1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qemu-common.h" 47 #include "qapi/error.h" 48 #include "hw/hw.h" 49 #include "disas/disas.h" 50 #include "migration/vmstate.h" 51 #include "monitor/monitor.h" 52 #include "sysemu/reset.h" 53 #include "sysemu/sysemu.h" 54 #include "uboot_image.h" 55 #include "hw/loader.h" 56 #include "hw/nvram/fw_cfg.h" 57 #include "exec/memory.h" 58 #include "exec/address-spaces.h" 59 #include "hw/boards.h" 60 #include "qemu/cutils.h" 61 62 #include <zlib.h> 63 64 static int roms_loaded; 65 66 /* return the size or -1 if error */ 67 int64_t get_image_size(const char *filename) 68 { 69 int fd; 70 int64_t size; 71 fd = open(filename, O_RDONLY | O_BINARY); 72 if (fd < 0) 73 return -1; 74 size = lseek(fd, 0, SEEK_END); 75 close(fd); 76 return size; 77 } 78 79 /* return the size or -1 if error */ 80 ssize_t load_image_size(const char *filename, void *addr, size_t size) 81 { 82 int fd; 83 ssize_t actsize, l = 0; 84 85 fd = open(filename, O_RDONLY | O_BINARY); 86 if (fd < 0) { 87 return -1; 88 } 89 90 while ((actsize = read(fd, addr + l, size - l)) > 0) { 91 l += actsize; 92 } 93 94 close(fd); 95 96 return actsize < 0 ? -1 : l; 97 } 98 99 /* read()-like version */ 100 ssize_t read_targphys(const char *name, 101 int fd, hwaddr dst_addr, size_t nbytes) 102 { 103 uint8_t *buf; 104 ssize_t did; 105 106 buf = g_malloc(nbytes); 107 did = read(fd, buf, nbytes); 108 if (did > 0) 109 rom_add_blob_fixed("read", buf, did, dst_addr); 110 g_free(buf); 111 return did; 112 } 113 114 int load_image_targphys(const char *filename, 115 hwaddr addr, uint64_t max_sz) 116 { 117 return load_image_targphys_as(filename, addr, max_sz, NULL); 118 } 119 120 /* return the size or -1 if error */ 121 int load_image_targphys_as(const char *filename, 122 hwaddr addr, uint64_t max_sz, AddressSpace *as) 123 { 124 int size; 125 126 size = get_image_size(filename); 127 if (size < 0 || size > max_sz) { 128 return -1; 129 } 130 if (size > 0) { 131 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 132 return -1; 133 } 134 } 135 return size; 136 } 137 138 int load_image_mr(const char *filename, MemoryRegion *mr) 139 { 140 int size; 141 142 if (!memory_access_is_direct(mr, false)) { 143 /* Can only load an image into RAM or ROM */ 144 return -1; 145 } 146 147 size = get_image_size(filename); 148 149 if (size < 0 || size > memory_region_size(mr)) { 150 return -1; 151 } 152 if (size > 0) { 153 if (rom_add_file_mr(filename, mr, -1) < 0) { 154 return -1; 155 } 156 } 157 return size; 158 } 159 160 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 161 const char *source) 162 { 163 const char *nulp; 164 char *ptr; 165 166 if (buf_size <= 0) return; 167 nulp = memchr(source, 0, buf_size); 168 if (nulp) { 169 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 170 } else { 171 rom_add_blob_fixed(name, source, buf_size, dest); 172 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 173 *ptr = 0; 174 } 175 } 176 177 /* A.OUT loader */ 178 179 struct exec 180 { 181 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 182 uint32_t a_text; /* length of text, in bytes */ 183 uint32_t a_data; /* length of data, in bytes */ 184 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 185 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 186 uint32_t a_entry; /* start address */ 187 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 188 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 189 }; 190 191 static void bswap_ahdr(struct exec *e) 192 { 193 bswap32s(&e->a_info); 194 bswap32s(&e->a_text); 195 bswap32s(&e->a_data); 196 bswap32s(&e->a_bss); 197 bswap32s(&e->a_syms); 198 bswap32s(&e->a_entry); 199 bswap32s(&e->a_trsize); 200 bswap32s(&e->a_drsize); 201 } 202 203 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 204 #define OMAGIC 0407 205 #define NMAGIC 0410 206 #define ZMAGIC 0413 207 #define QMAGIC 0314 208 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 209 #define N_TXTOFF(x) \ 210 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 211 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 212 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 213 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 214 215 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 216 217 #define N_DATADDR(x, target_page_size) \ 218 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 219 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 220 221 222 int load_aout(const char *filename, hwaddr addr, int max_sz, 223 int bswap_needed, hwaddr target_page_size) 224 { 225 int fd; 226 ssize_t size, ret; 227 struct exec e; 228 uint32_t magic; 229 230 fd = open(filename, O_RDONLY | O_BINARY); 231 if (fd < 0) 232 return -1; 233 234 size = read(fd, &e, sizeof(e)); 235 if (size < 0) 236 goto fail; 237 238 if (bswap_needed) { 239 bswap_ahdr(&e); 240 } 241 242 magic = N_MAGIC(e); 243 switch (magic) { 244 case ZMAGIC: 245 case QMAGIC: 246 case OMAGIC: 247 if (e.a_text + e.a_data > max_sz) 248 goto fail; 249 lseek(fd, N_TXTOFF(e), SEEK_SET); 250 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 251 if (size < 0) 252 goto fail; 253 break; 254 case NMAGIC: 255 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 256 goto fail; 257 lseek(fd, N_TXTOFF(e), SEEK_SET); 258 size = read_targphys(filename, fd, addr, e.a_text); 259 if (size < 0) 260 goto fail; 261 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 262 e.a_data); 263 if (ret < 0) 264 goto fail; 265 size += ret; 266 break; 267 default: 268 goto fail; 269 } 270 close(fd); 271 return size; 272 fail: 273 close(fd); 274 return -1; 275 } 276 277 /* ELF loader */ 278 279 static void *load_at(int fd, off_t offset, size_t size) 280 { 281 void *ptr; 282 if (lseek(fd, offset, SEEK_SET) < 0) 283 return NULL; 284 ptr = g_malloc(size); 285 if (read(fd, ptr, size) != size) { 286 g_free(ptr); 287 return NULL; 288 } 289 return ptr; 290 } 291 292 #ifdef ELF_CLASS 293 #undef ELF_CLASS 294 #endif 295 296 #define ELF_CLASS ELFCLASS32 297 #include "elf.h" 298 299 #define SZ 32 300 #define elf_word uint32_t 301 #define elf_sword int32_t 302 #define bswapSZs bswap32s 303 #include "hw/elf_ops.h" 304 305 #undef elfhdr 306 #undef elf_phdr 307 #undef elf_shdr 308 #undef elf_sym 309 #undef elf_rela 310 #undef elf_note 311 #undef elf_word 312 #undef elf_sword 313 #undef bswapSZs 314 #undef SZ 315 #define elfhdr elf64_hdr 316 #define elf_phdr elf64_phdr 317 #define elf_note elf64_note 318 #define elf_shdr elf64_shdr 319 #define elf_sym elf64_sym 320 #define elf_rela elf64_rela 321 #define elf_word uint64_t 322 #define elf_sword int64_t 323 #define bswapSZs bswap64s 324 #define SZ 64 325 #include "hw/elf_ops.h" 326 327 const char *load_elf_strerror(int error) 328 { 329 switch (error) { 330 case 0: 331 return "No error"; 332 case ELF_LOAD_FAILED: 333 return "Failed to load ELF"; 334 case ELF_LOAD_NOT_ELF: 335 return "The image is not ELF"; 336 case ELF_LOAD_WRONG_ARCH: 337 return "The image is from incompatible architecture"; 338 case ELF_LOAD_WRONG_ENDIAN: 339 return "The image has incorrect endianness"; 340 default: 341 return "Unknown error"; 342 } 343 } 344 345 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 346 { 347 int fd; 348 uint8_t e_ident_local[EI_NIDENT]; 349 uint8_t *e_ident; 350 size_t hdr_size, off; 351 bool is64l; 352 353 if (!hdr) { 354 hdr = e_ident_local; 355 } 356 e_ident = hdr; 357 358 fd = open(filename, O_RDONLY | O_BINARY); 359 if (fd < 0) { 360 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 361 return; 362 } 363 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 364 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 365 goto fail; 366 } 367 if (e_ident[0] != ELFMAG0 || 368 e_ident[1] != ELFMAG1 || 369 e_ident[2] != ELFMAG2 || 370 e_ident[3] != ELFMAG3) { 371 error_setg(errp, "Bad ELF magic"); 372 goto fail; 373 } 374 375 is64l = e_ident[EI_CLASS] == ELFCLASS64; 376 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 377 if (is64) { 378 *is64 = is64l; 379 } 380 381 off = EI_NIDENT; 382 while (hdr != e_ident_local && off < hdr_size) { 383 size_t br = read(fd, hdr + off, hdr_size - off); 384 switch (br) { 385 case 0: 386 error_setg(errp, "File too short: %s", filename); 387 goto fail; 388 case -1: 389 error_setg_errno(errp, errno, "Failed to read file: %s", 390 filename); 391 goto fail; 392 } 393 off += br; 394 } 395 396 fail: 397 close(fd); 398 } 399 400 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 401 int load_elf(const char *filename, 402 uint64_t (*elf_note_fn)(void *, void *, bool), 403 uint64_t (*translate_fn)(void *, uint64_t), 404 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 405 uint64_t *highaddr, int big_endian, int elf_machine, 406 int clear_lsb, int data_swab) 407 { 408 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 409 pentry, lowaddr, highaddr, big_endian, elf_machine, 410 clear_lsb, data_swab, NULL); 411 } 412 413 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 414 int load_elf_as(const char *filename, 415 uint64_t (*elf_note_fn)(void *, void *, bool), 416 uint64_t (*translate_fn)(void *, uint64_t), 417 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 418 uint64_t *highaddr, int big_endian, int elf_machine, 419 int clear_lsb, int data_swab, AddressSpace *as) 420 { 421 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque, 422 pentry, lowaddr, highaddr, big_endian, elf_machine, 423 clear_lsb, data_swab, as, true); 424 } 425 426 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 427 int load_elf_ram(const char *filename, 428 uint64_t (*elf_note_fn)(void *, void *, bool), 429 uint64_t (*translate_fn)(void *, uint64_t), 430 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 431 uint64_t *highaddr, int big_endian, int elf_machine, 432 int