1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qemu/datadir.h" 47 #include "qapi/error.h" 48 #include "qapi/qapi-commands-machine.h" 49 #include "qapi/type-helpers.h" 50 #include "trace.h" 51 #include "hw/hw.h" 52 #include "disas/disas.h" 53 #include "migration/vmstate.h" 54 #include "monitor/monitor.h" 55 #include "sysemu/reset.h" 56 #include "sysemu/sysemu.h" 57 #include "uboot_image.h" 58 #include "hw/loader.h" 59 #include "hw/nvram/fw_cfg.h" 60 #include "exec/memory.h" 61 #include "hw/boards.h" 62 #include "qemu/cutils.h" 63 #include "sysemu/runstate.h" 64 #include "accel/tcg/debuginfo.h" 65 66 #include <zlib.h> 67 68 static int roms_loaded; 69 70 /* return the size or -1 if error */ 71 int64_t get_image_size(const char *filename) 72 { 73 int fd; 74 int64_t size; 75 fd = open(filename, O_RDONLY | O_BINARY); 76 if (fd < 0) 77 return -1; 78 size = lseek(fd, 0, SEEK_END); 79 close(fd); 80 return size; 81 } 82 83 /* return the size or -1 if error */ 84 ssize_t load_image_size(const char *filename, void *addr, size_t size) 85 { 86 int fd; 87 ssize_t actsize, l = 0; 88 89 fd = open(filename, O_RDONLY | O_BINARY); 90 if (fd < 0) { 91 return -1; 92 } 93 94 while ((actsize = read(fd, addr + l, size - l)) > 0) { 95 l += actsize; 96 } 97 98 close(fd); 99 100 return actsize < 0 ? -1 : l; 101 } 102 103 /* read()-like version */ 104 ssize_t read_targphys(const char *name, 105 int fd, hwaddr dst_addr, size_t nbytes) 106 { 107 uint8_t *buf; 108 ssize_t did; 109 110 buf = g_malloc(nbytes); 111 did = read(fd, buf, nbytes); 112 if (did > 0) 113 rom_add_blob_fixed("read", buf, did, dst_addr); 114 g_free(buf); 115 return did; 116 } 117 118 ssize_t load_image_targphys(const char *filename, 119 hwaddr addr, uint64_t max_sz) 120 { 121 return load_image_targphys_as(filename, addr, max_sz, NULL); 122 } 123 124 /* return the size or -1 if error */ 125 ssize_t load_image_targphys_as(const char *filename, 126 hwaddr addr, uint64_t max_sz, AddressSpace *as) 127 { 128 ssize_t size; 129 130 size = get_image_size(filename); 131 if (size < 0 || size > max_sz) { 132 return -1; 133 } 134 if (size > 0) { 135 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 136 return -1; 137 } 138 } 139 return size; 140 } 141 142 ssize_t load_image_mr(const char *filename, MemoryRegion *mr) 143 { 144 ssize_t size; 145 146 if (!memory_access_is_direct(mr, false)) { 147 /* Can only load an image into RAM or ROM */ 148 return -1; 149 } 150 151 size = get_image_size(filename); 152 153 if (size < 0 || size > memory_region_size(mr)) { 154 return -1; 155 } 156 if (size > 0) { 157 if (rom_add_file_mr(filename, mr, -1) < 0) { 158 return -1; 159 } 160 } 161 return size; 162 } 163 164 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 165 const char *source) 166 { 167 const char *nulp; 168 char *ptr; 169 170 if (buf_size <= 0) return; 171 nulp = memchr(source, 0, buf_size); 172 if (nulp) { 173 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 174 } else { 175 rom_add_blob_fixed(name, source, buf_size, dest); 176 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 177 *ptr = 0; 178 } 179 } 180 181 /* A.OUT loader */ 182 183 struct exec 184 { 185 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 186 uint32_t a_text; /* length of text, in bytes */ 187 uint32_t a_data; /* length of data, in bytes */ 188 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 189 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 190 uint32_t a_entry; /* start address */ 191 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 192 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 193 }; 194 195 static void bswap_ahdr(struct exec *e) 196 { 197 bswap32s(&e->a_info); 198 bswap32s(&e->a_text); 199 bswap32s(&e->a_data); 200 bswap32s(&e->a_bss); 201 bswap32s(&e->a_syms); 202 bswap32s(&e->a_entry); 203 bswap32s(&e->a_trsize); 204 bswap32s(&e->a_drsize); 205 } 206 207 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 208 #define OMAGIC 0407 209 #define NMAGIC 0410 210 #define ZMAGIC 0413 211 #define QMAGIC 0314 212 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 213 #define N_TXTOFF(x) \ 214 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 215 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 216 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 217 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 218 219 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 220 221 #define N_DATADDR(x, target_page_size) \ 222 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 223 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 224 225 226 ssize_t load_aout(const char *filename, hwaddr addr, int max_sz, 227 int bswap_needed, hwaddr target_page_size) 228 { 229 int fd; 230 ssize_t size, ret; 231 struct exec e; 232 uint32_t magic; 233 234 fd = open(filename, O_RDONLY | O_BINARY); 235 if (fd < 0) 236 return -1; 237 238 size = read(fd, &e, sizeof(e)); 239 if (size < 0) 240 goto fail; 241 242 if (bswap_needed) { 243 bswap_ahdr(&e); 244 } 245 246 magic = N_MAGIC(e); 247 switch (magic) { 248 case ZMAGIC: 249 case QMAGIC: 250 case OMAGIC: 251 if (e.a_text + e.a_data > max_sz) 252 goto fail; 253 lseek(fd, N_TXTOFF(e), SEEK_SET); 254 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 255 if (size < 0) 256 goto fail; 257 break; 258 case NMAGIC: 259 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 260 goto fail; 261 lseek(fd, N_TXTOFF(e), SEEK_SET); 262 size = read_targphys(filename, fd, addr, e.a_text); 263 if (size < 0) 264 goto fail; 265 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 266 e.a_data); 267 if (ret < 0) 268 goto fail; 269 size += ret; 270 break; 271 default: 272 goto fail; 273 } 274 close(fd); 275 return size; 276 fail: 277 close(fd); 278 return -1; 279 } 280 281 /* ELF loader */ 282 283 static void *load_at(int fd, off_t offset, size_t size) 284 { 285 void *ptr; 286 if (lseek(fd, offset, SEEK_SET) < 0) 287 return NULL; 288 ptr = g_malloc(size); 289 if (read(fd, ptr, size) != size) { 