1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qapi/error.h" 47 #include "hw/hw.h" 48 #include "disas/disas.h" 49 #include "monitor/monitor.h" 50 #include "sysemu/sysemu.h" 51 #include "uboot_image.h" 52 #include "hw/loader.h" 53 #include "hw/nvram/fw_cfg.h" 54 #include "exec/memory.h" 55 #include "exec/address-spaces.h" 56 #include "hw/boards.h" 57 #include "qemu/cutils.h" 58 59 #include <zlib.h> 60 61 static int roms_loaded; 62 63 /* return the size or -1 if error */ 64 int64_t get_image_size(const char *filename) 65 { 66 int fd; 67 int64_t size; 68 fd = open(filename, O_RDONLY | O_BINARY); 69 if (fd < 0) 70 return -1; 71 size = lseek(fd, 0, SEEK_END); 72 close(fd); 73 return size; 74 } 75 76 /* return the size or -1 if error */ 77 ssize_t load_image_size(const char *filename, void *addr, size_t size) 78 { 79 int fd; 80 ssize_t actsize, l = 0; 81 82 fd = open(filename, O_RDONLY | O_BINARY); 83 if (fd < 0) { 84 return -1; 85 } 86 87 while ((actsize = read(fd, addr + l, size - l)) > 0) { 88 l += actsize; 89 } 90 91 close(fd); 92 93 return actsize < 0 ? -1 : l; 94 } 95 96 /* read()-like version */ 97 ssize_t read_targphys(const char *name, 98 int fd, hwaddr dst_addr, size_t nbytes) 99 { 100 uint8_t *buf; 101 ssize_t did; 102 103 buf = g_malloc(nbytes); 104 did = read(fd, buf, nbytes); 105 if (did > 0) 106 rom_add_blob_fixed("read", buf, did, dst_addr); 107 g_free(buf); 108 return did; 109 } 110 111 int load_image_targphys(const char *filename, 112 hwaddr addr, uint64_t max_sz) 113 { 114 return load_image_targphys_as(filename, addr, max_sz, NULL); 115 } 116 117 /* return the size or -1 if error */ 118 int load_image_targphys_as(const char *filename, 119 hwaddr addr, uint64_t max_sz, AddressSpace *as) 120 { 121 int size; 122 123 size = get_image_size(filename); 124 if (size < 0 || size > max_sz) { 125 return -1; 126 } 127 if (size > 0) { 128 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 129 return -1; 130 } 131 } 132 return size; 133 } 134 135 int load_image_mr(const char *filename, MemoryRegion *mr) 136 { 137 int size; 138 139 if (!memory_access_is_direct(mr, false)) { 140 /* Can only load an image into RAM or ROM */ 141 return -1; 142 } 143 144 size = get_image_size(filename); 145 146 if (size < 0 || size > memory_region_size(mr)) { 147 return -1; 148 } 149 if (size > 0) { 150 if (rom_add_file_mr(filename, mr, -1) < 0) { 151 return -1; 152 } 153 } 154 return size; 155 } 156 157 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 158 const char *source) 159 { 160 const char *nulp; 161 char *ptr; 162 163 if (buf_size <= 0) return; 164 nulp = memchr(source, 0, buf_size); 165 if (nulp) { 166 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 167 } else { 168 rom_add_blob_fixed(name, source, buf_size, dest); 169 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 170 *ptr = 0; 171 } 172 } 173 174 /* A.OUT loader */ 175 176 struct exec 177 { 178 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 179 uint32_t a_text; /* length of text, in bytes */ 180 uint32_t a_data; /* length of data, in bytes */ 181 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 182 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 183 uint32_t a_entry; /* start address */ 184 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 185 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 186 }; 187 188 static void bswap_ahdr(struct exec *e) 189 { 190 bswap32s(&e->a_info); 191 bswap32s(&e->a_text); 192 bswap32s(&e->a_data); 193 bswap32s(&e->a_bss); 194 bswap32s(&e->a_syms); 195 bswap32s(&e->a_entry); 196 bswap32s(&e->a_trsize); 197 bswap32s(&e->a_drsize); 198 } 199 200 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 201 #define OMAGIC 0407 202 #define NMAGIC 0410 203 #define ZMAGIC 0413 204 #define QMAGIC 0314 205 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 206 #define N_TXTOFF(x) \ 207 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 208 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 209 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 210 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 211 212 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 213 214 #define N_DATADDR(x, target_page_size) \ 215 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 216 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 217 218 219 int load_aout(const char *filename, hwaddr addr, int max_sz, 220 int bswap_needed, hwaddr target_page_size) 221 { 222 int fd; 223 ssize_t size, ret; 224 struct exec e; 225 uint32_t magic; 226 227 fd = open(filename, O_RDONLY | O_BINARY); 228 if (fd < 0) 229 return -1; 230 231 size = read(fd, &e, sizeof(e)); 232 if (size < 0) 233 goto fail; 234 235 if (bswap_needed) { 236 bswap_ahdr(&e); 237 } 238 239 magic = N_MAGIC(e); 240 switch (magic) { 241 case ZMAGIC: 242 