clear_lsb, int data_swab, AddressSpace *as, 433 bool load_rom) 434 { 435 return load_elf_ram_sym(filename, elf_note_fn, 436 translate_fn, translate_opaque, 437 pentry, lowaddr, highaddr, big_endian, 438 elf_machine, clear_lsb, data_swab, as, 439 load_rom, NULL); 440 } 441 442 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 443 int load_elf_ram_sym(const char *filename, 444 uint64_t (*elf_note_fn)(void *, void *, bool), 445 uint64_t (*translate_fn)(void *, uint64_t), 446 void *translate_opaque, uint64_t *pentry, 447 uint64_t *lowaddr, uint64_t *highaddr, int big_endian, 448 int elf_machine, int clear_lsb, int data_swab, 449 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 450 { 451 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; 452 uint8_t e_ident[EI_NIDENT]; 453 454 fd = open(filename, O_RDONLY | O_BINARY); 455 if (fd < 0) { 456 perror(filename); 457 return -1; 458 } 459 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 460 goto fail; 461 if (e_ident[0] != ELFMAG0 || 462 e_ident[1] != ELFMAG1 || 463 e_ident[2] != ELFMAG2 || 464 e_ident[3] != ELFMAG3) { 465 ret = ELF_LOAD_NOT_ELF; 466 goto fail; 467 } 468 #ifdef HOST_WORDS_BIGENDIAN 469 data_order = ELFDATA2MSB; 470 #else 471 data_order = ELFDATA2LSB; 472 #endif 473 must_swab = data_order != e_ident[EI_DATA]; 474 if (big_endian) { 475 target_data_order = ELFDATA2MSB; 476 } else { 477 target_data_order = ELFDATA2LSB; 478 } 479 480 if (target_data_order != e_ident[EI_DATA]) { 481 ret = ELF_LOAD_WRONG_ENDIAN; 482 goto fail; 483 } 484 485 lseek(fd, 0, SEEK_SET); 486 if (e_ident[EI_CLASS] == ELFCLASS64) { 487 ret = load_elf64(filename, fd, elf_note_fn, 488 translate_fn, translate_opaque, must_swab, 489 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 490 data_swab, as, load_rom, sym_cb); 491 } else { 492 ret = load_elf32(filename, fd, elf_note_fn, 493 translate_fn, translate_opaque, must_swab, 494 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 495 data_swab, as, load_rom, sym_cb); 496 } 497 498 fail: 499 close(fd); 500 return ret; 501 } 502 503 static void bswap_uboot_header(uboot_image_header_t *hdr) 504 { 505 #ifndef HOST_WORDS_BIGENDIAN 506 bswap32s(&hdr->ih_magic); 507 bswap32s(&hdr->ih_hcrc); 508 bswap32s(&hdr->ih_time); 509 bswap32s(&hdr->ih_size); 510 bswap32s(&hdr->ih_load); 511 bswap32s(&hdr->ih_ep); 512 bswap32s(&hdr->ih_dcrc); 513 #endif 514 } 515 516 517 #define ZALLOC_ALIGNMENT 16 518 519 static void *zalloc(void *x, unsigned items, unsigned size) 520 { 521 void *p; 522 523 size *= items; 524 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 525 526 p = g_malloc(size); 527 528 return (p); 529 } 530 531 static void zfree(void *x, void *addr) 532 { 533 g_free(addr); 534 } 535 536 537 #define HEAD_CRC 2 538 #define EXTRA_FIELD 4 539 #define ORIG_NAME 8 540 #define COMMENT 0x10 541 #define RESERVED 0xe0 542 543 #define DEFLATED 8 544 545 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 546 { 547 z_stream s; 548 ssize_t dstbytes; 549 int r, i, flags; 550 551 /* skip header */ 552 i = 10; 553 flags = src[3]; 554 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 555 puts ("Error: Bad gzipped data\n"); 556 return -1; 557 } 558 if ((flags & EXTRA_FIELD) != 0) 559 i = 12 + src[10] + (src[11] << 8); 560 if ((flags & ORIG_NAME) != 0) 561 while (src[i++] != 0) 562 ; 563 if ((flags & COMMENT) != 0) 564 while (src[i++] != 0) 565 ; 566 if ((flags & HEAD_CRC) != 0) 567 i += 2; 568 if (i >= srclen) { 569 puts ("Error: gunzip out of data in header\n"); 570 return -1; 571 } 572 573 s.zalloc = zalloc; 574 s.zfree = zfree; 575 576 r = inflateInit2(&s, -MAX_WBITS); 577 if (r != Z_OK) { 578 printf ("Error: inflateInit2() returned %d\n", r); 579 return (-1); 580 } 581 s.next_in = src + i; 582 s.avail_in = srclen - i; 583 s.next_out = dst; 584 s.avail_out = dstlen; 585 r = inflate(&s, Z_FINISH); 586 if (r != Z_OK && r != Z_STREAM_END) { 587 printf ("Error: inflate() returned %d\n", r); 588 return -1; 589 } 590 dstbytes = s.next_out - (unsigned char *) dst; 591 inflateEnd(&s); 592 593 return dstbytes; 594 } 595 596 /* Load a U-Boot image. */ 597 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 598 int *is_linux, uint8_t image_type, 599 uint64_t (*translate_fn)(void *, uint64_t), 600 void *translate_opaque, AddressSpace *as) 601 { 602 int fd; 603 int size; 604 hwaddr address; 605 uboot_image_header_t h; 606 uboot_image_header_t *hdr = &h; 607 uint8_t *data = NULL; 608 int ret = -1; 609 int do_uncompress = 0; 610 611 fd = open(filename, O_RDONLY | O_BINARY); 612 if (fd < 0) 613 return -1; 614 615 size = read(fd, hdr, sizeof(uboot_image_header_t)); 616 if (size < sizeof(uboot_image_header_t)) { 617 goto out; 618 } 619 620 bswap_uboot_header(hdr); 621 622 if (hdr->ih_magic != IH_MAGIC) 623 goto out; 624 625 if (hdr->ih_type != image_type) { 626 if (!