290 g_free(ptr); 291 return NULL; 292 } 293 return ptr; 294 } 295 296 #ifdef ELF_CLASS 297 #undef ELF_CLASS 298 #endif 299 300 #define ELF_CLASS ELFCLASS32 301 #include "elf.h" 302 303 #define SZ 32 304 #define elf_word uint32_t 305 #define elf_sword int32_t 306 #define bswapSZs bswap32s 307 #include "hw/elf_ops.h" 308 309 #undef elfhdr 310 #undef elf_phdr 311 #undef elf_shdr 312 #undef elf_sym 313 #undef elf_rela 314 #undef elf_note 315 #undef elf_word 316 #undef elf_sword 317 #undef bswapSZs 318 #undef SZ 319 #define elfhdr elf64_hdr 320 #define elf_phdr elf64_phdr 321 #define elf_note elf64_note 322 #define elf_shdr elf64_shdr 323 #define elf_sym elf64_sym 324 #define elf_rela elf64_rela 325 #define elf_word uint64_t 326 #define elf_sword int64_t 327 #define bswapSZs bswap64s 328 #define SZ 64 329 #include "hw/elf_ops.h" 330 331 const char *load_elf_strerror(ssize_t error) 332 { 333 switch (error) { 334 case 0: 335 return "No error"; 336 case ELF_LOAD_FAILED: 337 return "Failed to load ELF"; 338 case ELF_LOAD_NOT_ELF: 339 return "The image is not ELF"; 340 case ELF_LOAD_WRONG_ARCH: 341 return "The image is from incompatible architecture"; 342 case ELF_LOAD_WRONG_ENDIAN: 343 return "The image has incorrect endianness"; 344 case ELF_LOAD_TOO_BIG: 345 return "The image segments are too big to load"; 346 default: 347 return "Unknown error"; 348 } 349 } 350 351 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 352 { 353 int fd; 354 uint8_t e_ident_local[EI_NIDENT]; 355 uint8_t *e_ident; 356 size_t hdr_size, off; 357 bool is64l; 358 359 if (!hdr) { 360 hdr = e_ident_local; 361 } 362 e_ident = hdr; 363 364 fd = open(filename, O_RDONLY | O_BINARY); 365 if (fd < 0) { 366 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 367 return; 368 } 369 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 370 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 371 goto fail; 372 } 373 if (e_ident[0] != ELFMAG0 || 374 e_ident[1] != ELFMAG1 || 375 e_ident[2] != ELFMAG2 || 376 e_ident[3] != ELFMAG3) { 377 error_setg(errp, "Bad ELF magic"); 378 goto fail; 379 } 380 381 is64l = e_ident[EI_CLASS] == ELFCLASS64; 382 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 383 if (is64) { 384 *is64 = is64l; 385 } 386 387 off = EI_NIDENT; 388 while (hdr != e_ident_local && off < hdr_size) { 389 size_t br = read(fd, hdr + off, hdr_size - off); 390 switch (br) { 391 case 0: 392 error_setg(errp, "File too short: %s", filename); 393 goto fail; 394 case -1: 395 error_setg_errno(errp, errno, "Failed to read file: %s", 396 filename); 397 goto fail; 398 } 399 off += br; 400 } 401 402 fail: 403 close(fd); 404 } 405 406 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 407 ssize_t load_elf(const char *filename, 408 uint64_t (*elf_note_fn)(void *, void *, bool), 409 uint64_t (*translate_fn)(void *, uint64_t), 410 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 411 uint64_t *highaddr, uint32_t *pflags, int big_endian, 412 int elf_machine, int clear_lsb, int data_swab) 413 { 414 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 415 pentry, lowaddr, highaddr, pflags, big_endian, 416 elf_machine, clear_lsb, data_swab, NULL); 417 } 418 419 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 420 ssize_t load_elf_as(const char *filename, 421 uint64_t (*elf_note_fn)(void *, void *, bool), 422 uint64_t (*translate_fn)(void *, uint64_t), 423 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 424 uint64_t *highaddr, uint32_t *pflags, int big_endian, 425 int elf_machine, int clear_lsb, int data_swab, 426 AddressSpace *as) 427 { 428 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque, 429 pentry, lowaddr, highaddr, pflags, big_endian, 430 elf_machine, clear_lsb, data_swab, as, true); 431 } 432 433 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 434 ssize_t load_elf_ram(const char *filename, 435 uint64_t (*elf_note_fn)(void *, void *, bool), 436 uint64_t (*translate_fn)(void *, uint64_t), 437 void *translate_opaque, uint64_t *pentry, 438 uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags, 439 int big_endian, int elf_machine, int clear_lsb, 440 int data_swab, AddressSpace *as, bool load_rom) 441 { 442 return load_elf_ram_sym(filename, elf_note_fn, 443 translate_fn, translate_opaque, 444 pentry, lowaddr, highaddr, pflags, big_endian, 445 elf_machine, clear_lsb, data_swab, as, 446 load_rom, NULL); 447 } 448 449 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 450 ssize_t load_elf_ram_sym(const char *filename, 451 uint64_t (*elf_note_fn)(void *, void *, bool), 452 uint64_t (*translate_fn)(void *, uint64_t), 453 void *translate_opaque, uint64_t *pentry, 454 uint64_t *lowaddr, uint64_t *highaddr, 455 uint32_t *pflags, int big_endian, int elf_machine, 456 int clear_lsb, int data_swab, 457 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 458 { 459 int fd, data_order, target_data_order, must_swab; 460 ssize_t ret = ELF_LOAD_FAILED; 461 uint8_t e_ident[EI_NIDENT]; 462 463 fd = open(filename, O_RDONLY | O_BINARY); 464 if (fd < 0) { 465 perror(filename); 466 return -1; 467 } 468 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 469 goto fail; 470 if (e_ident[0] != ELFMAG0 || 471 e_ident[1] != ELFMAG1 || 472 e_ident[2] != ELFMAG2 || 473 e_ident[3] != ELFMAG3) { 474 ret = ELF_LOAD_NOT_ELF; 475 goto fail; 476 } 477 #if HOST_BIG_ENDIAN 478 data_order = ELFDATA2MSB; 479 #else 480 data_order = ELFDATA2LSB; 481 #endif 482 must_swab = data_order != e_ident[EI_DATA]; 483 if (big_endian) { 484 target_data_order = ELFDATA2MSB; 485 } else { 486 target_data_order = ELFDATA2LSB; 487 } 488 489 if (target_data_order != e_ident[EI_DATA]) { 490 ret = ELF_LOAD_WRONG_ENDIAN; 491 goto fail; 492 } 493 494 lseek(fd, 0, SEEK_SET); 495 if (e_ident[EI_CLASS] == ELFCLASS64) { 496 ret = load_elf64(filename, fd, elf_note_fn, 497 translate_fn, translate_opaque, must_swab, 498 pentry, lowaddr, highaddr, pflags, elf_machine, 499 clear_lsb, data_swab, as, load_rom, sym_cb); 500 } else { 501 