1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qemu/datadir.h" 47 #include "qemu/error-report.h" 48 #include "qapi/error.h" 49 #include "qapi/qapi-commands-machine.h" 50 #include "qapi/type-helpers.h" 51 #include "trace.h" 52 #include "hw/hw.h" 53 #include "disas/disas.h" 54 #include "migration/vmstate.h" 55 #include "monitor/monitor.h" 56 #include "sysemu/reset.h" 57 #include "sysemu/sysemu.h" 58 #include "uboot_image.h" 59 #include "hw/loader.h" 60 #include "hw/nvram/fw_cfg.h" 61 #include "exec/memory.h" 62 #include "hw/boards.h" 63 #include "qemu/cutils.h" 64 #include "sysemu/runstate.h" 65 #include "tcg/debuginfo.h" 66 67 #include <zlib.h> 68 69 static int roms_loaded; 70 71 /* return the size or -1 if error */ 72 int64_t get_image_size(const char *filename) 73 { 74 int fd; 75 int64_t size; 76 fd = open(filename, O_RDONLY | O_BINARY); 77 if (fd < 0) 78 return -1; 79 size = lseek(fd, 0, SEEK_END); 80 close(fd); 81 return size; 82 } 83 84 /* return the size or -1 if error */ 85 ssize_t load_image_size(const char *filename, void *addr, size_t size) 86 { 87 int fd; 88 ssize_t actsize, l = 0; 89 90 fd = open(filename, O_RDONLY | O_BINARY); 91 if (fd < 0) { 92 return -1; 93 } 94 95 while ((actsize = read(fd, addr + l, size - l)) > 0) { 96 l += actsize; 97 } 98 99 close(fd); 100 101 return actsize < 0 ? -1 : l; 102 } 103 104 /* read()-like version */ 105 ssize_t read_targphys(const char *name, 106 int fd, hwaddr dst_addr, size_t nbytes) 107 { 108 uint8_t *buf; 109 ssize_t did; 110 111 buf = g_malloc(nbytes); 112 did = read(fd, buf, nbytes); 113 if (did > 0) 114 rom_add_blob_fixed("read", buf, did, dst_addr); 115 g_free(buf); 116 return did; 117 } 118 119 ssize_t load_image_targphys(const char *filename, 120 hwaddr addr, uint64_t max_sz) 121 { 122 return load_image_targphys_as(filename, addr, max_sz, NULL); 123 } 124 125 /* return the size or -1 if error */ 126 ssize_t load_image_targphys_as(const char *filename, 127 hwaddr addr, uint64_t max_sz, AddressSpace *as) 128 { 129 ssize_t size; 130 131 size = get_image_size(filename); 132 if (size < 0 || size > max_sz) { 133 return -1; 134 } 135 if (size > 0) { 136 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 137 return -1; 138 } 139 } 140 return size; 141 } 142 143 ssize_t load_image_mr(const char *filename, MemoryRegion *mr) 144 { 145 ssize_t size; 146 147 if (!memory_access_is_direct(mr, false)) { 148 /* Can only load an image into RAM or ROM */ 149 return -1; 150 } 151 152 size = get_image_size(filename); 153 154 if (size < 0 || size > memory_region_size(mr)) { 155 return -1; 156 } 157 if (size > 0) { 158 if (rom_add_file_mr(filename, mr, -1) < 0) { 159 return -1; 160 } 161 } 162 return size; 163 } 164 165 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 166 const char *source) 167 { 168 const char *nulp; 169 char *ptr; 170 171 if (buf_size <= 0) return; 172 nulp = memchr(source, 0, buf_size); 173 if (nulp) { 174 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 175 } else { 176 rom_add_blob_fixed(name, source, buf_size, dest); 177 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 178 *ptr = 0; 179 } 180 } 181 182 /* A.OUT loader */ 183 184 struct exec 185 { 186 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 187 uint32_t a_text; /* length of text, in bytes */ 188 uint32_t a_data; /* length of data, in bytes */ 189 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 190 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 191 uint32_t a_entry; /* start address */ 192 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 193 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 194 }; 195 196 static void bswap_ahdr(struct exec *e) 197 { 198 bswap32s(&e->a_info); 199 bswap32s(&e->a_text); 200 bswap32s(&e->a_data); 201 bswap32s(&e->a_bss); 202 bswap32s(&e->a_syms); 203 bswap32s(&e->a_entry); 204 bswap32s(&e->a_trsize); 205 bswap32s(&e->a_drsize); 206 } 207 208 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 209 #define OMAGIC 0407 210 #define NMAGIC 0410 211 #define ZMAGIC 0413 212 #define QMAGIC 0314 213 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 214 #define N_TXTOFF(x) \ 215 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 216 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 217 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 218 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 219 220 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 221 222 #define N_DATADDR(x, target_page_size) \ 223 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 224 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 225 226 227 ssize_t load_aout(const char *filename, hwaddr addr, int max_sz, 228 int bswap_needed, hwaddr target_page_size) 229 { 230 int fd; 231 ssize_t size, ret; 232 struct exec e; 233 uint32_t magic; 234 235 fd = open(filename, O_RDONLY | O_BINARY); 236 if (fd < 0) 237 return -1; 238 239 size = read(fd, &e, sizeof(e)); 240 if (size < 0) 241 goto fail; 242 243 if (bswap_needed) { 244 bswap_ahdr(&e); 245 } 246 247 magic = N_MAGIC(e); 248 switch (magic) { 249 case ZMAGIC: 250 case QMAGIC: 251 case OMAGIC: 252 if (e.a_text + e.a_data > max_sz) 253 goto fail; 254 lseek(fd, N_TXTOFF(e), SEEK_SET); 255 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 256 if (size < 0) 257 goto fail; 258 break; 259 case NMAGIC: 260 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 261 goto fail; 262 lseek(fd, N_TXTOFF(e), SEEK_SET); 263 size = read_targphys(filename, fd, addr, e.a_text); 264 if (size < 0) 265 goto fail; 266 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 267 e.a_data); 268 if (ret < 0) 269 goto fail; 270 size += ret; 271 break; 272 default: 273 goto fail; 274 } 275 close(fd); 276 return size; 277 fail: 278 close(fd); 279 return -1; 280 } 281 282 /* ELF loader */ 283 284 static void *load_at(int fd, off_t offset, size_t size) 285 { 286 void *ptr; 287 if (lseek(fd, offset, SEEK_SET) < 0) 288 return NULL; 289 ptr = g_malloc(size); 290 if (read(fd, ptr, size) != size) { 291 g_free(ptr); 292 return NULL; 293 } 294 return ptr; 295 } 296 297 #ifdef ELF_CLASS 298 #undef ELF_CLASS 299 #endif 300 301 #define ELF_CLASS ELFCLASS32 302 #include "elf.h" 303 304 #define SZ 32 305 #define elf_word uint32_t 306 #define elf_sword int32_t 307 #define bswapSZs bswap32s 308 #include "hw/elf_ops.h.inc" 