case QMAGIC: 243 case OMAGIC: 244 if (e.a_text + e.a_data > max_sz) 245 goto fail; 246 lseek(fd, N_TXTOFF(e), SEEK_SET); 247 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 248 if (size < 0) 249 goto fail; 250 break; 251 case NMAGIC: 252 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 253 goto fail; 254 lseek(fd, N_TXTOFF(e), SEEK_SET); 255 size = read_targphys(filename, fd, addr, e.a_text); 256 if (size < 0) 257 goto fail; 258 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 259 e.a_data); 260 if (ret < 0) 261 goto fail; 262 size += ret; 263 break; 264 default: 265 goto fail; 266 } 267 close(fd); 268 return size; 269 fail: 270 close(fd); 271 return -1; 272 } 273 274 /* ELF loader */ 275 276 static void *load_at(int fd, off_t offset, size_t size) 277 { 278 void *ptr; 279 if (lseek(fd, offset, SEEK_SET) < 0) 280 return NULL; 281 ptr = g_malloc(size); 282 if (read(fd, ptr, size) != size) { 283 g_free(ptr); 284 return NULL; 285 } 286 return ptr; 287 } 288 289 #ifdef ELF_CLASS 290 #undef ELF_CLASS 291 #endif 292 293 #define ELF_CLASS ELFCLASS32 294 #include "elf.h" 295 296 #define SZ 32 297 #define elf_word uint32_t 298 #define elf_sword int32_t 299 #define bswapSZs bswap32s 300 #include "hw/elf_ops.h" 301 302 #undef elfhdr 303 #undef elf_phdr 304 #undef elf_shdr 305 #undef elf_sym 306 #undef elf_rela 307 #undef elf_note 308 #undef elf_word 309 #undef elf_sword 310 #undef bswapSZs 311 #undef SZ 312 #define elfhdr elf64_hdr 313 #define elf_phdr elf64_phdr 314 #define elf_note elf64_note 315 #define elf_shdr elf64_shdr 316 #define elf_sym elf64_sym 317 #define elf_rela elf64_rela 318 #define elf_word uint64_t 319 #define elf_sword int64_t 320 #define bswapSZs bswap64s 321 #define SZ 64 322 #include "hw/elf_ops.h" 323 324 const char *load_elf_strerror(int error) 325 { 326 switch (error) { 327 case 0: 328 return "No error"; 329 case ELF_LOAD_FAILED: 330 return "Failed to load ELF"; 331 case ELF_LOAD_NOT_ELF: 332 return "The image is not ELF"; 333 case ELF_LOAD_WRONG_ARCH: 334 return "The image is from incompatible architecture"; 335 case ELF_LOAD_WRONG_ENDIAN: 336 return "The image has incorrect endianness"; 337 default: 338 return "Unknown error"; 339 } 340 } 341 342 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 343 { 344 int fd; 345 uint8_t e_ident_local[EI_NIDENT]; 346 uint8_t *e_ident; 347 size_t hdr_size, off; 348 bool is64l; 349 350 if (!hdr) { 351 hdr = e_ident_local; 352 } 353 e_ident = hdr; 354 355 fd = open(filename, O_RDONLY | O_BINARY); 356 if (fd < 0) { 357 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 358 return; 359 } 360 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 361 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 362 goto fail; 363 } 364 if (e_ident[0] != ELFMAG0 || 365 e_ident[1] != ELFMAG1 || 366 e_ident[2] != ELFMAG2 || 367 e_ident[3] != ELFMAG3) { 368 error_setg(errp, "Bad ELF magic"); 369 goto fail; 370 } 371 372 is64l = e_ident[EI_CLASS] == ELFCLASS64; 373 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 374 if (is64) { 375 *is64 = is64l; 376 } 377 378 off = EI_NIDENT; 379 while (hdr != e_ident_local && off < hdr_size) { 380 size_t br = read(fd, hdr + off, hdr_size - off); 381 switch (br) { 382 case 0: 383 error_setg(errp, "File too short: %s", filename); 384 goto fail; 385 case -1: 386 error_setg_errno(errp, errno, "Failed to read file: %s", 387 filename); 388 goto fail; 389 } 390 off += br; 391 } 392 393 fail: 394 close(fd); 395 } 396 397 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 398 int load_elf(const char *filename, 399 uint64_t (*elf_note_fn)(void *, void *, bool), 400 uint64_t (*translate_fn)(void *, uint64_t), 401 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 402 uint64_t *highaddr, int big_endian, int elf_machine, 403 int clear_lsb, int data_swab) 404 { 405 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 406 pentry, lowaddr, highaddr, big_endian, elf_machine, 407 clear_lsb, data_swab, NULL); 408 } 409 410 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 411 int load_elf_as(const char *filename, 412 uint64_t (*elf_note_fn)(void *, void *, bool), 413 uint64_t (*translate_fn)(void *, uint64_t), 414 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 415 uint64_t *highaddr, int big_endian, int elf_machine, 416 int clear_lsb, int data_swab, AddressSpace *as) 417 { 418 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque, 419 pentry, lowaddr, highaddr, big_endian, elf_machine, 420 clear_lsb, data_swab, as, true); 421 } 422 423 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 424 int load_elf_ram(const char *filename, 425 uint64_t (*elf_note_fn)(void *, void *, bool), 426 uint64_t (*translate_fn)(void *, uint64_t), 427 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 428 uint64_t *highaddr, int