ret = load_elf32(filename, fd, elf_note_fn, 502 translate_fn, translate_opaque, must_swab, 503 pentry, lowaddr, highaddr, pflags, elf_machine, 504 clear_lsb, data_swab, as, load_rom, sym_cb); 505 } 506 507 if (ret != ELF_LOAD_FAILED) { 508 debuginfo_report_elf(filename, fd, 0); 509 } 510 511 fail: 512 close(fd); 513 return ret; 514 } 515 516 static void bswap_uboot_header(uboot_image_header_t *hdr) 517 { 518 #if !HOST_BIG_ENDIAN 519 bswap32s(&hdr->ih_magic); 520 bswap32s(&hdr->ih_hcrc); 521 bswap32s(&hdr->ih_time); 522 bswap32s(&hdr->ih_size); 523 bswap32s(&hdr->ih_load); 524 bswap32s(&hdr->ih_ep); 525 bswap32s(&hdr->ih_dcrc); 526 #endif 527 } 528 529 530 #define ZALLOC_ALIGNMENT 16 531 532 static void *zalloc(void *x, unsigned items, unsigned size) 533 { 534 void *p; 535 536 size *= items; 537 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 538 539 p = g_malloc(size); 540 541 return (p); 542 } 543 544 static void zfree(void *x, void *addr) 545 { 546 g_free(addr); 547 } 548 549 550 #define HEAD_CRC 2 551 #define EXTRA_FIELD 4 552 #define ORIG_NAME 8 553 #define COMMENT 0x10 554 #define RESERVED 0xe0 555 556 #define DEFLATED 8 557 558 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 559 { 560 z_stream s; 561 ssize_t dstbytes; 562 int r, i, flags; 563 564 /* skip header */ 565 i = 10; 566 if (srclen < 4) { 567 goto toosmall; 568 } 569 flags = src[3]; 570 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 571 puts ("Error: Bad gzipped data\n"); 572 return -1; 573 } 574 if ((flags & EXTRA_FIELD) != 0) { 575 if (srclen < 12) { 576 goto toosmall; 577 } 578 i = 12 + src[10] + (src[11] << 8); 579 } 580 if ((flags & ORIG_NAME) != 0) { 581 while (i < srclen && src[i++] != 0) { 582 /* do nothing */ 583 } 584 } 585 if ((flags & COMMENT) != 0) { 586 while (i < srclen && src[i++] != 0) { 587 /* do nothing */ 588 } 589 } 590 if ((flags & HEAD_CRC) != 0) { 591 i += 2; 592 } 593 if (i >= srclen) { 594 goto toosmall; 595 } 596 597 s.zalloc = zalloc; 598 s.zfree = zfree; 599 600 r = inflateInit2(&s, -MAX_WBITS); 601 if (r != Z_OK) { 602 printf ("Error: inflateInit2() returned %d\n", r); 603 return (-1); 604 } 605 s.next_in = src + i; 606 s.avail_in = srclen - i; 607 s.next_out = dst; 608 s.avail_out = dstlen; 609 r = inflate(&s, Z_FINISH); 610 if (r != Z_OK && r != Z_STREAM_END) { 611 printf ("Error: inflate() returned %d\n", r); 612 return -1; 613 } 614 dstbytes = s.next_out - (unsigned char *) dst; 615 inflateEnd(&s); 616 617 return dstbytes; 618 619 toosmall: 620 puts("Error: gunzip out of data in header\n"); 621 return -1; 622 } 623 624 /* Load a U-Boot image. */ 625 static ssize_t load_uboot_image(const char *filename, hwaddr *ep, 626 hwaddr *loadaddr, int *is_linux, 627 uint8_t image_type, 628 uint64_t (*translate_fn)(void *, uint64_t), 629 void *translate_opaque, AddressSpace *as) 630 { 631 int fd; 632 ssize_t size; 633 hwaddr address; 634 uboot_image_header_t h; 635 uboot_image_header_t *hdr = &h; 636 uint8_t *data = NULL; 637 int ret = -1; 638 int do_uncompress = 0; 639 640 fd = open(filename, O_RDONLY | O_BINARY); 641 if (fd < 0) 642 return -1; 643 644 size = read(fd, hdr, sizeof(uboot_image_header_t)); 645 if (size < sizeof(uboot_image_header_t)) { 646 goto out; 647 } 648 649 bswap_uboot_header(hdr); 650 651 if (hdr->ih_magic != IH_MAGIC) 652 goto out; 653 654 if (hdr->ih_type != image_type) { 655 if (!(image_type == IH_TYPE_KERNEL && 656 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 657 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 658 image_type); 659 goto out; 660 } 661 } 662 663 /* TODO: Implement other image types. */ 664 switch (hdr->ih_type) { 665 case IH_TYPE_KERNEL_NOLOAD: 666 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 667 fprintf(stderr, "this image format (kernel_noload) cannot be " 668 "loaded on this machine type"); 669 goto out; 670 } 671 672 hdr->ih_load = *loadaddr + sizeof(*hdr); 673 hdr->ih_ep += hdr->ih_load; 674 /* fall through */ 675 case IH_TYPE_KERNEL: 676 address = hdr->ih_load; 677 if (translate_fn) { 678 address = translate_fn(translate_opaque, address); 679 } 680 if (loadaddr) { 681 *loadaddr = hdr->ih_load; 682 } 683 684 switch (hdr->ih_comp) { 685 case IH_COMP_NONE: 686 break; 687 case IH_COMP_GZIP: 688 do_uncompress = 1; 689 break; 690 default: 691 fprintf(stderr, 692 "Unable to load u-boot images with compression type %d\n", 693 hdr->ih_comp); 694 goto out; 695 } 696 697 if (ep) { 698 *ep = hdr->ih_ep; 699 } 700 701 /* TODO: Check CPU type. */ 702 if (is_linux) { 703 if (hdr->ih_os == IH_OS_LINUX) { 704 *is_linux = 1; 705 } else if (hdr->ih_os == IH_OS_VXWORKS) { 706 /* 707 * VxWorks 7 uses the same boot interface as the Linux kernel 708 * on Arm (64-bit only), PowerPC and RISC-V architectures. 709 */ 710 switch (hdr->ih_arch) { 711 case IH_ARCH_ARM64: 712 case IH_ARCH_PPC: 713 case IH_ARCH_RISCV: 714 *is_linux = 1; 715 break; 716 default: 717 *is_linux = 0; 718 break; 719 } 720 } else { 721 *is_linux = 0; 722 } 723 } 724 725 break; 726 case IH_TYPE_RAMDISK: 727 address = *loadaddr; 728 break; 729 default: 730 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 731 goto out; 732 } 733 734 data = g_malloc(hdr->ih_size); 735 736 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 737 fprintf(stderr, "Error reading file\n"); 738 goto out; 739 } 740 741 if (do_uncompress) { 742 uint8_t *compressed_data; 743 size_t max_bytes; 744 ssize_t bytes; 745 746 compressed_data = data; 747 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 748 data = g_malloc(max_bytes); 749 750 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 751 g_free(compressed_data); 752 if (bytes < 0) { 753 fprintf(stderr, "Unable to decompress gzipped image!