1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qemu-common.h" 47 #include "qapi/error.h" 48 #include "hw/hw.h" 49 #include "disas/disas.h" 50 #include "migration/vmstate.h" 51 #include "monitor/monitor.h" 52 #include "sysemu/reset.h" 53 #include "sysemu/sysemu.h" 54 #include "uboot_image.h" 55 #include "hw/loader.h" 56 #include "hw/nvram/fw_cfg.h" 57 #include "exec/memory.h" 58 #include "exec/address-spaces.h" 59 #include "hw/boards.h" 60 #include "qemu/cutils.h" 61 #include "sysemu/runstate.h" 62 63 #include <zlib.h> 64 65 static int roms_loaded; 66 67 /* return the size or -1 if error */ 68 int64_t get_image_size(const char *filename) 69 { 70 int fd; 71 int64_t size; 72 fd = open(filename, O_RDONLY | O_BINARY); 73 if (fd < 0) 74 return -1; 75 size = lseek(fd, 0, SEEK_END); 76 close(fd); 77 return size; 78 } 79 80 /* return the size or -1 if error */ 81 ssize_t load_image_size(const char *filename, void *addr, size_t size) 82 { 83 int fd; 84 ssize_t actsize, l = 0; 85 86 fd = open(filename, O_RDONLY | O_BINARY); 87 if (fd < 0) { 88 return -1; 89 } 90 91 while ((actsize = read(fd, addr + l, size - l)) > 0) { 92 l += actsize; 93 } 94 95 close(fd); 96 97 return actsize < 0 ? -1 : l; 98 } 99 100 /* read()-like version */ 101 ssize_t read_targphys(const char *name, 102 int fd, hwaddr dst_addr, size_t nbytes) 103 { 104 uint8_t *buf; 105 ssize_t did; 106 107 buf = g_malloc(nbytes); 108 did = read(fd, buf, nbytes); 109 if (did > 0) 110 rom_add_blob_fixed("read", buf, did, dst_addr); 111 g_free(buf); 112 return did; 113 } 114 115 int load_image_targphys(const char *filename, 116 hwaddr addr, uint64_t max_sz) 117 { 118 return load_image_targphys_as(filename, addr, max_sz, NULL); 119 } 120 121 /* return the size or -1 if error */ 122 int load_image_targphys_as(const char *filename, 123 hwaddr addr, uint64_t max_sz, AddressSpace *as) 124 { 125 int size; 126 127 size = get_image_size(filename); 128 if (size < 0 || size > max_sz) { 129 return -1; 130 } 131 if (size > 0) { 132 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 133 return -1; 134 } 135 } 136 return size; 137 } 138 139 int load_image_mr(const char *filename, MemoryRegion *mr) 140 { 141 int size; 142 143 if (!memory_access_is_direct(mr, false)) { 144 /* Can only load an image into RAM or ROM */ 145 return -1; 146 } 147 148 size = get_image_size(filename); 149 150 if (size < 0 || size > memory_region_size(mr)) { 151 return -1; 152 } 153 if (size > 0) { 154 if (rom_add_file_mr(filename, mr, -1) < 0) { 155 return -1; 156 } 157 } 158 return size; 159 } 160 161 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 162 const char *source) 163 { 164 const char *nulp; 165 char *ptr; 166 167 if (buf_size <= 0) return; 168 nulp = memchr(source, 0, buf_size); 169 if (nulp) { 170 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 171 } else { 172 rom_add_blob_fixed(name, source, buf_size, dest); 173 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 174 *ptr = 0; 175 } 176 } 177 178 /* A.OUT loader */ 179 180 struct exec 181 { 182 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 183 uint32_t a_text; /* length of text, in bytes */ 184 uint32_t a_data; /* length of data, in bytes */ 185 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 186 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 187 uint32_t a_entry; /* start address */ 188 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 189 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 190 }; 191 192 static void bswap_ahdr(struct exec *e) 193 { 194 bswap32s(&e->a_info); 195 