309 310 #undef elfhdr 311 #undef elf_phdr 312 #undef elf_shdr 313 #undef elf_sym 314 #undef elf_rela 315 #undef elf_note 316 #undef elf_word 317 #undef elf_sword 318 #undef bswapSZs 319 #undef SZ 320 #define elfhdr elf64_hdr 321 #define elf_phdr elf64_phdr 322 #define elf_note elf64_note 323 #define elf_shdr elf64_shdr 324 #define elf_sym elf64_sym 325 #define elf_rela elf64_rela 326 #define elf_word uint64_t 327 #define elf_sword int64_t 328 #define bswapSZs bswap64s 329 #define SZ 64 330 #include "hw/elf_ops.h.inc" 331 332 const char *load_elf_strerror(ssize_t error) 333 { 334 switch (error) { 335 case 0: 336 return "No error"; 337 case ELF_LOAD_FAILED: 338 return "Failed to load ELF"; 339 case ELF_LOAD_NOT_ELF: 340 return "The image is not ELF"; 341 case ELF_LOAD_WRONG_ARCH: 342 return "The image is from incompatible architecture"; 343 case ELF_LOAD_WRONG_ENDIAN: 344 return "The image has incorrect endianness"; 345 case ELF_LOAD_TOO_BIG: 346 return "The image segments are too big to load"; 347 default: 348 return "Unknown error"; 349 } 350 } 351 352 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 353 { 354 int fd; 355 uint8_t e_ident_local[EI_NIDENT]; 356 uint8_t *e_ident; 357 size_t hdr_size, off; 358 bool is64l; 359 360 if (!hdr) { 361 hdr = e_ident_local; 362 } 363 e_ident = hdr; 364 365 fd = open(filename, O_RDONLY | O_BINARY); 366 if (fd < 0) { 367 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 368 return; 369 } 370 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 371 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 372 goto fail; 373 } 374 if (e_ident[0] != ELFMAG0 || 375 e_ident[1] != ELFMAG1 || 376 e_ident[2] != ELFMAG2 || 377 e_ident[3] != ELFMAG3) { 378 error_setg(errp, "Bad ELF magic"); 379 goto fail; 380 } 381 382 is64l = e_ident[EI_CLASS] == ELFCLASS64; 383 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 384 if (is64) { 385 *is64 = is64l; 386 } 387 388 off = EI_NIDENT; 389 while (hdr != e_ident_local && off < hdr_size) { 390 size_t br = read(fd, hdr + off, hdr_size - off); 391 switch (br) { 392 case 0: 393 error_setg(errp, "File too short: %s", filename); 394 goto fail; 395 case -1: 396 error_setg_errno(errp, errno, "Failed to read file: %s", 397 filename); 398 goto fail; 399 } 400 off += br; 401 } 402 403 fail: 404 close(fd); 405 } 406 407 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 408 ssize_t load_elf(const char *filename, 409 uint64_t (*elf_note_fn)(void *, void *, bool), 410 uint64_t (*translate_fn)(void *, uint64_t), 411 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 412 uint64_t *highaddr, uint32_t *pflags, int big_endian, 413 int elf_machine, int clear_lsb, int data_swab) 414 { 415 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 416 pentry, lowaddr, highaddr, pflags, big_endian, 417 elf_machine, clear_lsb, data_swab, NULL); 418 } 419 420 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 421 ssize_t load_elf_as(const char *filename, 422 uint64_t (*elf_note_fn)(void *, void *, bool), 423 uint64_t (*translate_fn)(void *, uint64_t), 424 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 425 uint64_t *highaddr, uint32_t *pflags, int big_endian, 426 int elf_machine, int clear_lsb, int data_swab, 427 AddressSpace *as) 428 { 429 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque, 430 pentry, lowaddr, highaddr, pflags, big_endian, 431 elf_machine, clear_lsb, data_swab, as, true); 432 } 433 434 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 435 ssize_t load_elf_ram(const char *filename, 436 uint64_t (*elf_note_fn)(void *, void *, bool), 437 uint64_t (*translate_fn)(void *, uint64_t), 438 void *translate_opaque, uint64_t *pentry, 439 uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags, 440 int big_endian, int elf_machine, int clear_lsb, 441 int data_swab, AddressSpace *as, bool load_rom) 442 { 443 return load_elf_ram_sym(filename, elf_note_fn, 444 translate_fn, translate_opaque, 445 pentry, lowaddr, highaddr, pflags, big_endian, 446 elf_machine, clear_lsb, data_swab, as, 447 load_rom, NULL); 448 } 449 450 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 451 ssize_t load_elf_ram_sym(const char *filename, 452 uint64_t (*elf_note_fn)(void *, void *, bool), 453 uint64_t (*translate_fn)(void *, uint64_t), 454 void *translate_opaque, uint64_t *pentry, 455 uint64_t *lowaddr, uint64_t *highaddr, 456 uint32_t *pflags, int big_endian, int elf_machine, 457 int clear_lsb, int data_swab, 458 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 459 { 460 int fd, data_order, target_data_order, must_swab; 461 ssize_t ret = ELF_LOAD_FAILED; 462 uint8_t e_ident[EI_NIDENT]; 463 464 fd = open(filename, O_RDONLY | O_BINARY); 465 if (fd < 0) { 466 perror(filename); 467 return -1; 468 } 469 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 470 goto fail; 471 if (e_ident[0] != ELFMAG0 || 472 e_ident[1] != ELFMAG1 || 473 e_ident[2] != ELFMAG2 || 474 e_ident[3] != ELFMAG3) { 475 ret = ELF_LOAD_NOT_ELF; 476 goto fail; 477 } 478 #if HOST_BIG_ENDIAN 479 data_order = ELFDATA2MSB; 480 #else 481 data_order = ELFDATA2LSB; 482 #endif 483 must_swab = data_order != e_ident[EI_DATA]; 484 if (big_endian) { 485 target_data_order = ELFDATA2MSB; 486 } else { 487 target_data_order = ELFDATA2LSB; 488 } 489 490 if (target_data_order != e_ident[EI_DATA]) { 491 ret = ELF_LOAD_WRONG_ENDIAN; 492 goto fail; 493 } 494 495 lseek(fd, 0, SEEK_SET); 496 if (e_ident[EI_CLASS] == ELFCLASS64) { 497 ret = load_elf64(filename, fd, elf_note_fn, 498 translate_fn, translate_opaque, must_swab, 499 pentry, lowaddr, highaddr, pflags, elf_machine, 500 clear_lsb, data_swab, as, load_rom, sym_cb); 501 } else { 502 ret = load_elf32(filename, fd, elf_note_fn, 503 translate_fn, translate_opaque, must_swab, 504 pentry, lowaddr, highaddr, pflags, elf_machine, 505 clear_lsb, data_swab, as, load_rom, sym_cb); 506 } 507 508 if (ret > 0) { 509 debuginfo_report_elf(filename, fd, 0); 510 } 511 512 fail: 513 close(fd); 514 return ret; 515 } 516 517 static void bswap_uboot_header(uboot_image_header_t *hdr) 518 { 519 #if !HOST_BIG_ENDIAN 520 bswap32s(&hdr->ih_magic); 521 bswap32s(&hdr->ih_hcrc); 522 bswap32s(&hdr->ih_time); 523 bswap32s(&hdr->ih_size); 524 bswap32s(&hdr->ih_load); 525 bswap32s(&hdr->ih_ep); 526 bswap32s(&hdr->ih_dcrc); 527 #endif 528 } 529 530 531 #define