\n"); 754 goto out; 755 } 756 hdr->ih_size = bytes; 757 } 758 759 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 760 761 ret = hdr->ih_size; 762 763 out: 764 g_free(data); 765 close(fd); 766 return ret; 767 } 768 769 ssize_t load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 770 int *is_linux, 771 uint64_t (*translate_fn)(void *, uint64_t), 772 void *translate_opaque) 773 { 774 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 775 translate_fn, translate_opaque, NULL); 776 } 777 778 ssize_t load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 779 int *is_linux, 780 uint64_t (*translate_fn)(void *, uint64_t), 781 void *translate_opaque, AddressSpace *as) 782 { 783 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 784 translate_fn, translate_opaque, as); 785 } 786 787 /* Load a ramdisk. */ 788 ssize_t load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 789 { 790 return load_ramdisk_as(filename, addr, max_sz, NULL); 791 } 792 793 ssize_t load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 794 AddressSpace *as) 795 { 796 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 797 NULL, NULL, as); 798 } 799 800 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 801 ssize_t load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 802 uint8_t **buffer) 803 { 804 uint8_t *compressed_data = NULL; 805 uint8_t *data = NULL; 806 gsize len; 807 ssize_t bytes; 808 int ret = -1; 809 810 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 811 NULL)) { 812 goto out; 813 } 814 815 /* Is it a gzip-compressed file? */ 816 if (len < 2 || 817 compressed_data[0] != 0x1f || 818 compressed_data[1] != 0x8b) { 819 goto out; 820 } 821 822 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 823 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 824 } 825 826 data = g_malloc(max_sz); 827 bytes = gunzip(data, max_sz, compressed_data, len); 828 if (bytes < 0) { 829 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 830 filename); 831 goto out; 832 } 833 834 /* trim to actual size and return to caller */ 835 *buffer = g_realloc(data, bytes); 836 ret = bytes; 837 /* ownership has been transferred to caller */ 838 data = NULL; 839 840 out: 841 g_free(compressed_data); 842 g_free(data); 843 return ret; 844 } 845 846 /* Load a gzip-compressed kernel. */ 847 ssize_t load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 848 { 849 ssize_t bytes; 850 uint8_t *data; 851 852 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 853 if (bytes != -1) { 854 rom_add_blob_fixed(filename, data, bytes, addr); 855 g_free(data); 856 } 857 return bytes; 858 } 859 860 /* 861 * Functions for reboot-persistent memory regions. 862 * - used for vga bios and option roms. 863 * - also linux kernel (-kernel / -initrd). 864 */ 865 866 typedef struct Rom Rom; 867 868 struct Rom { 869 char *name; 870 char *path; 871 872 /* datasize is the amount of memory allocated in "data". If datasize is less 873 * than romsize, it means that the area from datasize to romsize is filled 874 * with zeros. 875 */ 876 size_t romsize; 877 size_t datasize; 878 879 uint8_t *data; 880 MemoryRegion *mr; 881 AddressSpace *as; 882 int isrom; 883 char *fw_dir; 884 char *fw_file; 885 GMappedFile *mapped_file; 886 887 bool committed; 888 889 hwaddr addr; 890 QTAILQ_ENTRY(Rom) next; 891 }; 892 893 static FWCfgState *fw_cfg; 894 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 895 896 /* 897 * rom->data can be heap-allocated or memory-mapped (e.g. when added with 898 * rom_add_elf_program()) 899 */ 900 static void rom_free_data(Rom *rom) 901 { 902 if (rom->mapped_file) { 903 g_mapped_file_unref(rom->mapped_file); 904 rom->mapped_file = NULL; 905 } else { 906 g_free(rom->data); 907 } 908 909 rom->data = NULL; 910 } 911 912 static void rom_free(Rom *rom) 913 { 914 rom_free_data(rom); 915 g_free(rom->path); 916 g_free(rom->name); 917 g_free(rom->fw_dir); 918 g_free(rom->fw_file); 919 g_free(rom); 920 } 921 922 static inline bool rom_order_compare(Rom *rom, Rom *item) 923 { 924 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 925 (rom->as == item->as && rom->addr >= item->addr); 926 } 927 928 static void rom_insert(Rom *rom) 929 { 930 Rom *item; 931 932 if (roms_loaded) { 933 hw_error ("ROM images must be loaded at startup\n"); 934 } 935 936 /* The user didn't specify an address space, this is the default */ 937 if (!rom->as) { 938 rom->as = &address_space_memory; 939 } 940 941 rom->committed = false; 942 943 /* List is ordered by load address in the same address space */ 944 QTAILQ_FOREACH(item, &roms, next) { 945 if (rom_order_compare(rom, item)) { 946 continue; 947 } 948 QTAILQ_INSERT_BEFORE(item, rom, next); 949 return; 950 } 951 QTAILQ_INSERT_TAIL(&roms, rom, next); 952 } 953 954 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 955 { 956 if (fw_cfg) { 957 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 958 } 959 } 960 961 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 962 { 963 void *data; 964 965 rom->mr = g_malloc(sizeof(*rom->mr)); 966 memory_region_init_resizeable_ram(rom->mr, owner, name, 967 rom->datasize, rom->romsize, 968 fw_cfg_resized, 969 &error_fatal); 970 memory_region_set_readonly(rom->mr, ro); 971 vmstate_register_ram_global(rom->mr); 972 973 data = memory_region_get_ram_ptr(rom->mr); 974 memcpy(data, rom->data, rom->datasize); 975 976 return data; 977 } 978 979 ssize_t rom_add_file(const char *file, const char *fw_dir, 980 hwaddr addr, int32_t bootindex, 981 bool option_rom, MemoryRegion *mr, 982 AddressSpace *as) 983 { 984 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 985 Rom *rom; 986 ssize_t rc; 987 int fd = -1; 988 char devpath[100]; 989 990 if (as && mr) { 991 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 992 "not valid when loading a rom\n"); 993 /* We haven't allocated anything so we don't need any cleanup */ 994 return -1; 995 } 996 997 rom = g_malloc0(sizeof(*rom)); 998 rom->name = g_strdup(file); 999 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 1000 rom->as = as; 1001 if (rom->path == NULL) { 1002 rom->path = g_strdup(file); 1003 } 1004 1005 fd = open(rom->path, O_RDONLY | O_BINARY); 1006 if (fd == -1) { 1007 fprintf(stderr, "Could not open option rom '%s': %s\n", 1008 