(image_type == IH_TYPE_KERNEL && 627 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 628 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 629 image_type); 630 goto out; 631 } 632 } 633 634 /* TODO: Implement other image types. */ 635 switch (hdr->ih_type) { 636 case IH_TYPE_KERNEL_NOLOAD: 637 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 638 fprintf(stderr, "this image format (kernel_noload) cannot be " 639 "loaded on this machine type"); 640 goto out; 641 } 642 643 hdr->ih_load = *loadaddr + sizeof(*hdr); 644 hdr->ih_ep += hdr->ih_load; 645 /* fall through */ 646 case IH_TYPE_KERNEL: 647 address = hdr->ih_load; 648 if (translate_fn) { 649 address = translate_fn(translate_opaque, address); 650 } 651 if (loadaddr) { 652 *loadaddr = hdr->ih_load; 653 } 654 655 switch (hdr->ih_comp) { 656 case IH_COMP_NONE: 657 break; 658 case IH_COMP_GZIP: 659 do_uncompress = 1; 660 break; 661 default: 662 fprintf(stderr, 663 "Unable to load u-boot images with compression type %d\n", 664 hdr->ih_comp); 665 goto out; 666 } 667 668 if (ep) { 669 *ep = hdr->ih_ep; 670 } 671 672 /* TODO: Check CPU type. */ 673 if (is_linux) { 674 if (hdr->ih_os == IH_OS_LINUX) { 675 *is_linux = 1; 676 } else { 677 *is_linux = 0; 678 } 679 } 680 681 break; 682 case IH_TYPE_RAMDISK: 683 address = *loadaddr; 684 break; 685 default: 686 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 687 goto out; 688 } 689 690 data = g_malloc(hdr->ih_size); 691 692 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 693 fprintf(stderr, "Error reading file\n"); 694 goto out; 695 } 696 697 if (do_uncompress) { 698 uint8_t *compressed_data; 699 size_t max_bytes; 700 ssize_t bytes; 701 702 compressed_data = data; 703 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 704 data = g_malloc(max_bytes); 705 706 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 707 g_free(compressed_data); 708 if (bytes < 0) { 709 fprintf(stderr, "Unable to decompress gzipped image!\n"); 710 goto out; 711 } 712 hdr->ih_size = bytes; 713 } 714 715 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 716 717 ret = hdr->ih_size; 718 719 out: 720 g_free(data); 721 close(fd); 722 return ret; 723 } 724 725 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 726 int *is_linux, 727 uint64_t (*translate_fn)(void *, uint64_t), 728 void *translate_opaque) 729 { 730 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 731 translate_fn, translate_opaque, NULL); 732 } 733 734 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 735 int *is_linux, 736 uint64_t (*translate_fn)(void *, uint64_t), 737 void *translate_opaque, AddressSpace *as) 738 { 739 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 740 translate_fn, translate_opaque, as); 741 } 742 743 /* Load a ramdisk. */ 744 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 745 { 746 return load_ramdisk_as(filename, addr, max_sz, NULL); 747 } 748 749 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 750 AddressSpace *as) 751 { 752 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 753 NULL, NULL, as); 754 } 755 756 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 757 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 758 uint8_t **buffer) 759 { 760 uint8_t *compressed_data = NULL; 761 uint8_t *data = NULL; 762 gsize len; 763 ssize_t bytes; 764 int ret = -1; 765 766 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 767 NULL)) { 768 goto out; 769 } 770 771 /* Is it a gzip-compressed file? */ 772 if (len < 2 || 773 compressed_data[0] != 0x1f || 774 compressed_data[1] != 0x8b) { 775 goto out; 776 } 777 778 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 779 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 780 } 781 782 data = g_malloc(max_sz); 783 bytes = gunzip(data, max_sz, compressed_data, len); 784 if (bytes < 0) { 785 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 786 filename); 787 goto out; 788 } 789 790 /* trim to actual size and return to caller */ 791 *buffer = g_realloc(data, bytes); 792 ret = bytes; 793 /* ownership has been transferred to caller */ 794 data = NULL; 795 796 out: 797 g_free(compressed_data); 798 g_free(data); 799 return ret; 800 } 801 802 /* Load a gzip-compressed kernel. */ 803 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 804 { 805 int bytes; 806 uint8_t *data; 807 808 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 809 if (bytes != -1) { 810 rom_add_blob_fixed(filename, data, bytes, addr); 811 g_free(data); 812 } 813 return bytes; 814 } 815 816 /* 817 * Functions for reboot-persistent memory regions. 818 * - used for vga bios and option roms. 819 * - also linux kernel (-kernel / -initrd). 820 */ 821 822 typedef struct Rom Rom; 823 824 struct Rom { 825 char *name; 826 char *path; 827 828 /* datasize is the amount of memory allocated in "data". If datasize is less 829 * than romsize, it means that the area from datasize to romsize is filled 830 * with zeros. 