big_endian, int elf_machine, 429 int clear_lsb, int data_swab, AddressSpace *as, 430 bool load_rom) 431 { 432 return load_elf_ram_sym(filename, elf_note_fn, 433 translate_fn, translate_opaque, 434 pentry, lowaddr, highaddr, big_endian, 435 elf_machine, clear_lsb, data_swab, as, 436 load_rom, NULL); 437 } 438 439 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 440 int load_elf_ram_sym(const char *filename, 441 uint64_t (*elf_note_fn)(void *, void *, bool), 442 uint64_t (*translate_fn)(void *, uint64_t), 443 void *translate_opaque, uint64_t *pentry, 444 uint64_t *lowaddr, uint64_t *highaddr, int big_endian, 445 int elf_machine, int clear_lsb, int data_swab, 446 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 447 { 448 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; 449 uint8_t e_ident[EI_NIDENT]; 450 451 fd = open(filename, O_RDONLY | O_BINARY); 452 if (fd < 0) { 453 perror(filename); 454 return -1; 455 } 456 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 457 goto fail; 458 if (e_ident[0] != ELFMAG0 || 459 e_ident[1] != ELFMAG1 || 460 e_ident[2] != ELFMAG2 || 461 e_ident[3] != ELFMAG3) { 462 ret = ELF_LOAD_NOT_ELF; 463 goto fail; 464 } 465 #ifdef HOST_WORDS_BIGENDIAN 466 data_order = ELFDATA2MSB; 467 #else 468 data_order = ELFDATA2LSB; 469 #endif 470 must_swab = data_order != e_ident[EI_DATA]; 471 if (big_endian) { 472 target_data_order = ELFDATA2MSB; 473 } else { 474 target_data_order = ELFDATA2LSB; 475 } 476 477 if (target_data_order != e_ident[EI_DATA]) { 478 ret = ELF_LOAD_WRONG_ENDIAN; 479 goto fail; 480 } 481 482 lseek(fd, 0, SEEK_SET); 483 if (e_ident[EI_CLASS] == ELFCLASS64) { 484 ret = load_elf64(filename, fd, elf_note_fn, 485 translate_fn, translate_opaque, must_swab, 486 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 487 data_swab, as, load_rom, sym_cb); 488 } else { 489 ret = load_elf32(filename, fd, elf_note_fn, 490 translate_fn, translate_opaque, must_swab, 491 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 492 data_swab, as, load_rom, sym_cb); 493 } 494 495 fail: 496 close(fd); 497 return ret; 498 } 499 500 static void bswap_uboot_header(uboot_image_header_t *hdr) 501 { 502 #ifndef HOST_WORDS_BIGENDIAN 503 bswap32s(&hdr->ih_magic); 504 bswap32s(&hdr->ih_hcrc); 505 bswap32s(&hdr->ih_time); 506 bswap32s(&hdr->ih_size); 507 bswap32s(&hdr->ih_load); 508 bswap32s(&hdr->ih_ep); 509 bswap32s(&hdr->ih_dcrc); 510 #endif 511 } 512 513 514 #define ZALLOC_ALIGNMENT 16 515 516 static void *zalloc(void *x, unsigned items, unsigned size) 517 { 518 void *p; 519 520 size *= items; 521 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 522 523 p = g_malloc(size); 524 525 return (p); 526 } 527 528 static void zfree(void *x, void *addr) 529 { 530 g_free(addr); 531 } 532 533 534 #define HEAD_CRC 2 535 #define EXTRA_FIELD 4 536 #define ORIG_NAME 8 537 #define COMMENT 0x10 538 #define RESERVED 0xe0 539 540 #define DEFLATED 8 541 542 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 543 { 544 z_stream s; 545 ssize_t dstbytes; 546 int r, i, flags; 547 548 /* skip header */ 549 i = 10; 550 flags = src[3]; 551 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 552 puts ("Error: Bad gzipped data\n"); 553 return -1; 554 } 555 if ((flags & EXTRA_FIELD) != 0) 556 i = 12 + src[10] + (src[11] << 8); 557 if ((flags & ORIG_NAME) != 0) 558 while (src[i++] != 0) 559 ; 560 if ((flags & COMMENT) != 0) 561 while (src[i++] != 0) 562 ; 563 if ((flags & HEAD_CRC) != 0) 564 i += 2; 565 if (i >= srclen) { 566 puts ("Error: gunzip out of data in header\n"); 567 return -1; 568 } 569 570 s.zalloc = zalloc; 571 s.zfree = zfree; 572 573 r = inflateInit2(&s, -MAX_WBITS); 574 if (r != Z_OK) { 575 printf ("Error: inflateInit2() returned %d\n", r); 576 return (-1); 577 } 578 s.next_in = src + i; 579 s.avail_in = srclen - i; 580 s.next_out = dst; 581 s.avail_out = dstlen; 582 r = inflate(&s, Z_FINISH); 583 if (r != Z_OK && r != Z_STREAM_END) { 584 printf ("Error: inflate() returned %d\n", r); 585 return -1; 586 } 587 dstbytes = s.next_out - (unsigned char *) dst; 588 inflateEnd(&s); 589 590 return dstbytes; 591 } 592 593 /* Load a U-Boot image. */ 594 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 595 int *is_linux, uint8_t image_type, 596 uint64_t (*translate_fn)(void *, uint64_t), 597 void *translate_opaque, AddressSpace *as) 598 { 599 int fd; 600 int size; 601 hwaddr address; 602 uboot_image_header_t h; 603 uboot_image_header_t *hdr = &h; 604 uint8_t *data = NULL; 605 int ret = -1; 606 int do_uncompress = 0; 607 608 fd = open(filename, O_RDONLY | O_BINARY); 609 if (fd < 0) 610 return -1; 611 612 size = read(fd, hdr, sizeof(uboot_image_header_t)); 613 if (size < sizeof(uboot_image_header_t)) { 614 goto out; 615 } 616 617 bswap_uboot_header(hdr); 618 619 if (hdr->ih_magic != IH_MAGIC) 620 goto out; 621 622 if (hdr->ih_type != image_type) { 623 if (!