaction_end(parser.total_size != -1);
1847     return parser.total_size;
1848 }
1849 
1850 /* return size or -1 if error */
1851 ssize_t load_targphys_hex_as(const char *filename, hwaddr *entry,
1852                              AddressSpace *as)
1853 {
1854     gsize hex_blob_size;
1855     gchar *hex_blob;
1856     ssize_t total_size = 0;
1857 
1858     if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1859         return -1;
1860     }
1861 
1862     total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1863                                 hex_blob_size, as);
1864 
1865     g_free(hex_blob);
1866     return total_size;
1867 }
1868