ZALLOC_ALIGNMENT 16 532 533 static void *zalloc(void *x, unsigned items, unsigned size) 534 { 535 void *p; 536 537 size *= items; 538 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 539 540 p = g_malloc(size); 541 542 return (p); 543 } 544 545 static void zfree(void *x, void *addr) 546 { 547 g_free(addr); 548 } 549 550 551 #define HEAD_CRC 2 552 #define EXTRA_FIELD 4 553 #define ORIG_NAME 8 554 #define COMMENT 0x10 555 #define RESERVED 0xe0 556 557 #define DEFLATED 8 558 559 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 560 { 561 z_stream s = {}; 562 ssize_t dstbytes; 563 int r, i, flags; 564 565 /* skip header */ 566 i = 10; 567 if (srclen < 4) { 568 goto toosmall; 569 } 570 flags = src[3]; 571 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 572 puts ("Error: Bad gzipped data\n"); 573 return -1; 574 } 575 if ((flags & EXTRA_FIELD) != 0) { 576 if (srclen < 12) { 577 goto toosmall; 578 } 579 i = 12 + src[10] + (src[11] << 8); 580 } 581 if ((flags & ORIG_NAME) != 0) { 582 while (i < srclen && src[i++] != 0) { 583 /* do nothing */ 584 } 585 } 586 if ((flags & COMMENT) != 0) { 587 while (i < srclen && src[i++] != 0) { 588 /* do nothing */ 589 } 590 } 591 if ((flags & HEAD_CRC) != 0) { 592 i += 2; 593 } 594 if (i >= srclen) { 595 goto toosmall; 596 } 597 598 s.zalloc = zalloc; 599 s.zfree = zfree; 600 601 r = inflateInit2(&s, -MAX_WBITS); 602 if (r != Z_OK) { 603 printf ("Error: inflateInit2() returned %d\n", r); 604 return (-1); 605 } 606 s.next_in = src + i; 607 s.avail_in = srclen - i; 608 s.next_out = dst; 609 s.avail_out = dstlen; 610 r = inflate(&s, Z_FINISH); 611 if (r != Z_OK && r != Z_STREAM_END) { 612 printf ("Error: inflate() returned %d\n", r); 613 inflateEnd(&s); 614 return -1; 615 } 616 dstbytes = s.next_out - (unsigned char *) dst; 617 inflateEnd(&s); 618 619 return dstbytes; 620 621 toosmall: 622 puts("Error: gunzip out of data in header\n"); 623 return -1; 624 } 625 626 /* Load a U-Boot image. */ 627 static ssize_t load_uboot_image(const char *filename, hwaddr *ep, 628 hwaddr *loadaddr, int *is_linux, 629 uint8_t image_type, 630 uint64_t (*translate_fn)(void *, uint64_t), 631 void *translate_opaque, AddressSpace *as) 632 { 633 int fd; 634 ssize_t size; 635 hwaddr address; 636 uboot_image_header_t h; 637 uboot_image_header_t *hdr = &h; 638 uint8_t *data = NULL; 639 int ret = -1; 640 int do_uncompress = 0; 641 642 fd = open(filename, O_RDONLY | O_BINARY); 643 if (fd < 0) 644 return -1; 645 646 size = read(fd, hdr, sizeof(uboot_image_header_t)); 647 if (size < sizeof(uboot_image_header_t)) { 648 goto out; 649 } 650 651 bswap_uboot_header(hdr); 652 653 if (hdr->ih_magic != IH_MAGIC) 654 goto out; 655 656 if (hdr->ih_type != image_type) { 657 if (!(image_type == IH_TYPE_KERNEL && 658 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 659 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 660 image_type); 661 goto out; 662 } 663 } 664 665 /* TODO: Implement other image types. */ 666 switch (hdr->ih_type) { 667 case IH_TYPE_KERNEL_NOLOAD: 668 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 669 fprintf(stderr, "this image format (kernel_noload) cannot be " 670 "loaded on this machine type"); 671 goto out; 672 } 673 674 hdr->ih_load = *loadaddr + sizeof(*hdr); 675 hdr->ih_ep += hdr->ih_load; 676 /* fall through */ 677 case IH_TYPE_KERNEL: 678 address = hdr->ih_load; 679 if (translate_fn) { 680 address = translate_fn(translate_opaque, address); 681 } 682 if (loadaddr) { 683 *loadaddr = hdr->ih_load; 684 } 685 686 switch (hdr->ih_comp) { 687 case IH_COMP_NONE: 688 break; 689 case IH_COMP_GZIP: 690 do_uncompress = 1; 691 break; 692 default: 693 fprintf(stderr, 694 "Unable to load u-boot images with compression type %d\n", 695 hdr->ih_comp); 696 goto out; 697 } 698 699 if (ep) { 700 *ep = hdr->ih_ep; 701 } 702 703 /* TODO: Check CPU type. */ 704 if (is_linux) { 705 if (hdr->ih_os == IH_OS_LINUX) { 706 *is_linux = 1; 707 } else if (hdr->ih_os == IH_OS_VXWORKS) { 708 /* 709 * VxWorks 7 uses the same boot interface as the Linux kernel 710 * on Arm (64-bit only), PowerPC and RISC-V architectures. 711 */ 712 switch (hdr->ih_arch) { 713 case IH_ARCH_ARM64: 714 case IH_ARCH_PPC: 715 case IH_ARCH_RISCV: 716 *is_linux = 1; 717 break; 718 default: 719 *is_linux = 0; 720 break; 721 } 722 } else { 723 *is_linux = 0; 724 } 725 } 726 727 break; 728 case IH_TYPE_RAMDISK: 729 address = *loadaddr; 730 break; 731 default: 732 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 733 goto out; 734 } 735 736 data = g_malloc(hdr->ih_size); 737 738 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 739 fprintf(stderr, "Error reading file\n"); 740 goto out; 741 } 742 743 if (do_uncompress) { 744 uint8_t *compressed_data; 745 size_t max_bytes; 746 ssize_t bytes; 747 748 compressed_data = data; 749 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 750 data = g_malloc(max_bytes); 751 752 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 753 g_free(compressed_data); 754 if (bytes < 0) { 755 fprintf(stderr, "Unable to decompress gzipped image!\n"); 756 goto out; 757 } 758 hdr->ih_size = bytes; 759 } 760 761 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 762 763 ret = hdr->ih_size; 764 765 out: 766 g_free(data); 767 close(fd); 768 return ret; 769 } 770 771 ssize_t load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 772 int *is_linux, 773 uint64_t (*translate_fn)(void *, uint64_t), 774 void *translate_opaque) 775 { 776 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 777 translate_fn, translate_opaque, NULL); 778 } 779 780 ssize_t load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 781 int *is_linux, 782 uint64_t (*translate_fn)(void *, uint64_t), 783 void *translate_opaque, AddressSpace *as) 784 { 785 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 786 translate_fn, translate_opaque, as); 787 } 788 789 /* Load a ramdisk. */ 790 ssize_t load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 791 { 792 return load_ramdisk_as(filename, addr, max_sz, NULL); 793 } 794 795 ssize_t load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 796 AddressSpace *as) 797 { 798 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 799 NULL, NULL, as); 800 } 801 802 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 803 ssize_t load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 