bswap32s(&e->a_text); 196 bswap32s(&e->a_data); 197 bswap32s(&e->a_bss); 198 bswap32s(&e->a_syms); 199 bswap32s(&e->a_entry); 200 bswap32s(&e->a_trsize); 201 bswap32s(&e->a_drsize); 202 } 203 204 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 205 #define OMAGIC 0407 206 #define NMAGIC 0410 207 #define ZMAGIC 0413 208 #define QMAGIC 0314 209 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 210 #define N_TXTOFF(x) \ 211 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 212 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 213 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 214 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 215 216 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 217 218 #define N_DATADDR(x, target_page_size) \ 219 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 220 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 221 222 223 int load_aout(const char *filename, hwaddr addr, int max_sz, 224 int bswap_needed, hwaddr target_page_size) 225 { 226 int fd; 227 ssize_t size, ret; 228 struct exec e; 229 uint32_t magic; 230 231 fd = open(filename, O_RDONLY | O_BINARY); 232 if (fd < 0) 233 return -1; 234 235 size = read(fd, &e, sizeof(e)); 236 if (size < 0) 237 goto fail; 238 239 if (bswap_needed) { 240 bswap_ahdr(&e); 241 } 242 243 magic = N_MAGIC(e); 244 switch (magic) { 245 case ZMAGIC: 246 case QMAGIC: 247 case OMAGIC: 248 if (e.a_text + e.a_data > max_sz) 249 goto fail; 250 lseek(fd, N_TXTOFF(e), SEEK_SET); 251 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 252 if (size < 0) 253 goto fail; 254 break; 255 case NMAGIC: 256 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 257 goto fail; 258 lseek(fd, N_TXTOFF(e), SEEK_SET); 259 size = read_targphys(filename, fd, addr, e.a_text); 260 if (size < 0) 261 goto fail; 262 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 263 e.a_data); 264 if (ret < 0) 265 goto fail; 266 size += ret; 267 break; 268 default: 269 goto fail; 270 } 271 close(fd); 272 return size; 273 fail: 274 close(fd); 275 return -1; 276 } 277 278 /* ELF loader */ 279 280 static void *load_at(int fd, off_t offset, size_t size) 281 { 282 void *ptr; 283 if (lseek(fd, offset, SEEK_SET) < 0) 284 return NULL; 285 ptr = g_malloc(size); 286 if (read(fd, ptr, size) != size) { 287 g_free(ptr); 288 return NULL; 289 } 290 return ptr; 291 } 292 293 #ifdef ELF_CLASS 294 #undef ELF_CLASS 295 #endif 296 297 #define ELF_CLASS ELFCLASS32 298 #include "elf.h" 299 300 #define SZ 32 301 #define elf_word uint32_t 302 #define elf_sword int32_t 303 #define bswapSZs bswap32s 304 #include "hw/elf_ops.h" 305 306 #undef elfhdr 307 #undef elf_phdr 308 #undef elf_shdr 309 #undef elf_sym 310 #undef elf_rela 311 #undef elf_note 312 #undef elf_word 313 #undef elf_sword 314 #undef bswapSZs 315 #undef SZ 316 #define elfhdr elf64_hdr 317 #define elf_phdr elf64_phdr 318 #define elf_note elf64_note 319 #define elf_shdr elf64_shdr 320 #define elf_sym elf64_sym 321 #define elf_rela elf64_rela 322 #define elf_word uint64_t 323 #define elf_sword int64_t 324 #define bswapSZs bswap64s 325 #define SZ 64 326 #include "hw/elf_ops.h" 327 328 const char *load_elf_strerror(int error) 329 { 330 switch (error) { 331 case 0: 332 return "No error"; 333 case ELF_LOAD_FAILED: 334 return "Failed to load ELF"; 335 case ELF_LOAD_NOT_ELF: 336 return "The image is not ELF"; 337 case ELF_LOAD_WRONG_ARCH: 338 return "The image is from incompatible architecture"; 339 case ELF_LOAD_WRONG_ENDIAN: 340 return "The image has incorrect endianness"; 341 default: 342 return "Unknown error"; 343 } 