(image_type == IH_TYPE_KERNEL && 624 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 625 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 626 image_type); 627 goto out; 628 } 629 } 630 631 /* TODO: Implement other image types. */ 632 switch (hdr->ih_type) { 633 case IH_TYPE_KERNEL_NOLOAD: 634 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 635 fprintf(stderr, "this image format (kernel_noload) cannot be " 636 "loaded on this machine type"); 637 goto out; 638 } 639 640 hdr->ih_load = *loadaddr + sizeof(*hdr); 641 hdr->ih_ep += hdr->ih_load; 642 /* fall through */ 643 case IH_TYPE_KERNEL: 644 address = hdr->ih_load; 645 if (translate_fn) { 646 address = translate_fn(translate_opaque, address); 647 } 648 if (loadaddr) { 649 *loadaddr = hdr->ih_load; 650 } 651 652 switch (hdr->ih_comp) { 653 case IH_COMP_NONE: 654 break; 655 case IH_COMP_GZIP: 656 do_uncompress = 1; 657 break; 658 default: 659 fprintf(stderr, 660 "Unable to load u-boot images with compression type %d\n", 661 hdr->ih_comp); 662 goto out; 663 } 664 665 if (ep) { 666 *ep = hdr->ih_ep; 667 } 668 669 /* TODO: Check CPU type. */ 670 if (is_linux) { 671 if (hdr->ih_os == IH_OS_LINUX) { 672 *is_linux = 1; 673 } else { 674 *is_linux = 0; 675 } 676 } 677 678 break; 679 case IH_TYPE_RAMDISK: 680 address = *loadaddr; 681 break; 682 default: 683 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 684 goto out; 685 } 686 687 data = g_malloc(hdr->ih_size); 688 689 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 690 fprintf(stderr, "Error reading file\n"); 691 goto out; 692 } 693 694 if (do_uncompress) { 695 uint8_t *compressed_data; 696 size_t max_bytes; 697 ssize_t bytes; 698 699 compressed_data = data; 700 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 701 data = g_malloc(max_bytes); 702 703 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 704 g_free(compressed_data); 705 if (bytes < 0) { 706 fprintf(stderr, "Unable to decompress gzipped image!\n"); 707 goto out; 708 } 709 hdr->ih_size = bytes; 710 } 711 712 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 713 714 ret = hdr->ih_size; 715 716 out: 717 g_free(data); 718 close(fd); 719 return ret; 720 } 721 722 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 723 int *is_linux, 724 uint64_t (*translate_fn)(void *, uint64_t), 725 void *translate_opaque) 726 { 727 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 728 translate_fn, translate_opaque, NULL); 729 } 730 731 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 732 int *is_linux, 733 uint64_t (*translate_fn)(void *, uint64_t), 734 void *translate_opaque, AddressSpace *as) 735 { 736 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 737 translate_fn, translate_opaque, as); 738 } 739 740 /* Load a ramdisk. */ 741 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 742 { 743 return load_ramdisk_as(filename, addr, max_sz, NULL); 744 } 745 746 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 747 AddressSpace *as) 748 { 749 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 750 NULL, NULL, as); 751 } 752 753 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 754 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 755 uint8_t **buffer) 756 { 757 uint8_t *compressed_data = NULL; 758 uint8_t *data = NULL; 759 gsize len; 760 ssize_t bytes; 761 int ret = -1; 762 763 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 764 NULL)) { 765 goto out; 766 } 767 768 /* Is it a gzip-compressed file? */ 769 if (len < 2 || 770 compressed_data[0] != 0x1f || 771 compressed_data[1] != 0x8b) { 772 goto out; 773 } 774 775 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 776 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 777 } 778 779 data = g_malloc(max_sz); 780 bytes = gunzip(data, max_sz, compressed_data, len); 781 if (bytes < 0) { 782 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 783 filename); 784 goto out; 785 } 786 787 /* trim to actual size and return to caller */ 788 *buffer = g_realloc(data, bytes); 789 ret = bytes; 790 /* ownership has been transferred to caller */ 791 data = NULL; 792 793 out: 794 g_free(compressed_data); 795 g_free(data); 796 return ret; 797 } 798 799 /* Load a gzip-compressed kernel. */ 800 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 801 { 802 int bytes; 803 uint8_t *data; 804 805 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 806 if (bytes != -1) { 807 rom_add_blob_fixed(filename, data, bytes, addr); 808 g_free(data); 809 } 810 return bytes; 811 } 812 813 /* 814 * Functions for reboot-persistent memory regions. 815 * - used for vga bios and option roms. 816 * - also linux kernel (-kernel / -initrd). 