804 uint8_t **buffer) 805 { 806 uint8_t *compressed_data = NULL; 807 uint8_t *data = NULL; 808 gsize len; 809 ssize_t bytes; 810 int ret = -1; 811 812 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 813 NULL)) { 814 goto out; 815 } 816 817 /* Is it a gzip-compressed file? */ 818 if (len < 2 || 819 compressed_data[0] != 0x1f || 820 compressed_data[1] != 0x8b) { 821 goto out; 822 } 823 824 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 825 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 826 } 827 828 data = g_malloc(max_sz); 829 bytes = gunzip(data, max_sz, compressed_data, len); 830 if (bytes < 0) { 831 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 832 filename); 833 goto out; 834 } 835 836 /* trim to actual size and return to caller */ 837 *buffer = g_realloc(data, bytes); 838 ret = bytes; 839 /* ownership has been transferred to caller */ 840 data = NULL; 841 842 out: 843 g_free(compressed_data); 844 g_free(data); 845 return ret; 846 } 847 848 /* Load a gzip-compressed kernel. */ 849 ssize_t load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 850 { 851 ssize_t bytes; 852 uint8_t *data; 853 854 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 855 if (bytes != -1) { 856 rom_add_blob_fixed(filename, data, bytes, addr); 857 g_free(data); 858 } 859 return bytes; 860 } 861 862 /* The PE/COFF MS-DOS stub magic number */ 863 #define EFI_PE_MSDOS_MAGIC "MZ" 864 865 /* 866 * The Linux header magic number for a EFI PE/COFF 867 * image targeting an unspecified architecture. 868 */ 869 #define EFI_PE_LINUX_MAGIC "\xcd\x23\x82\x81" 870 871 /* 872 * Bootable Linux kernel images may be packaged as EFI zboot images, which are 873 * self-decompressing executables when loaded via EFI. The compressed payload 874 * can also be extracted from the image and decompressed by a non-EFI loader. 875 * 876 * The de facto specification for this format is at the following URL: 877 * 878 * https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/firmware/efi/libstub/zboot-header.S 879 * 880 * This definition is based on Linux upstream commit 29636a5ce87beba. 881 */ 882 struct linux_efi_zboot_header { 883 uint8_t msdos_magic[2]; /* PE/COFF 'MZ' magic number */ 884 uint8_t reserved0[2]; 885 uint8_t zimg[4]; /* "zimg" for Linux EFI zboot images */ 886 uint32_t payload_offset; /* LE offset to compressed payload */ 887 uint32_t payload_size; /* LE size of the compressed payload */ 888 uint8_t reserved1[8]; 889 char compression_type[32]; /* Compression type, NUL terminated */ 890 uint8_t linux_magic[4]; /* Linux header magic */ 891 uint32_t pe_header_offset; /* LE offset to the PE header */ 892 }; 893 894 /* 895 * Check whether *buffer points to a Linux EFI zboot image in memory. 896 * 897 * If it does, attempt to decompress it to a new buffer, and free the old one. 898 * If any of this fails, return an error to the caller. 899 * 900 * If the image is not a Linux EFI zboot image, do nothing and return success. 901 */ 902 ssize_t unpack_efi_zboot_image(uint8_t **buffer, int *size) 903 { 904 const struct linux_efi_zboot_header *header; 905 uint8_t *data = NULL; 906 int ploff, plsize; 907 ssize_t bytes; 908 909 /* ignore if this is too small to be a EFI zboot image */ 910 if (*size < sizeof(*header)) { 911 return 0; 912 } 913 914 header = (struct linux_efi_zboot_header *)*buffer; 915 916 /* ignore if this is not a Linux EFI zboot image */ 917 if (memcmp(&header->msdos_magic, EFI_PE_MSDOS_MAGIC, 2) != 0 || 918 memcmp(&header->zimg, "zimg", 4) != 0 || 919 memcmp(&header->linux_magic, EFI_PE_LINUX_MAGIC, 4) != 0) { 920 return 0; 921 } 922 923 if (strcmp(header->compression_type, "gzip") != 0) { 924 fprintf(stderr, 925 "unable to handle EFI zboot image with \"%.*s\" compression\n", 926 (int)sizeof(header->compression_type) - 1, 927 header->compression_type); 928 return -1; 929 } 930 931 ploff = ldl_le_p(&header->payload_offset); 932 plsize = ldl_le_p(&header->payload_size); 933 934 if (ploff < 0 || plsize < 0 || ploff + plsize > *size) { 935 fprintf(stderr, "unable to handle corrupt EFI zboot image\n"); 936 return -1; 937 } 938 939 data = g_malloc(LOAD_IMAGE_MAX_GUNZIP_BYTES); 940 bytes = gunzip(data, LOAD_IMAGE_MAX_GUNZIP_BYTES, *buffer + ploff, plsize); 941 if (bytes < 0) { 942 fprintf(stderr, "failed to decompress EFI zboot image\n"); 943 g_free(data); 944 return -1; 945 } 946 947 g_free(*buffer); 948 *buffer = g_realloc(data, bytes); 949 *size = bytes; 950 return bytes; 951 } 952 953 /* 954 * Functions for reboot-persistent memory regions. 955 * - used for vga bios and option roms. 956 * - also linux kernel (-kernel / -initrd). 957 */ 958 959 typedef struct Rom Rom; 960 961 struct Rom { 962 char *name; 963 char *path; 964 965 /* datasize is the amount of memory allocated in "data". If datasize is less 966 * than romsize, it means that the area from datasize to romsize is filled 967 * with zeros. 968 */ 969 size_t romsize; 970 size_t datasize; 971 972 uint8_t *data; 973 MemoryRegion *mr; 974 AddressSpace *as; 975 int isrom; 976 char *fw_dir; 977 char *fw_file; 978 GMappedFile *mapped_file; 979 980 bool committed; 981 982 hwaddr addr; 983 QTAILQ_ENTRY(Rom) next; 984 }; 985 986 static FWCfgState *fw_cfg; 987 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 988 989 /* 990 * rom->data can be heap-allocated or memory-mapped (e.g. when added with 991 * rom_add_elf_program()) 992 */ 993 static void rom_free_data(Rom *rom) 994 { 995 if (rom->mapped_file) { 996 g_mapped_file_unref(rom->mapped_file); 997 rom->mapped_file = NULL; 998 } else { 999 g_free(rom->data); 1000 } 1001 1002 rom->data = NULL; 1003 } 1004 1005 static void rom_free(Rom *rom) 1006 { 1007 rom_free_data(rom); 1008 g_free(rom->path); 1009 g_free(rom->name); 1010 g_free(rom->fw_dir); 1011 g_free(rom->fw_file); 1012 g_free(rom); 1013 } 1014 1015 static inline bool rom_order_compare(Rom *rom, Rom *item) 1016 { 1017 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 1018 (rom->as == item->as && rom->addr >= item->addr); 1019 } 1020 1021 static void rom_insert(Rom *rom) 1022 { 1023 Rom *item; 1024 1025 if (roms_loaded) { 1026 hw_error ("ROM images must be loaded at startup\n"); 1027 } 1028 1029 /* The user didn't specify an address space, this is the default */ 1030 if (!rom->as) { 1031 rom->as = &address_space_memory; 1032 } 1033 1034 