344 } 345 346 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 347 { 348 int fd; 349 uint8_t e_ident_local[EI_NIDENT]; 350 uint8_t *e_ident; 351 size_t hdr_size, off; 352 bool is64l; 353 354 if (!hdr) { 355 hdr = e_ident_local; 356 } 357 e_ident = hdr; 358 359 fd = open(filename, O_RDONLY | O_BINARY); 360 if (fd < 0) { 361 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 362 return; 363 } 364 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 365 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 366 goto fail; 367 } 368 if (e_ident[0] != ELFMAG0 || 369 e_ident[1] != ELFMAG1 || 370 e_ident[2] != ELFMAG2 || 371 e_ident[3] != ELFMAG3) { 372 error_setg(errp, "Bad ELF magic"); 373 goto fail; 374 } 375 376 is64l = e_ident[EI_CLASS] == ELFCLASS64; 377 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 378 if (is64) { 379 *is64 = is64l; 380 } 381 382 off = EI_NIDENT; 383 while (hdr != e_ident_local && off < hdr_size) { 384 size_t br = read(fd, hdr + off, hdr_size - off); 385 switch (br) { 386 case 0: 387 error_setg(errp, "File too short: %s", filename); 388 goto fail; 389 case -1: 390 error_setg_errno(errp, errno, "Failed to read file: %s", 391 filename); 392 goto fail; 393 } 394 off += br; 395 } 396 397 fail: 398 close(fd); 399 } 400 401 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 402 int load_elf(const char *filename, 403 uint64_t (*elf_note_fn)(void *, void *, bool), 404 uint64_t (*translate_fn)(void *, uint64_t), 405 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 406 uint64_t *highaddr, int big_endian, int elf_machine, 407 int clear_lsb, int data_swab) 408 { 409 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 410 pentry, lowaddr, highaddr, big_endian, elf_machine, 411 clear_lsb, data_swab, NULL); 412 } 413 414 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 415 int load_elf_as(const char *filename, 416 uint64_t (*elf_note_fn)(void *, void *, bool), 417 uint64_t (*translate_fn)(void *, uint64_t), 418 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 419 uint64_t *highaddr, int big_endian, int elf_machine, 420 int clear_lsb, int data_swab, AddressSpace *as) 421 { 422 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque, 423 pentry, lowaddr, highaddr, big_endian, elf_machine, 424 clear_lsb, data_swab, as, true); 425 } 426 427 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 428 int load_elf_ram(const char *filename, 429 uint64_t (*elf_note_fn)(void *, void *, bool), 430 uint64_t (*translate_fn)(void *, uint64_t), 431 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 432 uint64_t *highaddr, int big_endian, int elf_machine, 433 int clear_lsb, int data_swab, AddressSpace *as, 434 bool load_rom) 435 { 436 return load_elf_ram_sym(filename, elf_note_fn, 437 translate_fn, translate_opaque, 438 pentry, lowaddr, highaddr, big_endian, 439 elf_machine, clear_lsb, data_swab, as, 440 load_rom, NULL); 441 } 442 443 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 444 int load_elf_ram_sym(const char *filename, 445 uint64_t (*elf_note_fn)(void *, void *, bool), 446 uint64_t (*translate_fn)(void *, uint64_t), 447 void *translate_opaque, uint64_t *pentry, 448 uint64_t *lowaddr, uint64_t *highaddr, int big_endian, 449 int elf_machine, int clear_lsb, int data_swab, 450 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 451 { 452 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; 453 uint8_t e_ident[EI_NIDENT]; 454 455 fd = open(filename, O_RDONLY | O_BINARY); 456 if (fd < 0) { 457 perror(filename); 458 return -1; 459 } 460 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 