rom->path, strerror(errno)); 1009 goto err; 1010 } 1011 1012 if (fw_dir) { 1013 rom->fw_dir = g_strdup(fw_dir); 1014 rom->fw_file = g_strdup(file); 1015 } 1016 rom->addr = addr; 1017 rom->romsize = lseek(fd, 0, SEEK_END); 1018 if (rom->romsize == -1) { 1019 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 1020 rom->name, strerror(errno)); 1021 goto err; 1022 } 1023 1024 rom->datasize = rom->romsize; 1025 rom->data = g_malloc0(rom->datasize); 1026 lseek(fd, 0, SEEK_SET); 1027 rc = read(fd, rom->data, rom->datasize); 1028 if (rc != rom->datasize) { 1029 fprintf(stderr, "rom: file %-20s: read error: rc=%zd (expected %zd)\n", 1030 rom->name, rc, rom->datasize); 1031 goto err; 1032 } 1033 close(fd); 1034 rom_insert(rom); 1035 if (rom->fw_file && fw_cfg) { 1036 const char *basename; 1037 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 1038 void *data; 1039 1040 basename = strrchr(rom->fw_file, '/'); 1041 if (basename) { 1042 basename++; 1043 } else { 1044 basename = rom->fw_file; 1045 } 1046 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 1047 basename); 1048 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1049 1050 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 1051 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 1052 } else { 1053 data = rom->data; 1054 } 1055 1056 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 1057 } else { 1058 if (mr) { 1059 rom->mr = mr; 1060 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 1061 } else { 1062 snprintf(devpath, sizeof(devpath), "/rom@" HWADDR_FMT_plx, addr); 1063 } 1064 } 1065 1066 add_boot_device_path(bootindex, NULL, devpath); 1067 return 0; 1068 1069 err: 1070 if (fd != -1) 1071 close(fd); 1072 1073 rom_free(rom); 1074 return -1; 1075 } 1076 1077 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1078 size_t max_len, hwaddr addr, const char *fw_file_name, 1079 FWCfgCallback fw_callback, void *callback_opaque, 1080 AddressSpace *as, bool read_only) 1081 { 1082 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1083 Rom *rom; 1084 MemoryRegion *mr = NULL; 1085 1086 rom = g_malloc0(sizeof(*rom)); 1087 rom->name = g_strdup(name); 1088 rom->as = as; 1089 rom->addr = addr; 1090 rom->romsize = max_len ? max_len : len; 1091 rom->datasize = len; 1092 g_assert(rom->romsize >= rom->datasize); 1093 rom->data = g_malloc0(rom->datasize); 1094 memcpy(rom->data, blob, len); 1095 rom_insert(rom); 1096 if (fw_file_name && fw_cfg) { 1097 char devpath[100]; 1098 void *data; 1099 1100 if (read_only) { 1101 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1102 } else { 1103 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1104 } 1105 1106 if (mc->rom_file_has_mr) { 1107 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1108 mr = rom->mr; 1109 } else { 1110 data = rom->data; 1111 } 1112 1113 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1114 fw_callback, NULL, callback_opaque, 1115 data, rom->datasize, read_only); 1116 } 1117 return mr; 1118 } 1119 1120 /* This function is specific for elf program because we don't need to allocate 1121 * all the rom. We just allocate the first part and the rest is just zeros. This 1122 * is why romsize and datasize are different. Also, this function takes its own 1123 * reference to "mapped_file", so we don't have to allocate and copy the buffer. 1124 */ 1125 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, 1126 size_t datasize, size_t romsize, hwaddr addr, 1127 AddressSpace *as) 1128 { 1129 Rom *rom; 1130 1131 rom = g_malloc0(sizeof(*rom)); 1132 rom->name = g_strdup(name); 1133 rom->addr = addr; 1134 rom->datasize = datasize; 1135 rom->romsize = romsize; 1136 rom->data = data; 1137 rom->as = as; 1138 1139 if (mapped_file && data) { 1140 g_mapped_file_ref(mapped_file); 1141 rom->mapped_file = mapped_file; 1142 } 1143 1144 rom_insert(rom); 1145 return 0; 1146 } 1147 1148 ssize_t rom_add_vga(const char *file) 1149 { 1150 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1151 } 1152 1153 ssize_t rom_add_option(const char *file, int32_t bootindex) 1154 { 1155 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1156 } 1157 1158 static void rom_reset(void *unused) 1159 { 1160 Rom *rom; 1161 1162 QTAILQ_FOREACH(rom, &roms, next) { 1163 if (rom->fw_file) { 1164 continue; 1165 } 1166 /* 1167 * We don't need to fill in the RAM with ROM data because we'll fill 1168 * the data in during the next incoming migration in all cases. Note 1169 * that some of those RAMs can actually be modified by the guest. 1170 */ 1171 if (runstate_check(RUN_STATE_INMIGRATE)) { 1172 if (rom->data && rom->isrom) { 1173 /* 1174 * Free it so that a rom_reset after migration doesn't 1175 * overwrite a potentially modified 'rom'. 1176 */ 1177 rom_free_data(rom); 1178 } 1179 continue; 1180 } 1181 1182 if (rom->data == NULL) { 1183 continue; 1184 } 1185 if (rom->mr) { 1186 void *host = memory_region_get_ram_ptr(rom->mr); 1187 memcpy(host, rom->data, rom->datasize); 1188 memset(host + rom->datasize, 0, rom->romsize - rom->datasize); 1189 } else { 1190 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1191 rom->data, rom->datasize); 1192 address_space_set(rom->as, rom->addr + rom->datasize, 0, 1193 rom->romsize - rom->datasize, 1194 MEMTXATTRS_UNSPECIFIED); 1195 } 1196 if (rom->isrom) { 1197 /* rom needs to be written only once */ 1198 rom_free_data(rom); 1199 } 1200 /* 1201 * The rom loader is really on the same level as firmware in the guest 1202 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1203 * that the instruction cache for that new region is clear, so that the 1204 * CPU definitely fetches its instructions from the just written data. 1205 */ 1206 cpu_flush_icache_range(rom->addr, rom->datasize); 1207 1208 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom); 1209 } 1210 } 1211 1212 /* Return true if two consecutive ROMs in the ROM list overlap */ 1213 static bool roms_overlap(Rom *last_rom, Rom *this_rom) 1214 { 1215 if (!last_rom) { 1216 return false; 1217 } 1218 return last_rom->as == this_rom->as && 1219 last_rom->addr + last_rom->romsize > this_rom->addr; 1220 } 1221 1222 static const char *rom_as_name(Rom *rom) 1223 { 1224 const char *name = rom->as ? rom->as->name : NULL; 1225 return name ?: "anonymous"; 1226 } 1227 1228 static void rom_print_overlap_error_header(void) 1229 { 1230 error_report("Some ROM regions are overlapping"); 1231 error_printf( 1232 "These ROM regions might have been loaded by " 1233 "direct user request or by default.