rom->committed = false; 1035 1036 /* List is ordered by load address in the same address space */ 1037 QTAILQ_FOREACH(item, &roms, next) { 1038 if (rom_order_compare(rom, item)) { 1039 continue; 1040 } 1041 QTAILQ_INSERT_BEFORE(item, rom, next); 1042 return; 1043 } 1044 QTAILQ_INSERT_TAIL(&roms, rom, next); 1045 } 1046 1047 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 1048 { 1049 if (fw_cfg) { 1050 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 1051 } 1052 } 1053 1054 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 1055 { 1056 void *data; 1057 1058 rom->mr = g_malloc(sizeof(*rom->mr)); 1059 memory_region_init_resizeable_ram(rom->mr, owner, name, 1060 rom->datasize, rom->romsize, 1061 fw_cfg_resized, 1062 &error_fatal); 1063 memory_region_set_readonly(rom->mr, ro); 1064 vmstate_register_ram_global(rom->mr); 1065 1066 data = memory_region_get_ram_ptr(rom->mr); 1067 memcpy(data, rom->data, rom->datasize); 1068 1069 return data; 1070 } 1071 1072 ssize_t rom_add_file(const char *file, const char *fw_dir, 1073 hwaddr addr, int32_t bootindex, 1074 bool has_option_rom, MemoryRegion *mr, 1075 AddressSpace *as) 1076 { 1077 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1078 Rom *rom; 1079 gsize size; 1080 g_autoptr(GError) gerr = NULL; 1081 char devpath[100]; 1082 1083 if (as && mr) { 1084 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 1085 "not valid when loading a rom\n"); 1086 /* We haven't allocated anything so we don't need any cleanup */ 1087 return -1; 1088 } 1089 1090 rom = g_malloc0(sizeof(*rom)); 1091 rom->name = g_strdup(file); 1092 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 1093 rom->as = as; 1094 if (rom->path == NULL) { 1095 rom->path = g_strdup(file); 1096 } 1097 1098 if (!g_file_get_contents(rom->path, (gchar **) &rom->data, 1099 &size, &gerr)) { 1100 fprintf(stderr, "rom: file %-20s: error %s\n", 1101 rom->name, gerr->message); 1102 goto err; 1103 } 1104 1105 if (fw_dir) { 1106 rom->fw_dir = g_strdup(fw_dir); 1107 rom->fw_file = g_strdup(file); 1108 } 1109 rom->addr = addr; 1110 rom->romsize = size; 1111 rom->datasize = rom->romsize; 1112 rom_insert(rom); 1113 if (rom->fw_file && fw_cfg) { 1114 const char *basename; 1115 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 1116 void *data; 1117 1118 basename = strrchr(rom->fw_file, '/'); 1119 if (basename) { 1120 basename++; 1121 } else { 1122 basename = rom->fw_file; 1123 } 1124 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 1125 basename); 1126 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1127 1128 if ((!has_option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 1129 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 1130 } else { 1131 data = rom->data; 1132 } 1133 1134 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 1135 } else { 1136 if (mr) { 1137 rom->mr = mr; 1138 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 1139 } else { 1140 snprintf(devpath, sizeof(devpath), "/rom@" HWADDR_FMT_plx, addr); 1141 } 1142 } 1143 1144 add_boot_device_path(bootindex, NULL, devpath); 1145 return 0; 1146 1147 err: 1148 rom_free(rom); 1149 return -1; 1150 } 1151 1152 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1153 size_t max_len, hwaddr addr, const char *fw_file_name, 1154 FWCfgCallback fw_callback, void *callback_opaque, 1155 AddressSpace *as, bool read_only) 1156 { 1157 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1158 Rom *rom; 1159 MemoryRegion *mr = NULL; 1160 1161 rom = g_malloc0(sizeof(*rom)); 1162 rom->name = g_strdup(name); 1163 rom->as = as; 1164 rom->addr = addr; 1165 rom->romsize = max_len ? max_len : len; 1166 rom->datasize = len; 1167 g_assert(rom->romsize >= rom->datasize); 1168 rom->data = g_malloc0(rom->datasize); 1169 memcpy(rom->data, blob, len); 1170 rom_insert(rom); 1171 if (fw_file_name && fw_cfg) { 1172 char devpath[100]; 1173 void *data; 1174 1175 if (read_only) { 1176 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1177 } else { 1178 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1179 } 1180 1181 if (mc->rom_file_has_mr) { 1182 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1183 mr = rom->mr; 1184 } else { 1185 data = rom->data; 1186 } 1187 1188 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1189 fw_callback, NULL, callback_opaque, 1190 data, rom->datasize, read_only); 1191 } 1192 return mr; 1193 } 1194 1195 /* This function is specific for elf program because we don't need to allocate 1196 * all the rom. We just allocate the first part and the rest is just zeros. This 1197 * is why romsize and datasize are different. Also, this function takes its own 1198 * reference to "mapped_file", so we don't have to allocate and copy the buffer. 1199 */ 1200 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, 1201 size_t datasize, size_t romsize, hwaddr addr, 1202 AddressSpace *as) 1203 { 1204 Rom *rom; 1205 1206 rom = g_malloc0(sizeof(*rom)); 1207 rom->name = g_strdup(name); 1208 rom->addr = addr; 1209 rom->datasize = datasize; 1210 rom->romsize = romsize; 1211 rom->data = data; 1212 rom->as = as; 1213 1214 if (mapped_file && data) { 1215 g_mapped_file_ref(mapped_file); 1216 rom->mapped_file = mapped_file; 1217 } 1218 1219 rom_insert(rom); 1220 return 0; 1221 } 1222 1223 ssize_t rom_add_vga(const char *file) 1224 { 1225 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1226 } 1227 1228 ssize_t rom_add_option(const char *file, int32_t bootindex) 1229 { 1230 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1231 } 1232 1233 static void rom_reset(void *unused) 1234 { 1235 Rom *rom; 1236 1237 QTAILQ_FOREACH(rom, &roms, next) { 1238 if (rom->fw_file) { 1239 continue; 1240 } 1241 /* 1242 * We don't need to fill in the RAM with ROM data because we'll fill 1243 * the data in during the next incoming migration in all cases. Note 1244 * that some of those RAMs can actually be modified by the guest. 1245 */ 1246 if (runstate_check(RUN_STATE_INMIGRATE)) { 1247 if (rom->data && rom->isrom) { 1248 /* 1249 * Free it so that a rom_reset after migration doesn't 1250 * overwrite a potentially modified 'rom'. 