817 */ 818 819 typedef struct Rom Rom; 820 821 struct Rom { 822 char *name; 823 char *path; 824 825 /* datasize is the amount of memory allocated in "data". If datasize is less 826 * than romsize, it means that the area from datasize to romsize is filled 827 * with zeros. 828 */ 829 size_t romsize; 830 size_t datasize; 831 832 uint8_t *data; 833 MemoryRegion *mr; 834 AddressSpace *as; 835 int isrom; 836 char *fw_dir; 837 char *fw_file; 838 839 bool committed; 840 841 hwaddr addr; 842 QTAILQ_ENTRY(Rom) next; 843 }; 844 845 static FWCfgState *fw_cfg; 846 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 847 848 /* rom->data must be heap-allocated (do not use with rom_add_elf_program()) */ 849 static void rom_free(Rom *rom) 850 { 851 g_free(rom->data); 852 g_free(rom->path); 853 g_free(rom->name); 854 g_free(rom->fw_dir); 855 g_free(rom->fw_file); 856 g_free(rom); 857 } 858 859 static inline bool rom_order_compare(Rom *rom, Rom *item) 860 { 861 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 862 (rom->as == item->as && rom->addr >= item->addr); 863 } 864 865 static void rom_insert(Rom *rom) 866 { 867 Rom *item; 868 869 if (roms_loaded) { 870 hw_error ("ROM images must be loaded at startup\n"); 871 } 872 873 /* The user didn't specify an address space, this is the default */ 874 if (!rom->as) { 875 rom->as = &address_space_memory; 876 } 877 878 rom->committed = false; 879 880 /* List is ordered by load address in the same address space */ 881 QTAILQ_FOREACH(item, &roms, next) { 882 if (rom_order_compare(rom, item)) { 883 continue; 884 } 885 QTAILQ_INSERT_BEFORE(item, rom, next); 886 return; 887 } 888 QTAILQ_INSERT_TAIL(&roms, rom, next); 889 } 890 891 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 892 { 893 if (fw_cfg) { 894 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 895 } 896 } 897 898 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 899 { 900 void *data; 901 902 rom->mr = g_malloc(sizeof(*rom->mr)); 903 memory_region_init_resizeable_ram(rom->mr, owner, name, 904 rom->datasize, rom->romsize, 905 fw_cfg_resized, 906 &error_fatal); 907 memory_region_set_readonly(rom->mr, ro); 908 vmstate_register_ram_global(rom->mr); 909 910 data = memory_region_get_ram_ptr(rom->mr); 911 memcpy(data, rom->data, rom->datasize); 912 913 return data; 914 } 915 916 int rom_add_file(const char *file, const char *fw_dir, 917 hwaddr addr, int32_t bootindex, 918 bool option_rom, MemoryRegion *mr, 919 AddressSpace *as) 920 { 921 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 922 Rom *rom; 923 int rc, fd = -1; 924 char devpath[100]; 925 926 if (as && mr) { 927 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 928 "not valid when loading a rom\n"); 929 /* We haven't allocated anything so we don't need any cleanup */ 930 return -1; 931 } 932 933 rom = g_malloc0(sizeof(*rom)); 934 rom->name = g_strdup(file); 935 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 936 rom->as = as; 937 if (rom->path == NULL) { 938 rom->path = g_strdup(file); 939 } 940 941 fd = open(rom->path, O_RDONLY | O_BINARY); 942 if (fd == -1) { 943 fprintf(stderr, "Could not open option rom '%s': %s\n", 944 rom->path, strerror(errno)); 945 goto err; 946 } 947 948 if (fw_dir) { 949 rom->fw_dir = g_strdup(fw_dir); 950 rom->fw_file = g_strdup(file); 951 } 952 rom->addr = addr; 953 rom->romsize = lseek(fd, 0, SEEK_END); 954 if (rom->romsize == -1) { 955 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 956 rom->name, strerror(errno)); 957 goto err; 958 } 959 960 rom->datasize = rom->romsize; 961 rom->data = g_malloc0(rom->datasize); 962 lseek(fd, 0, SEEK_SET); 963 rc = read(fd, rom->data, rom->datasize); 964 if (rc != rom->datasize) { 965 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 966 rom->name, rc, rom->datasize); 967 goto err; 968 } 969 close(fd); 970 rom_insert(rom); 971 if (rom->fw_file && fw_cfg) { 972 const char *basename; 973 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 974 void *data; 975 976 basename = strrchr(rom->fw_file, '/'); 977 if (basename) { 978 basename++; 979 } else { 980 basename = rom->fw_file; 981 } 982 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 983 basename); 984 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 985 986 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 987 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 988 } else { 989 data = rom->data; 990 } 991 992 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 993 } else { 994 if (mr) { 995 rom->mr = mr; 996 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 997 } else { 998 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 999 } 1000 } 1001 1002 add_boot_device_path(bootindex, NULL, devpath); 1003 return 0; 1004 1005 err: 1006 if (fd != -1) 1007 close(fd); 1008 1009 rom_free(rom); 1010 return -1; 1011 } 1012 1013 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1014 size_t max_len, hwaddr