\n" 1234 "They could be BIOS/firmware images, a guest kernel, " 1235 "initrd or some other file loaded into guest memory.\n" 1236 "Check whether you intended to load all this guest code, and " 1237 "whether it has been built to load to the correct addresses.\n"); 1238 } 1239 1240 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom) 1241 { 1242 error_printf( 1243 "\nThe following two regions overlap (in the %s address space):\n", 1244 rom_as_name(rom)); 1245 error_printf( 1246 " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n", 1247 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize); 1248 error_printf( 1249 " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n", 1250 rom->name, rom->addr, rom->addr + rom->romsize); 1251 } 1252 1253 int rom_check_and_register_reset(void) 1254 { 1255 MemoryRegionSection section; 1256 Rom *rom, *last_rom = NULL; 1257 bool found_overlap = false; 1258 1259 QTAILQ_FOREACH(rom, &roms, next) { 1260 if (rom->fw_file) { 1261 continue; 1262 } 1263 if (!rom->mr) { 1264 if (roms_overlap(last_rom, rom)) { 1265 if (!found_overlap) { 1266 found_overlap = true; 1267 rom_print_overlap_error_header(); 1268 } 1269 rom_print_one_overlap_error(last_rom, rom); 1270 /* Keep going through the list so we report all overlaps */ 1271 } 1272 last_rom = rom; 1273 } 1274 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1275 rom->addr, 1); 1276 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1277 memory_region_unref(section.mr); 1278 } 1279 if (found_overlap) { 1280 return -1; 1281 } 1282 1283 qemu_register_reset(rom_reset, NULL); 1284 roms_loaded = 1; 1285 return 0; 1286 } 1287 1288 void rom_set_fw(FWCfgState *f) 1289 { 1290 fw_cfg = f; 1291 } 1292 1293 void rom_set_order_override(int order) 1294 { 1295 if (!fw_cfg) 1296 return; 1297 fw_cfg_set_order_override(fw_cfg, order); 1298 } 1299 1300 void rom_reset_order_override(void) 1301 { 1302 if (!fw_cfg) 1303 return; 1304 fw_cfg_reset_order_override(fw_cfg); 1305 } 1306 1307 void rom_transaction_begin(void) 1308 { 1309 Rom *rom; 1310 1311 /* Ignore ROMs added without the transaction API */ 1312 QTAILQ_FOREACH(rom, &roms, next) { 1313 rom->committed = true; 1314 } 1315 } 1316 1317 void rom_transaction_end(bool commit) 1318 { 1319 Rom *rom; 1320 Rom *tmp; 1321 1322 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1323 if (rom->committed) { 1324 continue; 1325 } 1326 if (commit) { 1327 rom->committed = true; 1328 } else { 1329 QTAILQ_REMOVE(&roms, rom, next); 1330 rom_free(rom); 1331 } 1332 } 1333 } 1334 1335 static Rom *find_rom(hwaddr addr, size_t size) 1336 { 1337 Rom *rom; 1338 1339 QTAILQ_FOREACH(rom, &roms, next) { 1340 if (rom->fw_file) { 1341 continue; 1342 } 1343 if (rom->mr) { 1344 continue; 1345 } 1346 if (rom->addr > addr) { 1347 continue; 1348 } 1349 if (rom->addr + rom->romsize < addr + size) { 1350 continue; 1351 } 1352 return rom; 1353 } 1354 return NULL; 1355 } 1356 1357 typedef struct RomSec { 1358 hwaddr base; 1359 int se; /* start/end flag */ 1360 } RomSec; 1361 1362 1363 /* 1364 * Sort into address order. We break ties between rom-startpoints 1365 * and rom-endpoints in favour of the startpoint, by sorting the 0->1 1366 * transition before the 1->0 transition. Either way round would 1367 * work, but this way saves a little work later by avoiding 1368 * dealing with "gaps" of 0 length. 1369 */ 1370 static gint sort_secs(gconstpointer a, gconstpointer b) 1371 { 1372 RomSec *ra = (RomSec *) a; 1373 RomSec *rb = (RomSec *) b; 1374 1375 if (ra->base == rb->base) { 1376 return ra->se - rb->se; 1377 } 1378 return ra->base > rb->base ? 1 : -1; 1379 } 1380 1381 static GList *add_romsec_to_list(GList *secs, hwaddr base, int se) 1382 { 1383 RomSec *cand = g_new(RomSec, 1); 1384 cand->base = base; 1385 cand->se = se; 1386 return g_list_prepend(secs, cand); 1387 } 1388 1389 RomGap rom_find_largest_gap_between(hwaddr base, size_t size) 1390 { 1391 Rom *rom; 1392 RomSec *cand; 1393 RomGap res = {0, 0}; 1394 hwaddr gapstart = base; 1395 GList *it, *secs = NULL; 1396 int count = 0; 1397 1398 QTAILQ_FOREACH(rom, &roms, next) { 1399 /* Ignore blobs being loaded to special places */ 1400 if (rom->mr || rom->fw_file) { 1401 continue; 1402 } 1403 /* ignore anything finishing bellow base */ 1404 if (rom->addr + rom->romsize <= base) { 1405 continue; 1406 } 1407 /* ignore anything starting above the region */ 1408 if (rom->addr >= base + size) { 1409 continue; 1410 } 1411 1412 /* Save the start and end of each relevant ROM */ 1413 secs = add_romsec_to_list(secs, rom->addr, 1); 1414 1415 if (rom->addr + rom->romsize < base + size) { 1416 secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1); 1417 } 1418 } 1419 1420 /* sentinel */ 1421 secs = add_romsec_to_list(secs, base + size, 1); 1422 1423 secs = g_list_sort(secs, sort_secs); 1424 1425 for (it = g_list_first(secs); it; it = g_list_next(it)) { 1426 cand = (RomSec *) it->data; 1427 if (count == 0 && count + cand->se == 1) { 1428 size_t gap = cand->base - gapstart; 1429 if (gap > res.size) { 1430 res.base = gapstart; 1431 res.size = gap; 1432 } 1433 } else if (count == 1 && count + cand->se == 0) { 1434 gapstart = cand->base; 1435 } 1436 count += cand->se; 1437 } 1438 1439 g_list_free_full(secs, g_free); 1440 return res; 1441 } 1442 1443 /* 1444 * Copies memory from registered ROMs to dest. Any memory that is contained in 1445 * a ROM between addr and addr + size is copied. Note that this can involve 1446 * multiple ROMs, which need not start at addr and need not end at addr + size. 1447 */ 1448 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1449 { 1450 hwaddr end = addr + size; 1451 uint8_t *s, *d = dest; 1452 size_t l = 0; 1453 Rom *rom; 1454 1455 QTAILQ_FOREACH(rom, &roms, next) { 1456 if (rom->fw_file) { 1457 continue; 1458 } 1459 if (rom->mr) { 1460 continue; 1461 } 1462 if (rom->addr + rom->romsize < addr) { 1463 continue; 1464 } 1465 if (rom->addr > end || rom->addr < addr) { 1466 break; 1467 } 1468 1469 d = dest + (rom->addr - addr); 1470 s = rom->data; 1471 l = rom->datasize; 1472 1473 if ((d + l) > (dest + size)) { 1474 l = dest - d; 1475 } 1476 1477 if (l > 0) { 1478 memcpy(d, s, l); 1479 } 1480 1481 if (rom->romsize > rom->datasize) { 1482 /* If datasize is less than romsize, it means that we didn't 1483 * allocate all the ROM because the trailing data are only zeros. 