1251 */ 1252 rom_free_data(rom); 1253 } 1254 continue; 1255 } 1256 1257 if (rom->data == NULL) { 1258 continue; 1259 } 1260 if (rom->mr) { 1261 void *host = memory_region_get_ram_ptr(rom->mr); 1262 memcpy(host, rom->data, rom->datasize); 1263 memset(host + rom->datasize, 0, rom->romsize - rom->datasize); 1264 } else { 1265 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1266 rom->data, rom->datasize); 1267 address_space_set(rom->as, rom->addr + rom->datasize, 0, 1268 rom->romsize - rom->datasize, 1269 MEMTXATTRS_UNSPECIFIED); 1270 } 1271 if (rom->isrom) { 1272 /* rom needs to be written only once */ 1273 rom_free_data(rom); 1274 } 1275 /* 1276 * The rom loader is really on the same level as firmware in the guest 1277 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1278 * that the instruction cache for that new region is clear, so that the 1279 * CPU definitely fetches its instructions from the just written data. 1280 */ 1281 cpu_flush_icache_range(rom->addr, rom->datasize); 1282 1283 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom); 1284 } 1285 } 1286 1287 /* Return true if two consecutive ROMs in the ROM list overlap */ 1288 static bool roms_overlap(Rom *last_rom, Rom *this_rom) 1289 { 1290 if (!last_rom) { 1291 return false; 1292 } 1293 return last_rom->as == this_rom->as && 1294 last_rom->addr + last_rom->romsize > this_rom->addr; 1295 } 1296 1297 static const char *rom_as_name(Rom *rom) 1298 { 1299 const char *name = rom->as ? rom->as->name : NULL; 1300 return name ?: "anonymous"; 1301 } 1302 1303 static void rom_print_overlap_error_header(void) 1304 { 1305 error_report("Some ROM regions are overlapping"); 1306 error_printf( 1307 "These ROM regions might have been loaded by " 1308 "direct user request or by default.\n" 1309 "They could be BIOS/firmware images, a guest kernel, " 1310 "initrd or some other file loaded into guest memory.\n" 1311 "Check whether you intended to load all this guest code, and " 1312 "whether it has been built to load to the correct addresses.\n"); 1313 } 1314 1315 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom) 1316 { 1317 error_printf( 1318 "\nThe following two regions overlap (in the %s address space):\n", 1319 rom_as_name(rom)); 1320 error_printf( 1321 " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n", 1322 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize); 1323 error_printf( 1324 " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n", 1325 rom->name, rom->addr, rom->addr + rom->romsize); 1326 } 1327 1328 int rom_check_and_register_reset(void) 1329 { 1330 MemoryRegionSection section; 1331 Rom *rom, *last_rom = NULL; 1332 bool found_overlap = false; 1333 1334 QTAILQ_FOREACH(rom, &roms, next) { 1335 if (rom->fw_file) { 1336 continue; 1337 } 1338 if (!rom->mr) { 1339 if (roms_overlap(last_rom, rom)) { 1340 if (!found_overlap) { 1341 found_overlap = true; 1342 rom_print_overlap_error_header(); 1343 } 1344 rom_print_one_overlap_error(last_rom, rom); 1345 /* Keep going through the list so we report all overlaps */ 1346 } 1347 last_rom = rom; 1348 } 1349 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1350 rom->addr, 1); 1351 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1352 memory_region_unref(section.mr); 1353 } 1354 if (found_overlap) { 1355 return -1; 1356 } 1357 1358 qemu_register_reset(rom_reset, NULL); 1359 roms_loaded = 1; 1360 return 0; 1361 } 1362 1363 void rom_set_fw(FWCfgState *f) 1364 { 1365 fw_cfg = f; 1366 } 1367 1368 void rom_set_order_override(int order) 1369 { 1370 if (!fw_cfg) 1371 return; 1372 fw_cfg_set_order_override(fw_cfg, order); 1373 } 1374 1375 void rom_reset_order_override(void) 1376 { 1377 if (!fw_cfg) 1378 return; 1379 fw_cfg_reset_order_override(fw_cfg); 1380 } 1381 1382 void rom_transaction_begin(void) 1383 { 1384 Rom *rom; 1385 1386 /* Ignore ROMs added without the transaction API */ 1387 QTAILQ_FOREACH(rom, &roms, next) { 1388 rom->committed = true; 1389 } 1390 } 1391 1392 void rom_transaction_end(bool commit) 1393 { 1394 Rom *rom; 1395 Rom *tmp; 1396 1397 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1398 if (rom->committed) { 1399 continue; 1400 } 1401 if (commit) { 1402 rom->committed = true; 1403 } else { 1404 QTAILQ_REMOVE(&roms, rom, next); 1405 rom_free(rom); 1406 } 1407 } 1408 } 1409 1410 static Rom *find_rom(hwaddr addr, size_t size) 1411 { 1412 Rom *rom; 1413 1414 QTAILQ_FOREACH(rom, &roms, next) { 1415 if (rom->fw_file) { 1416 continue; 1417 } 1418 if (rom->mr) { 1419 continue; 1420 } 1421 if (rom->addr > addr) { 1422 continue; 1423 } 1424 if (rom->addr + rom->romsize < addr + size) { 1425 continue; 1426 } 1427 return rom; 1428 } 1429 return NULL; 1430 } 1431 1432 typedef struct RomSec { 1433 hwaddr base; 1434 int se; /* start/end flag */ 1435 } RomSec; 1436 1437 1438 /* 1439 * Sort into address order. We break ties between rom-startpoints 1440 * and rom-endpoints in favour of the startpoint, by sorting the 0->1 1441 * transition before the 1->0 transition. Either way round would 1442 * work, but this way saves a little work later by avoiding 1443 * dealing with "gaps" of 0 length. 1444 */ 1445 static gint sort_secs(gconstpointer a, gconstpointer b) 1446 { 1447 RomSec *ra = (RomSec *) a; 1448 RomSec *rb = (RomSec *) b; 1449 1450 if (ra->base == rb->base) { 1451 return ra->se - rb->se; 1452 } 1453 return ra->base > rb->base ? 1 : -1; 1454 } 1455 1456 static GList *add_romsec_to_list(GList *secs, hwaddr base, int se) 1457 { 1458 RomSec *cand = g_new(RomSec, 1); 1459 cand->base = base; 1460 cand->se = se; 1461 return g_list_prepend(secs, cand); 1462 } 1463 1464 RomGap rom_find_largest_gap_between(hwaddr base, size_t size) 1465 { 1466 Rom *rom; 1467 RomSec *cand; 1468 RomGap res = {0, 0}; 1469 hwaddr gapstart = base; 1470 GList *it, *secs = NULL; 1471 int count = 0; 1472 1473 QTAILQ_FOREACH(rom, &roms, next) { 1474 /* Ignore blobs being loaded to special places */ 1475 if (rom->mr || rom->fw_file) { 1476 continue; 1477 } 1478 /* ignore anything finishing below base */ 1479 if (rom->addr + rom->romsize <= base) { 1480 continue; 1481 } 1482 /* ignore anything starting above the region */ 1483 if (rom->addr >= base + size) { 1484 continue; 1485 } 1486 1487 /* Save the start and end of each relevant ROM */ 1488 secs = add_romsec_to_list(secs, rom->addr, 1); 1489 1490 if (rom->addr + rom->romsize < base + size) { 1491 secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1); 1492 } 1493 } 1494 1495 /* sentinel */ 1496 secs = add_romsec_to_list(secs, base + size, 1); 1497 1498 secs = g_list_sort(secs, sort_secs); 