addr, const char *fw_file_name, 1015 FWCfgCallback fw_callback, void *callback_opaque, 1016 AddressSpace *as, bool read_only) 1017 { 1018 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1019 Rom *rom; 1020 MemoryRegion *mr = NULL; 1021 1022 rom = g_malloc0(sizeof(*rom)); 1023 rom->name = g_strdup(name); 1024 rom->as = as; 1025 rom->addr = addr; 1026 rom->romsize = max_len ? max_len : len; 1027 rom->datasize = len; 1028 g_assert(rom->romsize >= rom->datasize); 1029 rom->data = g_malloc0(rom->datasize); 1030 memcpy(rom->data, blob, len); 1031 rom_insert(rom); 1032 if (fw_file_name && fw_cfg) { 1033 char devpath[100]; 1034 void *data; 1035 1036 if (read_only) { 1037 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1038 } else { 1039 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1040 } 1041 1042 if (mc->rom_file_has_mr) { 1043 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1044 mr = rom->mr; 1045 } else { 1046 data = rom->data; 1047 } 1048 1049 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1050 fw_callback, NULL, callback_opaque, 1051 data, rom->datasize, read_only); 1052 } 1053 return mr; 1054 } 1055 1056 /* This function is specific for elf program because we don't need to allocate 1057 * all the rom. We just allocate the first part and the rest is just zeros. This 1058 * is why romsize and datasize are different. Also, this function seize the 1059 * memory ownership of "data", so we don't have to allocate and copy the buffer. 1060 */ 1061 int rom_add_elf_program(const char *name, void *data, size_t datasize, 1062 size_t romsize, hwaddr addr, AddressSpace *as) 1063 { 1064 Rom *rom; 1065 1066 rom = g_malloc0(sizeof(*rom)); 1067 rom->name = g_strdup(name); 1068 rom->addr = addr; 1069 rom->datasize = datasize; 1070 rom->romsize = romsize; 1071 rom->data = data; 1072 rom->as = as; 1073 rom_insert(rom); 1074 return 0; 1075 } 1076 1077 int rom_add_vga(const char *file) 1078 { 1079 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1080 } 1081 1082 int rom_add_option(const char *file, int32_t bootindex) 1083 { 1084 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1085 } 1086 1087 static void rom_reset(void *unused) 1088 { 1089 Rom *rom; 1090 1091 QTAILQ_FOREACH(rom, &roms, next) { 1092 if (rom->fw_file) { 1093 continue; 1094 } 1095 if (rom->data == NULL) { 1096 continue; 1097 } 1098 if (rom->mr) { 1099 void *host = memory_region_get_ram_ptr(rom->mr); 1100 memcpy(host, rom->data, rom->datasize); 1101 } else { 1102 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1103 rom->data, rom->datasize); 1104 } 1105 if (rom->isrom) { 1106 /* rom needs to be written only once */ 1107 g_free(rom->data); 1108 rom->data = NULL; 1109 } 1110 /* 1111 * The rom loader is really on the same level as firmware in the guest 1112 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1113 * that the instruction cache for that new region is clear, so that the 1114 * CPU definitely fetches its instructions from the just written data. 1115 */ 1116 cpu_flush_icache_range(rom->addr, rom->datasize); 1117 } 1118 } 1119 1120 int rom_check_and_register_reset(void) 1121 { 1122 hwaddr addr = 0; 1123 MemoryRegionSection section; 1124 Rom *rom; 1125 AddressSpace *as = NULL; 1126 1127 QTAILQ_FOREACH(rom, &roms, next) { 1128 if (rom->fw_file) { 1129 continue; 1130 } 1131 if (!rom->mr) { 1132 if ((addr > rom->addr) && (as == rom->as)) { 1133 fprintf(stderr, "rom: requested regions overlap " 1134 "(rom %s. free=0x" TARGET_FMT_plx 1135 ", addr=0x" TARGET_FMT_plx ")\n", 1136 rom->name, addr, rom->addr); 1137 return -1; 1138 } 1139 addr = rom->addr; 1140 addr += rom->romsize; 1141 as = rom->as; 1142 } 1143 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1144 rom->addr, 1); 1145 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1146 memory_region_unref(section.mr); 1147 } 1148 qemu_register_reset(rom_reset, NULL); 1149 roms_loaded = 1; 1150 return 0; 1151 } 1152 1153 void rom_set_fw(FWCfgState *f) 1154 { 1155 fw_cfg = f; 1156 } 1157 1158 void rom_set_order_override(int order) 1159 { 1160 if (!fw_cfg) 1161 return; 1162 fw_cfg_set_order_override(fw_cfg, order); 1163 } 1164 1165 void rom_reset_order_override(void) 1166 { 1167 if (!fw_cfg) 1168 return; 1169 fw_cfg_reset_order_override(fw_cfg); 1170 } 1171 1172 void rom_transaction_begin(void) 1173 { 1174 Rom *rom; 1175 1176 /* Ignore ROMs added without the transaction API */ 1177 QTAILQ_FOREACH(rom, &roms, next) { 1178 rom->committed = true; 1179 } 1180 } 1181 1182 void rom_transaction_end(bool commit) 1183 { 1184 Rom *rom; 1185 Rom *tmp; 1186 1187 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1188 if (rom->committed) { 1189 continue; 1190 } 1191 if (commit) { 1192 rom->committed = true; 1193 } else { 1194 QTAILQ_REMOVE(&roms, rom, next); 1195 rom_free(rom); 1196 } 1197 } 