831 */ 832 size_t romsize; 833 size_t datasize; 834 835 uint8_t *data; 836 MemoryRegion *mr; 837 AddressSpace *as; 838 int isrom; 839 char *fw_dir; 840 char *fw_file; 841 GMappedFile *mapped_file; 842 843 bool committed; 844 845 hwaddr addr; 846 QTAILQ_ENTRY(Rom) next; 847 }; 848 849 static FWCfgState *fw_cfg; 850 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 851 852 /* 853 * rom->data can be heap-allocated or memory-mapped (e.g. when added with 854 * rom_add_elf_program()) 855 */ 856 static void rom_free_data(Rom *rom) 857 { 858 if (rom->mapped_file) { 859 g_mapped_file_unref(rom->mapped_file); 860 rom->mapped_file = NULL; 861 } else { 862 g_free(rom->data); 863 } 864 865 rom->data = NULL; 866 } 867 868 static void rom_free(Rom *rom) 869 { 870 rom_free_data(rom); 871 g_free(rom->path); 872 g_free(rom->name); 873 g_free(rom->fw_dir); 874 g_free(rom->fw_file); 875 g_free(rom); 876 } 877 878 static inline bool rom_order_compare(Rom *rom, Rom *item) 879 { 880 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 881 (rom->as == item->as && rom->addr >= item->addr); 882 } 883 884 static void rom_insert(Rom *rom) 885 { 886 Rom *item; 887 888 if (roms_loaded) { 889 hw_error ("ROM images must be loaded at startup\n"); 890 } 891 892 /* The user didn't specify an address space, this is the default */ 893 if (!rom->as) { 894 rom->as = &address_space_memory; 895 } 896 897 rom->committed = false; 898 899 /* List is ordered by load address in the same address space */ 900 QTAILQ_FOREACH(item, &roms, next) { 901 if (rom_order_compare(rom, item)) { 902 continue; 903 } 904 QTAILQ_INSERT_BEFORE(item, rom, next); 905 return; 906 } 907 QTAILQ_INSERT_TAIL(&roms, rom, next); 908 } 909 910 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 911 { 912 if (fw_cfg) { 913 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 914 } 915 } 916 917 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 918 { 919 void *data; 920 921 rom->mr = g_malloc(sizeof(*rom->mr)); 922 memory_region_init_resizeable_ram(rom->mr, owner, name, 923 rom->datasize, rom->romsize, 924 fw_cfg_resized, 925 &error_fatal); 926 memory_region_set_readonly(rom->mr, ro); 927 vmstate_register_ram_global(rom->mr); 928 929 data = memory_region_get_ram_ptr(rom->mr); 930 memcpy(data, rom->data, rom->datasize); 931 932 return data; 933 } 934 935 int rom_add_file(const char *file, const char *fw_dir, 936 hwaddr addr, int32_t bootindex, 937 bool option_rom, MemoryRegion *mr, 938 AddressSpace *as) 939 { 940 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 941 Rom *rom; 942 int rc, fd = -1; 943 char devpath[100]; 944 945 if (as && mr) { 946 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 947 "not valid when loading a rom\n"); 948 /* We haven't allocated anything so we don't need any cleanup */ 949 return -1; 950 } 951 952 rom = g_malloc0(sizeof(*rom)); 953 rom->name = g_strdup(file); 954 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 955 rom->as = as; 956 if (rom->path == NULL) { 957 rom->path = g_strdup(file); 958 } 959 960 fd = open(rom->path, O_RDONLY | O_BINARY); 961 if (fd == -1) { 962 fprintf(stderr, "Could not open option rom '%s': %s\n", 963 rom->path, strerror(errno)); 964 goto err; 965 } 966 967 if (fw_dir) { 968 rom->fw_dir = g_strdup(fw_dir); 969 rom->fw_file = g_strdup(file); 970 } 971 rom->addr = addr; 972 rom->romsize = lseek(fd, 0, SEEK_END); 973 if (rom->romsize == -1) { 974 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 975 rom->name, strerror(errno)); 976 goto err; 977 } 978 979 rom->datasize = rom->romsize; 980 rom->data = g_malloc0(rom->datasize); 981 lseek(fd, 0, SEEK_SET); 982 rc = read(fd, rom->data, rom->datasize); 983 if (rc != rom->datasize) { 984 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 985 rom->name, rc, rom->datasize); 986 goto err; 987 } 988 close(fd); 989 rom_insert(rom); 990 if (rom->fw_file && fw_cfg) { 991 const char *basename; 992 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 993 void *data; 994 995 basename = strrchr(rom->fw_file, '/'); 996 if (basename) { 997 basename++; 998 } else { 999 basename = rom->fw_file; 1000 } 1001 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 1002 basename); 1003 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1004 1005 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 1006 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 1007 } else { 1008 data = rom->data; 1009 } 1010 1011 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 1012 } else { 1013 if (mr) { 1014 rom->mr = mr; 1015 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 1016 } else { 1017 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 1018 } 1019 } 1020 1021 add_boot_device_path(bootindex, NULL, devpath); 1022 return 0; 1023 1024 err: 1025 if (fd != -1) 1026 close(fd); 1027 1028 rom_free(rom); 1029 return -1; 1030 } 1031 1032 