1499 1500 for (it = g_list_first(secs); it; it = g_list_next(it)) { 1501 cand = (RomSec *) it->data; 1502 if (count == 0 && count + cand->se == 1) { 1503 size_t gap = cand->base - gapstart; 1504 if (gap > res.size) { 1505 res.base = gapstart; 1506 res.size = gap; 1507 } 1508 } else if (count == 1 && count + cand->se == 0) { 1509 gapstart = cand->base; 1510 } 1511 count += cand->se; 1512 } 1513 1514 g_list_free_full(secs, g_free); 1515 return res; 1516 } 1517 1518 /* 1519 * Copies memory from registered ROMs to dest. Any memory that is contained in 1520 * a ROM between addr and addr + size is copied. Note that this can involve 1521 * multiple ROMs, which need not start at addr and need not end at addr + size. 1522 */ 1523 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1524 { 1525 hwaddr end = addr + size; 1526 uint8_t *s, *d = dest; 1527 size_t l = 0; 1528 Rom *rom; 1529 1530 QTAILQ_FOREACH(rom, &roms, next) { 1531 if (rom->fw_file) { 1532 continue; 1533 } 1534 if (rom->mr) { 1535 continue; 1536 } 1537 if (rom->addr + rom->romsize < addr) { 1538 continue; 1539 } 1540 if (rom->addr > end || rom->addr < addr) { 1541 break; 1542 } 1543 1544 d = dest + (rom->addr - addr); 1545 s = rom->data; 1546 l = rom->datasize; 1547 1548 if ((d + l) > (dest + size)) { 1549 l = dest - d; 1550 } 1551 1552 if (l > 0) { 1553 memcpy(d, s, l); 1554 } 1555 1556 if (rom->romsize > rom->datasize) { 1557 /* If datasize is less than romsize, it means that we didn't 1558 * allocate all the ROM because the trailing data are only zeros. 1559 */ 1560 1561 d += l; 1562 l = rom->romsize - rom->datasize; 1563 1564 if ((d + l) > (dest + size)) { 1565 /* Rom size doesn't fit in the destination area. Adjust to avoid 1566 * overflow. 1567 */ 1568 l = dest - d; 1569 } 1570 1571 if (l > 0) { 1572 memset(d, 0x0, l); 1573 } 1574 } 1575 } 1576 1577 return (d + l) - dest; 1578 } 1579 1580 void *rom_ptr(hwaddr addr, size_t size) 1581 { 1582 Rom *rom; 1583 1584 rom = find_rom(addr, size); 1585 if (!rom || !rom->data) 1586 return NULL; 1587 return rom->data + (addr - rom->addr); 1588 } 1589 1590 typedef struct FindRomCBData { 1591 size_t size; /* Amount of data we want from ROM, in bytes */ 1592 MemoryRegion *mr; /* MR at the unaliased guest addr */ 1593 hwaddr xlat; /* Offset of addr within mr */ 1594 void *rom; /* Output: rom data pointer, if found */ 1595 } FindRomCBData; 1596 1597 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr, 1598 hwaddr offset_in_region, void *opaque) 1599 { 1600 FindRomCBData *cbdata = opaque; 1601 hwaddr alias_addr; 1602 1603 if (mr != cbdata->mr) { 1604 return false; 1605 } 1606 1607 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region; 1608 cbdata->rom = rom_ptr(alias_addr, cbdata->size); 1609 if (!cbdata->rom) { 1610 return false; 1611 } 1612 /* Found a match, stop iterating */ 1613 return true; 1614 } 1615 1616 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size) 1617 { 1618 /* 1619 * Find any ROM data for the given guest address range. If there 1620 * is a ROM blob then return a pointer to the host memory 1621 * corresponding to 'addr'; otherwise return NULL. 1622 * 1623 * We look not only for ROM blobs that were loaded directly to 1624 * addr, but also for ROM blobs that were loaded to aliases of 1625 * that memory at other addresses within the AddressSpace. 1626 * 1627 * Note that we do not check @as against the 'as' member in the 1628 * 'struct Rom' returned by rom_ptr(). The Rom::as is the 1629 * AddressSpace which the rom blob should be written to, whereas 1630 * our @as argument is the AddressSpace which we are (effectively) 1631 * reading from, and the same underlying RAM will often be visible 1632 * in multiple AddressSpaces. (A common example is a ROM blob 1633 * written to the 'system' address space but then read back via a 1634 * CPU's cpu->as pointer.) This does mean we might potentially 1635 * return a false-positive match if a ROM blob was loaded into an 1636 * AS which is entirely separate and distinct from the one we're 1637 * querying, but this issue exists also for rom_ptr() and hasn't 1638 * caused any problems in practice. 1639 */ 1640 FlatView *fv; 1641 void *rom; 1642 hwaddr len_unused; 1643 FindRomCBData cbdata = {}; 1644 1645 /* Easy case: there's data at the actual address */ 1646 rom = rom_ptr(addr, size); 1647 if (rom) { 1648 return rom; 1649 } 1650 1651 RCU_READ_LOCK_GUARD(); 1652 1653 fv = address_space_to_flatview(as); 1654 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused, 1655 false, MEMTXATTRS_UNSPECIFIED); 1656 if (!cbdata.mr) { 1657 /* Nothing at this address, so there can't be any aliasing */ 1658 return NULL; 1659 } 1660 cbdata.size = size; 1661 flatview_for_each_range(fv, find_rom_cb, &cbdata); 1662 return cbdata.rom; 1663 } 1664 1665 HumanReadableText *qmp_x_query_roms(Error **errp) 1666 { 1667 Rom *rom; 1668 g_autoptr(GString) buf = g_string_new(""); 1669 1670 QTAILQ_FOREACH(rom, &roms, next) { 1671 if (rom->mr) { 1672 g_string_append_printf(buf, "%s" 1673 " size=0x%06zx name=\"%s\"\n", 1674 memory_region_name(rom->mr), 1675 rom->romsize, 1676 rom->name); 1677 } else if (!rom->fw_file) { 1678 g_string_append_printf(buf, "addr=" HWADDR_FMT_plx 1679 " size=0x%06zx mem=%s name=\"%s\"\n", 1680 rom->addr, rom->romsize, 1681 rom->isrom ? "rom" : "ram", 1682 rom->name); 1683 } else { 1684 g_string_append_printf(buf, "fw=%s/%s" 1685 " size=0x%06zx name=\"%s\"\n", 1686 rom->fw_dir, 1687 rom->fw_file, 1688 rom->romsize, 1689 rom->name); 1690 } 1691 } 1692 1693 return human_readable_text_from_str(buf); 1694 } 1695 1696 typedef enum HexRecord HexRecord; 1697 enum HexRecord { 1698 DATA_RECORD = 0, 1699 EOF_RECORD, 1700 EXT_SEG_ADDR_RECORD, 1701 START_SEG_ADDR_RECORD, 1702 EXT_LINEAR_ADDR_RECORD, 1703 START_LINEAR_ADDR_RECORD, 1704 }; 1705 1706 /* Each record contains a 16-bit address which is combined with the upper 16 1707 * bits of the implicit "next address" to form a 32-bit address. 