1198 } 1199 1200 static Rom *find_rom(hwaddr addr, size_t size) 1201 { 1202 Rom *rom; 1203 1204 QTAILQ_FOREACH(rom, &roms, next) { 1205 if (rom->fw_file) { 1206 continue; 1207 } 1208 if (rom->mr) { 1209 continue; 1210 } 1211 if (rom->addr > addr) { 1212 continue; 1213 } 1214 if (rom->addr + rom->romsize < addr + size) { 1215 continue; 1216 } 1217 return rom; 1218 } 1219 return NULL; 1220 } 1221 1222 /* 1223 * Copies memory from registered ROMs to dest. Any memory that is contained in 1224 * a ROM between addr and addr + size is copied. Note that this can involve 1225 * multiple ROMs, which need not start at addr and need not end at addr + size. 1226 */ 1227 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1228 { 1229 hwaddr end = addr + size; 1230 uint8_t *s, *d = dest; 1231 size_t l = 0; 1232 Rom *rom; 1233 1234 QTAILQ_FOREACH(rom, &roms, next) { 1235 if (rom->fw_file) { 1236 continue; 1237 } 1238 if (rom->mr) { 1239 continue; 1240 } 1241 if (rom->addr + rom->romsize < addr) { 1242 continue; 1243 } 1244 if (rom->addr > end) { 1245 break; 1246 } 1247 1248 d = dest + (rom->addr - addr); 1249 s = rom->data; 1250 l = rom->datasize; 1251 1252 if ((d + l) > (dest + size)) { 1253 l = dest - d; 1254 } 1255 1256 if (l > 0) { 1257 memcpy(d, s, l); 1258 } 1259 1260 if (rom->romsize > rom->datasize) { 1261 /* If datasize is less than romsize, it means that we didn't 1262 * allocate all the ROM because the trailing data are only zeros. 1263 */ 1264 1265 d += l; 1266 l = rom->romsize - rom->datasize; 1267 1268 if ((d + l) > (dest + size)) { 1269 /* Rom size doesn't fit in the destination area. Adjust to avoid 1270 * overflow. 1271 */ 1272 l = dest - d; 1273 } 1274 1275 if (l > 0) { 1276 memset(d, 0x0, l); 1277 } 1278 } 1279 } 1280 1281 return (d + l) - dest; 1282 } 1283 1284 void *rom_ptr(hwaddr addr, size_t size) 1285 { 1286 Rom *rom; 1287 1288 rom = find_rom(addr, size); 1289 if (!rom || !rom->data) 1290 return NULL; 1291 return rom->data + (addr - rom->addr); 1292 } 1293 1294 void hmp_info_roms(Monitor *mon, const QDict *qdict) 1295 { 1296 Rom *rom; 1297 1298 QTAILQ_FOREACH(rom, &roms, next) { 1299 if (rom->mr) { 1300 monitor_printf(mon, "%s" 1301 " size=0x%06zx name=\"%s\"\n", 1302 memory_region_name(rom->mr), 1303 rom->romsize, 1304 rom->name); 1305 } else if (!rom->fw_file) { 1306 monitor_printf(mon, "addr=" TARGET_FMT_plx 1307 " size=0x%06zx mem=%s name=\"%s\"\n", 1308 rom->addr, rom->romsize, 1309 rom->isrom ? "rom" : "ram", 1310 rom->name); 1311 } else { 1312 monitor_printf(mon, "fw=%s/%s" 1313 " size=0x%06zx name=\"%s\"\n", 1314 rom->fw_dir, 1315 rom->fw_file, 1316 rom->romsize, 1317 rom->name); 1318 } 1319 } 1320 } 1321 1322 typedef enum HexRecord HexRecord; 1323 enum HexRecord { 1324 DATA_RECORD = 0, 1325 EOF_RECORD, 1326 EXT_SEG_ADDR_RECORD, 1327 START_SEG_ADDR_RECORD, 1328 EXT_LINEAR_ADDR_RECORD, 1329 START_LINEAR_ADDR_RECORD, 1330 }; 1331 1332 /* Each record contains a 16-bit address which is combined with the upper 16 1333 * bits of the implicit "next address" to form a 32-bit address. 1334 */ 1335 #define NEXT_ADDR_MASK 0xffff0000 1336 1337 #define DATA_FIELD_MAX_LEN 0xff 1338 #define LEN_EXCEPT_DATA 0x5 1339 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1340 * sizeof(checksum) */ 1341 typedef struct { 1342 uint8_t byte_count; 1343 uint16_t address; 1344 uint8_t record_type; 1345 uint8_t data[DATA_FIELD_MAX_LEN]; 1346 uint8_t checksum; 1347 } HexLine; 1348 1349 /* return 0 or -1 if error */ 1350 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1351 uint32_t *index, const bool in_process) 1352 { 1353 /* +-------+---------------+-------+---------------------+--------+ 1354 * | byte | |record | | | 1355 * | count | address | type | data |checksum| 1356 * +-------+---------------+-------+---------------------+--------+ 1357 * ^ ^ ^ ^ ^ ^ 1358 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1359 */ 1360 uint8_t value = 0; 1361 uint32_t idx = *index; 1362 /* ignore space */ 1363 if (g_ascii_isspace(c)) { 1364 return true; 1365 } 1366 if (!g_ascii_isxdigit(c) || !in_process) { 1367 return false; 1368 } 1369 value = g_ascii_xdigit_value(c); 1370 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1371 if (idx < 2) { 1372 line->byte_count |= value; 1373 } else if (2 <= idx && idx < 6) { 1374 line->address <<= 4; 1375 line->address += g_ascii_xdigit_value(c); 1376 } else if (6 <= idx && idx < 8) { 1377 line->record_type |= value; 1378 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1379 line->data[(idx - 8) >> 1] |= value; 1380 } else if (8 + 2 * line->byte_count <= idx && 1381 idx < 10 + 2 * line->byte_count) { 1382 line->checksum |= value; 1383 } else { 1384 return false; 1385 } 1386 *our_checksum += value; 1387 ++(*index); 1388 return true; 1389 } 1390 1391 typedef struct { 1392 const char *filename; 1393 HexLine line; 1394 uint8_t *bin_buf; 1395 hwaddr *start_addr; 1396 int total_size; 1397 uint32_t next_address_to_write; 1398 uint32_t current_address; 1399 uint32_t current_rom_index; 1400 uint32_t rom_start_address; 1401 AddressSpace *as; 1402 } HexParser; 1403 1404 /* return size or -1 if error */ 1405 static int handle_record_type(HexParser *parser) 1406 { 1407 HexLine *line = &(parser->line); 1408 switch (line->record_type) { 1409 case DATA_RECORD: 1410 parser->current_address = 1411 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1412 /* verify this is a contiguous block of memory */ 1413 if (parser->current_address != parser->next_address_to_write) { 1414 if (parser->current_rom_index != 0) { 1415 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1416 parser->current_rom_index, 1417 parser->rom_start_address, parser->as); 1418 } 1419 parser->rom_start_address = parser->current_address; 1420 parser->current_rom_index = 0; 1421 } 1422 1423 /* copy from line buffer to output bin_buf */ 1424 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1425 line->byte_count); 1426 parser->current_rom_index += line->byte_count; 1427 parser->total_size += line->byte_count; 1428 /* save next address to write */ 1429 parser->next_address_to_write = 1430 parser->current_address + line->byte_count; 1431 break; 1432 1433 case EOF_RECORD: 1434 if (parser->current_rom_index != 0) { 1435 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1436 parser->current_rom_index, 1437 parser->rom_start_address, parser->as); 1438 } 1439 return parser->total_size; 1440 case EXT_SEG_ADDR_RECORD: 1441 case EXT_LINEAR_ADDR_RECORD: 1442 if (line->byte_count != 2 && line->address != 0) { 1443 return -1; 1444 } 1445 1446 if (parser->current_rom_index != 0) { 1447 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1448 parser->current_rom_index, 1449 parser->rom_start_address, parser->as); 1450 } 1451 1452 /* save next address to write, 1453 * in case of non-contiguous block of memory */ 1454 parser->next_address_to_write = (line->data[0] << 12) | 1455 (line->data[1] << 4); 1456 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1457 parser->next_address_to_write <<= 12; 1458 } 1459 1460 parser->rom_start_address = parser->next_address_to_write; 1461 parser->current_rom_index = 0; 1462 break; 1463 1464 case START_SEG_ADDR_RECORD: 1465 if (line->byte_count != 4 && line->address != 0) { 1466 return -1; 1467 } 1468 1469 /* x86 16-bit CS:IP segmented addressing */ 1470 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1471 ((line->data[2] << 8) | line->data[3]); 1472 break; 1473 1474 case START_LINEAR_ADDR_RECORD: 1475 if (line->byte_count != 4 && line->address != 0) { 1476 return -1; 1477 } 1478 1479 *(parser->start_addr) = ldl_be_p(line->data); 1480 break; 1481 1482 default: 1483 return -1; 1484 } 1485 1486 return parser->total_size; 1487 } 1488 1489 /* return size or -1 if error */ 1490 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1491 size_t hex_blob_size, AddressSpace *as) 1492 { 1493 bool in_process = false; /* avoid re-enter and 1494 * check whether record begin with ':' */ 1495 uint8_t *end = hex_blob + hex_blob_size; 1496 uint8_t our_checksum = 0; 1497 uint32_t record_index = 0; 1498 HexParser parser = { 1499 .filename = filename, 1500 .bin_buf = g_malloc(hex_blob_size), 1501 .start_addr = addr, 1502 .as = as, 1503 }; 1504 1505 rom_transaction_begin(); 1506 1507 for (; hex_blob < end; ++hex_blob) { 1508 switch (*hex_blob) { 1509 case '\r': 1510 case '\n': 1511 if (!in_process) { 1512 break; 1513 } 1514 1515 in_process = false; 1516 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1517 record_index || 1518 our_checksum != 0) { 1519 parser.total_size = -1; 1520 goto out; 1521 } 1522 1523 if (handle_record_type(&parser) == -1) { 1524 parser.total_size = -1; 1525 goto out; 1526 } 1527 break; 1528 1529 /* start of a new record. */ 1530 case ':': 1531 memset(&parser.line, 0, sizeof(HexLine)); 1532 in_process = true; 1533 record_index = 0; 1534 break; 1535 1536 /* decoding lines */ 1537 default: 1538 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1539 &record_index, in_process)) { 1540 parser.total_size = -1; 1541 goto out; 1542 } 1543 break; 1544 } 1545 } 1546 1547 out: 1548 g_free(parser.bin_buf); 1549 rom_transaction_end(parser.total_size != -1); 1550 return parser.total_size; 1551 } 1552 1553 /* return size or -1 if error */ 1554 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as) 1555 { 1556 gsize hex_blob_size; 1557 gchar *hex_blob; 1558 int total_size = 0; 1559 1560 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1561 return -1; 1562 } 1563 1564 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1565 hex_blob_size, as); 1566 1567 g_free(hex_blob); 1568 return total_size; 1569 } 1570