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1033 size_t max_len, hwaddr addr, const char *fw_file_name, 1034 FWCfgCallback fw_callback, void *callback_opaque, 1035 AddressSpace *as, bool read_only) 1036 { 1037 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1038 Rom *rom; 1039 MemoryRegion *mr = NULL; 1040 1041 rom = g_malloc0(sizeof(*rom)); 1042 rom->name = g_strdup(name); 1043 rom->as = as; 1044 rom->addr = addr; 1045 rom->romsize = max_len ? max_len : len; 1046 rom->datasize = len; 1047 g_assert(rom->romsize >= rom->datasize); 1048 rom->data = g_malloc0(rom->datasize); 1049 memcpy(rom->data, blob, len); 1050 rom_insert(rom); 1051 if (fw_file_name && fw_cfg) { 1052 char devpath[100]; 1053 void *data; 1054 1055 if (read_only) { 1056 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1057 } else { 1058 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1059 } 1060 1061 if (mc->rom_file_has_mr) { 1062 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1063 mr = rom->mr; 1064 } else { 1065 data = rom->data; 1066 } 1067 1068 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1069 fw_callback, NULL, callback_opaque, 1070 data, rom->datasize, read_only); 1071 } 1072 return mr; 1073 } 1074 1075 /* This function is specific for elf program because we don't need to allocate 1076 * all the rom. We just allocate the first part and the rest is just zeros. This 1077 * is why romsize and datasize are different. Also, this function takes its own 1078 * reference to "mapped_file", so we don't have to allocate and copy the buffer. 1079 */ 1080 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, 1081 size_t datasize, size_t romsize, hwaddr addr, 1082 AddressSpace *as) 1083 { 1084 Rom *rom; 1085 1086 rom = g_malloc0(sizeof(*rom)); 1087 rom->name = g_strdup(name); 1088 rom->addr = addr; 1089 rom->datasize = datasize; 1090 rom->romsize = romsize; 1091 rom->data = data; 1092 rom->as = as; 1093 1094 if (mapped_file && data) { 1095 g_mapped_file_ref(mapped_file); 1096 rom->mapped_file = mapped_file; 1097 } 1098 1099 rom_insert(rom); 1100 return 0; 1101 } 1102 1103 int rom_add_vga(const char *file) 1104 { 1105 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1106 } 1107 1108 int rom_add_option(const char *file, int32_t bootindex) 1109 { 1110 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1111 } 1112 1113 static void rom_reset(void *unused) 1114 { 1115 Rom *rom; 1116 1117 QTAILQ_FOREACH(rom, &roms, next) { 1118 if (rom->fw_file) { 1119 continue; 1120 } 1121 if (rom->data == NULL) { 1122 continue; 1123 } 1124 if (rom->mr) { 1125 void *host = memory_region_get_ram_ptr(rom->mr); 1126 memcpy(host, rom->data, rom->datasize); 1127 } else { 1128 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1129 rom->data, rom->datasize); 1130 } 1131 if (rom->isrom) { 1132 /* rom needs to be written only once */ 1133 rom_free_data(rom); 1134 } 1135 /* 1136 * The rom loader is really on the same level as firmware in the guest 1137 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1138 * that the instruction cache for that new region is clear, so that the 1139 * CPU definitely fetches its instructions from the just written data. 1140 */ 1141 cpu_flush_icache_range(rom->addr, rom->datasize); 1142 } 1143 } 1144 1145 int rom_check_and_register_reset(void) 1146 { 1147 hwaddr addr = 0; 1148 MemoryRegionSection section; 1149 Rom *rom; 1150 AddressSpace *as = NULL; 1151 1152 QTAILQ_FOREACH(rom, &roms, next) { 1153 if (rom->fw_file) { 1154 continue; 1155 } 1156 if (!rom->mr) { 1157 if ((addr > rom->addr) && (as == rom->as)) { 1158 fprintf(stderr, "rom: requested regions overlap " 1159 "(rom %s. free=0x" TARGET_FMT_plx 1160 ", addr=0x" TARGET_FMT_plx ")\n", 1161 rom->name, addr, rom->addr); 1162 return -1; 1163 } 1164 addr = rom->addr; 1165 addr += rom->romsize; 1166 as = rom->as; 1167 } 1168 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1169 rom->addr, 1); 1170 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1171 memory_region_unref(section.mr); 1172 } 1173 qemu_register_reset(rom_reset, NULL); 1174 roms_loaded = 1; 1175 return 0; 1176 } 1177 1178 void rom_set_fw(FWCfgState *f) 1179 { 1180 fw_cfg = f; 1181 } 1182 1183 void rom_set_order_override(int order) 1184 { 1185 if (!fw_cfg) 1186 return; 1187 fw_cfg_set_order_override(fw_cfg, order); 1188 } 1189 1190 void rom_reset_order_override(void) 1191 { 1192 if (!fw_cfg) 1193 return; 1194 fw_cfg_reset_order_override(fw_cfg); 1195 } 1196 1197 void rom_transaction_begin(void) 1198 { 1199 Rom *rom; 1200 1201 /* Ignore ROMs added without the transaction API */ 1202 QTAILQ_FOREACH(rom, &roms, next) { 1203 rom->committed = true; 1204 } 1205 } 1206 1207 void rom_transaction_end(bool commit) 1208 { 1209 Rom *rom; 1210 Rom *tmp; 1211 1212 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1213 if (rom->committed) { 1214 continue; 1215 } 1216 