1484 */ 1485 1486 d += l; 1487 l = rom->romsize - rom->datasize; 1488 1489 if ((d + l) > (dest + size)) { 1490 /* Rom size doesn't fit in the destination area. Adjust to avoid 1491 * overflow. 1492 */ 1493 l = dest - d; 1494 } 1495 1496 if (l > 0) { 1497 memset(d, 0x0, l); 1498 } 1499 } 1500 } 1501 1502 return (d + l) - dest; 1503 } 1504 1505 void *rom_ptr(hwaddr addr, size_t size) 1506 { 1507 Rom *rom; 1508 1509 rom = find_rom(addr, size); 1510 if (!rom || !rom->data) 1511 return NULL; 1512 return rom->data + (addr - rom->addr); 1513 } 1514 1515 typedef struct FindRomCBData { 1516 size_t size; /* Amount of data we want from ROM, in bytes */ 1517 MemoryRegion *mr; /* MR at the unaliased guest addr */ 1518 hwaddr xlat; /* Offset of addr within mr */ 1519 void *rom; /* Output: rom data pointer, if found */ 1520 } FindRomCBData; 1521 1522 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr, 1523 hwaddr offset_in_region, void *opaque) 1524 { 1525 FindRomCBData *cbdata = opaque; 1526 hwaddr alias_addr; 1527 1528 if (mr != cbdata->mr) { 1529 return false; 1530 } 1531 1532 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region; 1533 cbdata->rom = rom_ptr(alias_addr, cbdata->size); 1534 if (!cbdata->rom) { 1535 return false; 1536 } 1537 /* Found a match, stop iterating */ 1538 return true; 1539 } 1540 1541 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size) 1542 { 1543 /* 1544 * Find any ROM data for the given guest address range. If there 1545 * is a ROM blob then return a pointer to the host memory 1546 * corresponding to 'addr'; otherwise return NULL. 1547 * 1548 * We look not only for ROM blobs that were loaded directly to 1549 * addr, but also for ROM blobs that were loaded to aliases of 1550 * that memory at other addresses within the AddressSpace. 1551 * 1552 * Note that we do not check @as against the 'as' member in the 1553 * 'struct Rom' returned by rom_ptr(). The Rom::as is the 1554 * AddressSpace which the rom blob should be written to, whereas 1555 * our @as argument is the AddressSpace which we are (effectively) 1556 * reading from, and the same underlying RAM will often be visible 1557 * in multiple AddressSpaces. (A common example is a ROM blob 1558 * written to the 'system' address space but then read back via a 1559 * CPU's cpu->as pointer.) This does mean we might potentially 1560 * return a false-positive match if a ROM blob was loaded into an 1561 * AS which is entirely separate and distinct from the one we're 1562 * querying, but this issue exists also for rom_ptr() and hasn't 1563 * caused any problems in practice. 1564 */ 1565 FlatView *fv; 1566 void *rom; 1567 hwaddr len_unused; 1568 FindRomCBData cbdata = {}; 1569 1570 /* Easy case: there's data at the actual address */ 1571 rom = rom_ptr(addr, size); 1572 if (rom) { 1573 return rom; 1574 } 1575 1576 RCU_READ_LOCK_GUARD(); 1577 1578 fv = address_space_to_flatview(as); 1579 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused, 1580 false, MEMTXATTRS_UNSPECIFIED); 1581 if (!cbdata.mr) { 1582 /* Nothing at this address, so there can't be any aliasing */ 1583 return NULL; 1584 } 1585 cbdata.size = size; 1586 flatview_for_each_range(fv, find_rom_cb, &cbdata); 1587 return cbdata.rom; 1588 } 1589 1590 HumanReadableText *qmp_x_query_roms(Error **errp) 1591 { 1592 Rom *rom; 1593 g_autoptr(GString) buf = g_string_new(""); 1594 1595 QTAILQ_FOREACH(rom, &roms, next) { 1596 if (rom->mr) { 1597 g_string_append_printf(buf, "%s" 1598 " size=0x%06zx name=\"%s\"\n", 1599 memory_region_name(rom->mr), 1600 rom->romsize, 1601 rom->name); 1602 } else if (!rom->fw_file) { 1603 g_string_append_printf(buf, "addr=" HWADDR_FMT_plx 1604 " size=0x%06zx mem=%s name=\"%s\"\n", 1605 rom->addr, rom->romsize, 1606 rom->isrom ? "rom" : "ram", 1607 rom->name); 1608 } else { 1609 g_string_append_printf(buf, "fw=%s/%s" 1610 " size=0x%06zx name=\"%s\"\n", 1611 rom->fw_dir, 1612 rom->fw_file, 1613 rom->romsize, 1614 rom->name); 1615 } 1616 } 1617 1618 return human_readable_text_from_str(buf); 1619 } 1620 1621 typedef enum HexRecord HexRecord; 1622 enum HexRecord { 1623 DATA_RECORD = 0, 1624 EOF_RECORD, 1625 EXT_SEG_ADDR_RECORD, 1626 START_SEG_ADDR_RECORD, 1627 EXT_LINEAR_ADDR_RECORD, 1628 START_LINEAR_ADDR_RECORD, 1629 }; 1630 1631 /* Each record contains a 16-bit address which is combined with the upper 16 1632 * bits of the implicit "next address" to form a 32-bit address. 