1708 */ 1709 #define NEXT_ADDR_MASK 0xffff0000 1710 1711 #define DATA_FIELD_MAX_LEN 0xff 1712 #define LEN_EXCEPT_DATA 0x5 1713 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1714 * sizeof(checksum) */ 1715 typedef struct { 1716 uint8_t byte_count; 1717 uint16_t address; 1718 uint8_t record_type; 1719 uint8_t data[DATA_FIELD_MAX_LEN]; 1720 uint8_t checksum; 1721 } HexLine; 1722 1723 /* return 0 or -1 if error */ 1724 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1725 uint32_t *index, const bool in_process) 1726 { 1727 /* +-------+---------------+-------+---------------------+--------+ 1728 * | byte | |record | | | 1729 * | count | address | type | data |checksum| 1730 * +-------+---------------+-------+---------------------+--------+ 1731 * ^ ^ ^ ^ ^ ^ 1732 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1733 */ 1734 uint8_t value = 0; 1735 uint32_t idx = *index; 1736 /* ignore space */ 1737 if (g_ascii_isspace(c)) { 1738 return true; 1739 } 1740 if (!g_ascii_isxdigit(c) || !in_process) { 1741 return false; 1742 } 1743 value = g_ascii_xdigit_value(c); 1744 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1745 if (idx < 2) { 1746 line->byte_count |= value; 1747 } else if (2 <= idx && idx < 6) { 1748 line->address <<= 4; 1749 line->address += g_ascii_xdigit_value(c); 1750 } else if (6 <= idx && idx < 8) { 1751 line->record_type |= value; 1752 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1753 line->data[(idx - 8) >> 1] |= value; 1754 } else if (8 + 2 * line->byte_count <= idx && 1755 idx < 10 + 2 * line->byte_count) { 1756 line->checksum |= value; 1757 } else { 1758 return false; 1759 } 1760 *our_checksum += value; 1761 ++(*index); 1762 return true; 1763 } 1764 1765 typedef struct { 1766 const char *filename; 1767 HexLine line; 1768 uint8_t *bin_buf; 1769 hwaddr *start_addr; 1770 int total_size; 1771 uint32_t next_address_to_write; 1772 uint32_t current_address; 1773 uint32_t current_rom_index; 1774 uint32_t rom_start_address; 1775 AddressSpace *as; 1776 bool complete; 1777 } HexParser; 1778 1779 /* return size or -1 if error */ 1780 static int handle_record_type(HexParser *parser) 1781 { 1782 HexLine *line = &(parser->line); 1783 switch (line->record_type) { 1784 case DATA_RECORD: 1785 parser->current_address = 1786 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1787 /* verify this is a contiguous block of memory */ 1788 if (parser->current_address != parser->next_address_to_write) { 1789 if (parser->current_rom_index != 0) { 1790 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1791 parser->current_rom_index, 1792 parser->rom_start_address, parser->as); 1793 } 1794 parser->rom_start_address = parser->current_address; 1795 parser->current_rom_index = 0; 1796 } 1797 1798 /* copy from line buffer to output bin_buf */ 1799 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1800 line->byte_count); 1801 parser->current_rom_index += line->byte_count; 1802 parser->total_size += line->byte_count; 1803 /* save next address to write */ 1804 parser->next_address_to_write = 1805 parser->current_address + line->byte_count; 1806 break; 1807 1808 case EOF_RECORD: 1809 if (parser->current_rom_index != 0) { 1810 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1811 parser->current_rom_index, 1812 parser->rom_start_address, parser->as); 1813 } 1814 parser->complete = true; 1815 return parser->total_size; 1816 case EXT_SEG_ADDR_RECORD: 1817 case EXT_LINEAR_ADDR_RECORD: 1818 if (line->byte_count != 2 && line->address != 0) { 1819 return -1; 1820 } 1821 1822 if (parser->current_rom_index != 0) { 1823 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1824 parser->current_rom_index, 1825 parser->rom_start_address, parser->as); 1826 } 1827 1828 /* save next address to write, 1829 * in case of non-contiguous block of memory */ 1830 parser->next_address_to_write = (line->data[0] << 12) | 1831 (line->data[1] << 4); 1832 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1833 parser->next_address_to_write <<= 12; 1834 } 1835 1836 parser->rom_start_address = parser->next_address_to_write; 1837 parser->current_rom_index = 0; 1838 break; 1839 1840 case START_SEG_ADDR_RECORD: 1841 if (line->byte_count != 4 && line->address != 0) { 1842 return -1; 1843 } 1844 1845 /* x86 16-bit CS:IP segmented addressing */ 1846 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1847 ((line->data[2] << 8) | line->data[3]); 1848 break; 1849 1850 case START_LINEAR_ADDR_RECORD: 1851 if (line->byte_count != 4 && line->address != 0) { 1852 return -1; 1853 } 1854 1855 *(parser->start_addr) = ldl_be_p(line->data); 1856 break; 1857 1858 default: 1859 return -1; 1860 } 1861 1862 return parser->total_size; 1863 } 1864 1865 /* return size or -1 if error */ 1866 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1867 size_t hex_blob_size, AddressSpace *as) 1868 { 1869 bool in_process = false; /* avoid re-enter and 1870 * check whether record begin with ':' */ 1871 uint8_t *end = hex_blob + hex_blob_size; 1872 uint8_t our_checksum = 0; 1873 uint32_t record_index = 0; 1874 HexParser parser = { 1875 .filename = filename, 1876 .bin_buf = g_malloc(hex_blob_size), 1877 .start_addr = addr, 1878 .as = as, 1879 .complete = false 1880 }; 1881 1882 rom_transaction_begin(); 1883 1884 for (; hex_blob < end && !parser.complete; ++hex_blob) { 1885 switch (*hex_blob) { 1886 case '\r': 1887 case '\n': 1888 if (!in_process) { 1889 break; 1890 } 1891 1892 in_process = false; 1893 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1894 record_index || 1895 our_checksum != 0) { 1896 parser.total_size = -1; 1897 goto out; 1898 } 1899 1900 if (handle_record_type(&parser) == -1) { 1901 parser.total_size = -1; 1902 goto out; 1903 } 1904 break; 1905 1906 /* start of a new record. */ 1907 case ':': 1908 memset(&parser.line, 0, sizeof(HexLine)); 1909 in_process = true; 1910 record_index = 0; 1911 break; 1912 1913 /* decoding lines */ 1914 default: 1915 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1916 &record_index, in_process)) { 1917 parser.total_size = -1; 1918 goto out; 1919 } 1920 break; 1921 } 1922 } 1923 1924 out: 1925 g_free(parser.bin_buf); 1926 rom_transaction_end(parser.total_size != -1); 1927 return parser.total_size; 1928 } 1929 1930 /* return size or -1 if error */ 1931 ssize_t load_targphys_hex_as(const char *filename, hwaddr *entry, 1932 AddressSpace *as) 1933 { 1934 gsize hex_blob_size; 1935 gchar *hex_blob; 1936 ssize_t total_size = 0; 1937 1938 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1939 return -1; 1940 } 1941 1942 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1943 hex_blob_size, as); 1944 1945 g_free(hex_blob); 1946 return total_size; 1947 } 1948