if (commit) { 1217 rom->committed = true; 1218 } else { 1219 QTAILQ_REMOVE(&roms, rom, next); 1220 rom_free(rom); 1221 } 1222 } 1223 } 1224 1225 static Rom *find_rom(hwaddr addr, size_t size) 1226 { 1227 Rom *rom; 1228 1229 QTAILQ_FOREACH(rom, &roms, next) { 1230 if (rom->fw_file) { 1231 continue; 1232 } 1233 if (rom->mr) { 1234 continue; 1235 } 1236 if (rom->addr > addr) { 1237 continue; 1238 } 1239 if (rom->addr + rom->romsize < addr + size) { 1240 continue; 1241 } 1242 return rom; 1243 } 1244 return NULL; 1245 } 1246 1247 /* 1248 * Copies memory from registered ROMs to dest. Any memory that is contained in 1249 * a ROM between addr and addr + size is copied. Note that this can involve 1250 * multiple ROMs, which need not start at addr and need not end at addr + size. 1251 */ 1252 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1253 { 1254 hwaddr end = addr + size; 1255 uint8_t *s, *d = dest; 1256 size_t l = 0; 1257 Rom *rom; 1258 1259 QTAILQ_FOREACH(rom, &roms, next) { 1260 if (rom->fw_file) { 1261 continue; 1262 } 1263 if (rom->mr) { 1264 continue; 1265 } 1266 if (rom->addr + rom->romsize < addr) { 1267 continue; 1268 } 1269 if (rom->addr > end) { 1270 break; 1271 } 1272 1273 d = dest + (rom->addr - addr); 1274 s = rom->data; 1275 l = rom->datasize; 1276 1277 if ((d + l) > (dest + size)) { 1278 l = dest - d; 1279 } 1280 1281 if (l > 0) { 1282 memcpy(d, s, l); 1283 } 1284 1285 if (rom->romsize > rom->datasize) { 1286 /* If datasize is less than romsize, it means that we didn't 1287 * allocate all the ROM because the trailing data are only zeros. 1288 */ 1289 1290 d += l; 1291 l = rom->romsize - rom->datasize; 1292 1293 if ((d + l) > (dest + size)) { 1294 /* Rom size doesn't fit in the destination area. Adjust to avoid 1295 * overflow. 1296 */ 1297 l = dest - d; 1298 } 1299 1300 if (l > 0) { 1301 memset(d, 0x0, l); 1302 } 1303 } 1304 } 1305 1306 return (d + l) - dest; 1307 } 1308 1309 void *rom_ptr(hwaddr addr, size_t size) 1310 { 1311 Rom *rom; 1312 1313 rom = find_rom(addr, size); 1314 if (!rom || !rom->data) 1315 return NULL; 1316 return rom->data + (addr - rom->addr); 1317 } 1318 1319 void hmp_info_roms(Monitor *mon, const QDict *qdict) 1320 { 1321 Rom *rom; 1322 1323 QTAILQ_FOREACH(rom, &roms, next) { 1324 if (rom->mr) { 1325 monitor_printf(mon, "%s" 1326 " size=0x%06zx name=\"%s\"\n", 1327 memory_region_name(rom->mr), 1328 rom->romsize, 1329 rom->name); 1330 } else if (!rom->fw_file) { 1331 monitor_printf(mon, "addr=" TARGET_FMT_plx 1332 " size=0x%06zx mem=%s name=\"%s\"\n", 1333 rom->addr, rom->romsize, 1334 rom->isrom ? "rom" : "ram", 1335 rom->name); 1336 } else { 1337 monitor_printf(mon, "fw=%s/%s" 1338 " size=0x%06zx name=\"%s\"\n", 1339 rom->fw_dir, 1340 rom->fw_file, 1341 rom->romsize, 1342 rom->name); 1343 } 1344 } 1345 } 1346 1347 typedef enum HexRecord HexRecord; 1348 enum HexRecord { 1349 DATA_RECORD = 0, 1350 EOF_RECORD, 1351 EXT_SEG_ADDR_RECORD, 1352 START_SEG_ADDR_RECORD, 1353 EXT_LINEAR_ADDR_RECORD, 1354 START_LINEAR_ADDR_RECORD, 1355 }; 1356 1357 /* Each record contains a 16-bit address which is combined with the upper 16 1358 * bits of the implicit "next address" to form a 32-bit address. 1359 */ 1360 #define NEXT_ADDR_MASK 0xffff0000 1361 1362 #define DATA_FIELD_MAX_LEN 0xff 1363 #define LEN_EXCEPT_DATA 0x5 1364 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1365 * sizeof(checksum) */ 1366 typedef struct { 1367 uint8_t byte_count; 1368 uint16_t address; 1369 uint8_t record_type; 1370 uint8_t data[DATA_FIELD_MAX_LEN]; 1371 uint8_t checksum; 1372 } HexLine; 1373 1374 /* return 0 or -1 if error */ 1375 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1376 uint32_t *index, const bool in_process) 1377 { 1378 /* +-------+---------------+-------+---------------------+--------+ 1379 * | byte | |record | | | 1380 * | count | address | type | data |checksum| 1381 * +-------+---------------+-------+---------------------+--------+ 1382 * ^ ^ ^ ^ ^ ^ 1383 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1384 */ 1385 uint8_t value = 0; 1386 uint32_t idx = *index; 1387 /* ignore space */ 1388 if (g_ascii_isspace(c)) { 1389 return true; 1390 } 1391 if (!g_ascii_isxdigit(c) || !in_process) { 1392 return false; 1393 } 1394 value = g_ascii_xdigit_value(c); 1395 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1396 if (idx < 2) { 1397 line->byte_count |= value; 1398 } else if (2 <= idx && idx < 6) { 1399 line->address <<= 4; 1400 line->address += g_ascii_xdigit_value(c); 1401 } else if (6 <= idx && idx < 8) { 1402 line->record_type |= value; 1403 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1404 line->data[(idx - 8) >> 1] |= value; 1405 } else if (8 + 2 * line->byte_count <= idx && 1406 idx < 10 + 2 * line->byte_count) { 1407 line->checksum |= value; 1408 } else { 1409 return false; 1410 } 1411 *our_checksum += value; 1412 ++(*index); 1413 