1633 */ 1634 #define NEXT_ADDR_MASK 0xffff0000 1635 1636 #define DATA_FIELD_MAX_LEN 0xff 1637 #define LEN_EXCEPT_DATA 0x5 1638 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1639 * sizeof(checksum) */ 1640 typedef struct { 1641 uint8_t byte_count; 1642 uint16_t address; 1643 uint8_t record_type; 1644 uint8_t data[DATA_FIELD_MAX_LEN]; 1645 uint8_t checksum; 1646 } HexLine; 1647 1648 /* return 0 or -1 if error */ 1649 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1650 uint32_t *index, const bool in_process) 1651 { 1652 /* +-------+---------------+-------+---------------------+--------+ 1653 * | byte | |record | | | 1654 * | count | address | type | data |checksum| 1655 * +-------+---------------+-------+---------------------+--------+ 1656 * ^ ^ ^ ^ ^ ^ 1657 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1658 */ 1659 uint8_t value = 0; 1660 uint32_t idx = *index; 1661 /* ignore space */ 1662 if (g_ascii_isspace(c)) { 1663 return true; 1664 } 1665 if (!g_ascii_isxdigit(c) || !in_process) { 1666 return false; 1667 } 1668 value = g_ascii_xdigit_value(c); 1669 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1670 if (idx < 2) { 1671 line->byte_count |= value; 1672 } else if (2 <= idx && idx < 6) { 1673 line->address <<= 4; 1674 line->address += g_ascii_xdigit_value(c); 1675 } else if (6 <= idx && idx < 8) { 1676 line->record_type |= value; 1677 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1678 line->data[(idx - 8) >> 1] |= value; 1679 } else if (8 + 2 * line->byte_count <= idx && 1680 idx < 10 + 2 * line->byte_count) { 1681 line->checksum |= value; 1682 } else { 1683 return false; 1684 } 1685 *our_checksum += value; 1686 ++(*index); 1687 return true; 1688 } 1689 1690 typedef struct { 1691 const char *filename; 1692 HexLine line; 1693 uint8_t *bin_buf; 1694 hwaddr *start_addr; 1695 int total_size; 1696 uint32_t next_address_to_write; 1697 uint32_t current_address; 1698 uint32_t current_rom_index; 1699 uint32_t rom_start_address; 1700 AddressSpace *as; 1701 bool complete; 1702 } HexParser; 1703 1704 /* return size or -1 if error */ 1705 static int handle_record_type(HexParser *parser) 1706 { 1707 HexLine *line = &(parser->line); 1708 switch (line->record_type) { 1709 case DATA_RECORD: 1710 parser->current_address = 1711 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1712 /* verify this is a contiguous block of memory */ 1713 if (parser->current_address != parser->next_address_to_write) { 1714 if (parser->current_rom_index != 0) { 1715 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1716 parser->current_rom_index, 1717 parser->rom_start_address, parser->as); 1718 } 1719 parser->rom_start_address = parser->current_address; 1720 parser->current_rom_index = 0; 1721 } 1722 1723 /* copy from line buffer to output bin_buf */ 1724 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1725 line->byte_count); 1726 parser->current_rom_index += line->byte_count; 1727 parser->total_size += line->byte_count; 1728 /* save next address to write */ 1729 parser->next_address_to_write = 1730 parser->current_address + line->byte_count; 1731 break; 1732 1733 case EOF_RECORD: 1734 if (parser->current_rom_index != 0) { 1735 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1736 parser->current_rom_index, 1737 parser->rom_start_address, parser->as); 1738 } 1739 parser->complete = true; 1740 return parser->total_size; 1741 case EXT_SEG_ADDR_RECORD: 1742 case EXT_LINEAR_ADDR_RECORD: 1743 if (line->byte_count != 2 && line->address != 0) { 1744 return -1; 1745 } 1746 1747 if (parser->current_rom_index != 0) { 1748 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1749 parser->current_rom_index, 1750 parser->rom_start_address, parser->as); 1751 } 1752 1753 /* save next address to write, 1754 * in case of non-contiguous block of memory */ 1755 parser->next_address_to_write = (line->data[0] << 12) | 1756 (line->data[1] << 4); 1757 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1758 parser->next_address_to_write <<= 12; 1759 } 1760 1761 parser->rom_start_address = parser->next_address_to_write; 1762 parser->current_rom_index = 0; 1763 break; 1764 1765 case START_SEG_ADDR_RECORD: 1766 if (line->byte_count != 4 && line->address != 0) { 1767 return -1; 1768 } 1769 1770 /* x86 16-bit CS:IP segmented addressing */ 1771 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1772 ((line->data[2] << 8) | line->data[3]); 1773 break; 1774 1775 case START_LINEAR_ADDR_RECORD: 1776 if (line->byte_count != 4 && line->address != 0) { 1777 return -1; 1778 } 1779 1780 *(parser->start_addr) = ldl_be_p(line->data); 1781 break; 1782 1783 default: 1784 return -1; 1785 } 1786 1787 return parser->total_size; 1788 } 1789 1790 /* return size or -1 if error */ 1791 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1792 size_t hex_blob_size, AddressSpace *as) 1793 { 1794 bool in_process = false; /* avoid re-enter and 1795 * check whether record begin with ':' */ 1796 uint8_t *end = hex_blob + hex_blob_size; 1797 uint8_t our_checksum = 0; 1798 uint32_t record_index = 0; 1799 HexParser parser = { 1800 .filename = filename, 1801 .bin_buf = g_malloc(hex_blob_size), 1802 .start_addr = addr, 1803 .as = as, 1804 .complete = false 1805 }; 1806 1807 rom_transaction_begin(); 1808 1809 for (; hex_blob < end && !parser.complete; ++hex_blob) { 1810 switch (*hex_blob) { 1811 case '\r': 1812 case '\n': 1813 if (!in_process) { 1814 break; 1815 } 1816 1817 in_process = false; 1818 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1819 record_index || 1820 our_checksum != 0) { 1821 parser.total_size = -1; 1822 goto out; 1823 } 1824 1825 if (handle_record_type(&parser) == -1) { 1826 parser.total_size = -1; 1827 goto out; 1828 } 1829 break; 1830 1831 /* start of a new record. */ 1832 case ':': 1833 memset(&parser.line, 0, sizeof(HexLine)); 1834 in_process = true; 1835 record_index = 0; 1836 break; 1837 1838 /* decoding lines */ 1839 default: 1840 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1841 &record_index, in_process)) { 1842 parser.total_size = -1; 1843 goto out; 1844 } 1845 break; 1846 } 1847 } 1848 1849 out: 1850 g_free(parser.bin_buf); 1851 rom_transaction_end(parser.total_size != -1); 1852 return parser.total_size; 1853 } 1854 1855 /* return size or -1 if error */ 1856 ssize_t load_targphys_hex_as(const char *filename, hwaddr *entry, 1857 AddressSpace *as) 1858 { 1859 gsize hex_blob_size; 1860 gchar *hex_blob; 1861 ssize_t total_size = 0; 1862 1863 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1864 return -1; 1865 } 1866 1867 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1868 hex_blob_size, as); 1869 1870 g_free(hex_blob); 1871 return total_size; 1872 } 1873