return true; 1414 } 1415 1416 typedef struct { 1417 const char *filename; 1418 HexLine line; 1419 uint8_t *bin_buf; 1420 hwaddr *start_addr; 1421 int total_size; 1422 uint32_t next_address_to_write; 1423 uint32_t current_address; 1424 uint32_t current_rom_index; 1425 uint32_t rom_start_address; 1426 AddressSpace *as; 1427 } HexParser; 1428 1429 /* return size or -1 if error */ 1430 static int handle_record_type(HexParser *parser) 1431 { 1432 HexLine *line = &(parser->line); 1433 switch (line->record_type) { 1434 case DATA_RECORD: 1435 parser->current_address = 1436 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1437 /* verify this is a contiguous block of memory */ 1438 if (parser->current_address != parser->next_address_to_write) { 1439 if (parser->current_rom_index != 0) { 1440 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1441 parser->current_rom_index, 1442 parser->rom_start_address, parser->as); 1443 } 1444 parser->rom_start_address = parser->current_address; 1445 parser->current_rom_index = 0; 1446 } 1447 1448 /* copy from line buffer to output bin_buf */ 1449 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1450 line->byte_count); 1451 parser->current_rom_index += line->byte_count; 1452 parser->total_size += line->byte_count; 1453 /* save next address to write */ 1454 parser->next_address_to_write = 1455 parser->current_address + line->byte_count; 1456 break; 1457 1458 case EOF_RECORD: 1459 if (parser->current_rom_index != 0) { 1460 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1461 parser->current_rom_index, 1462 parser->rom_start_address, parser->as); 1463 } 1464 return parser->total_size; 1465 case EXT_SEG_ADDR_RECORD: 1466 case EXT_LINEAR_ADDR_RECORD: 1467 if (line->byte_count != 2 && line->address != 0) { 1468 return -1; 1469 } 1470 1471 if (parser->current_rom_index != 0) { 1472 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1473 parser->current_rom_index, 1474 parser->rom_start_address, parser->as); 1475 } 1476 1477 /* save next address to write, 1478 * in case of non-contiguous block of memory */ 1479 parser->next_address_to_write = (line->data[0] << 12) | 1480 (line->data[1] << 4); 1481 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1482 parser->next_address_to_write <<= 12; 1483 } 1484 1485 parser->rom_start_address = parser->next_address_to_write; 1486 parser->current_rom_index = 0; 1487 break; 1488 1489 case START_SEG_ADDR_RECORD: 1490 if (line->byte_count != 4 && line->address != 0) { 1491 return -1; 1492 } 1493 1494 /* x86 16-bit CS:IP segmented addressing */ 1495 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1496 ((line->data[2] << 8) | line->data[3]); 1497 break; 1498 1499 case START_LINEAR_ADDR_RECORD: 1500 if (line->byte_count != 4 && line->address != 0) { 1501 return -1; 1502 } 1503 1504 *(parser->start_addr) = ldl_be_p(line->data); 1505 break; 1506 1507 default: 1508 return -1; 1509 } 1510 1511 return parser->total_size; 1512 } 1513 1514 /* return size or -1 if error */ 1515 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1516 size_t hex_blob_size, AddressSpace *as) 1517 { 1518 bool in_process = false; /* avoid re-enter and 1519 * check whether record begin with ':' */ 1520 uint8_t *end = hex_blob + hex_blob_size; 1521 uint8_t our_checksum = 0; 1522 uint32_t record_index = 0; 1523 HexParser parser = { 1524 .filename = filename, 1525 .bin_buf = g_malloc(hex_blob_size), 1526 .start_addr = addr, 1527 .as = as, 1528 }; 1529 1530 rom_transaction_begin(); 1531 1532 for (; hex_blob < end; ++hex_blob) { 1533 switch (*hex_blob) { 1534 case '\r': 1535 case '\n': 1536 if (!in_process) { 1537 break; 1538 } 1539 1540 in_process = false; 1541 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1542 record_index || 1543 our_checksum != 0) { 1544 parser.total_size = -1; 1545 goto out; 1546 } 1547 1548 if (handle_record_type(&parser) == -1) { 1549 parser.total_size = -1; 1550 goto out; 1551 } 1552 break; 1553 1554 /* start of a new record. */ 1555 case ':': 1556 memset(&parser.line, 0, sizeof(HexLine)); 1557 in_process = true; 1558 record_index = 0; 1559 break; 1560 1561 /* decoding lines */ 1562 default: 1563 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1564 &record_index, in_process)) { 1565 parser.total_size = -1; 1566 goto out; 1567 } 1568 break; 1569 } 1570 } 1571 1572 out: 1573 g_free(parser.bin_buf); 1574 rom_transaction_end(parser.total_size != -1); 1575 return parser.total_size; 1576 } 1577 1578 /* return size or -1 if error */ 1579 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as) 1580 { 1581 gsize hex_blob_size; 1582 gchar *hex_blob; 1583 int total_size = 0; 1584 1585 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1586 return -1; 1587 } 1588 1589 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1590 hex_blob_size, as); 1591 1592 g_free(hex_blob); 1593 return total_size; 1594 } 1595