461 goto fail; 462 if (e_ident[0] != ELFMAG0 || 463 e_ident[1] != ELFMAG1 || 464 e_ident[2] != ELFMAG2 || 465 e_ident[3] != ELFMAG3) { 466 ret = ELF_LOAD_NOT_ELF; 467 goto fail; 468 } 469 #ifdef HOST_WORDS_BIGENDIAN 470 data_order = ELFDATA2MSB; 471 #else 472 data_order = ELFDATA2LSB; 473 #endif 474 must_swab = data_order != e_ident[EI_DATA]; 475 if (big_endian) { 476 target_data_order = ELFDATA2MSB; 477 } else { 478 target_data_order = ELFDATA2LSB; 479 } 480 481 if (target_data_order != e_ident[EI_DATA]) { 482 ret = ELF_LOAD_WRONG_ENDIAN; 483 goto fail; 484 } 485 486 lseek(fd, 0, SEEK_SET); 487 if (e_ident[EI_CLASS] == ELFCLASS64) { 488 ret = load_elf64(filename, fd, elf_note_fn, 489 translate_fn, translate_opaque, must_swab, 490 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 491 data_swab, as, load_rom, sym_cb); 492 } else { 493 ret = load_elf32(filename, fd, elf_note_fn, 494 translate_fn, translate_opaque, must_swab, 495 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 496 data_swab, as, load_rom, sym_cb); 497 } 498 499 fail: 500 close(fd); 501 return ret; 502 } 503 504 static void bswap_uboot_header(uboot_image_header_t *hdr) 505 { 506 #ifndef HOST_WORDS_BIGENDIAN 507 bswap32s(&hdr->ih_magic); 508 bswap32s(&hdr->ih_hcrc); 509 bswap32s(&hdr->ih_time); 510 bswap32s(&hdr->ih_size); 511 bswap32s(&hdr->ih_load); 512 bswap32s(&hdr->ih_ep); 513 bswap32s(&hdr->ih_dcrc); 514 #endif 515 } 516 517 518 #define ZALLOC_ALIGNMENT 16 519 520 static void *zalloc(void *x, unsigned items, unsigned size) 521 { 522 void *p; 523 524 size *= items; 525 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 526 527 p = g_malloc(size); 528 529 return (p); 530 } 531 532 static void zfree(void *x, void *addr) 533 { 534 g_free(addr); 535 } 536 537 538 #define HEAD_CRC 2 539 #define EXTRA_FIELD 4 540 #define ORIG_NAME 8 541 #define COMMENT 0x10 542 #define RESERVED 0xe0 543 544 #define DEFLATED 8 545 546 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 547 { 548 z_stream s; 549 ssize_t dstbytes; 550 int r, i, flags; 551 552 /* skip header */ 553 i = 10; 554 flags = src[3]; 555 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 556 puts ("Error: Bad gzipped data\n"); 557 return -1; 558 } 559 if ((flags & EXTRA_FIELD) != 0) 560 i = 12 + src[10] + (src[11] << 8); 561 if ((flags & ORIG_NAME) != 0) 562 while (src[i++] != 0) 563 ; 564 if ((flags & COMMENT) != 0) 565 while (src[i++] != 0) 566 ; 567 if ((flags & HEAD_CRC) != 0) 568 i += 2; 569 if (i >= srclen) { 570 puts ("Error: gunzip out of data in header\n"); 571 return -1; 572 } 573 574 s.zalloc = zalloc; 575 s.zfree = zfree; 576 577 r = inflateInit2(&s, -MAX_WBITS); 578 if (r != Z_OK) { 579 printf ("Error: inflateInit2() returned %d\n", r); 580 return (-1); 581 } 582 s.next_in = src + i; 583 s.avail_in = srclen - i; 584 s.next_out = dst; 585 s.avail_out = dstlen; 586 r = inflate(&s, Z_FINISH); 587 if (r != Z_OK && r != Z_STREAM_END) { 588 printf ("Error: inflate() returned %d\n", r); 589 return -1; 590 } 591 dstbytes = s.next_out - (unsigned char *) dst; 592 inflateEnd(&s); 593 594 return dstbytes; 595 } 596 597 /* Load a U-Boot image. */ 598 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 599 int *is_linux, uint8_t image_type, 600 uint64_t (*translate_fn)(void *, uint64_t), 601 void *translate_opaque, AddressSpace *as) 602 { 603 int fd; 604 int size; 605 hwaddr address; 606 uboot_image_header_t h; 607 uboot_image_header_t *hdr = &h; 608 uint8_t *data = NULL; 609 int ret = -1; 610 int do_uncompress = 0; 611 612 fd = open(filename, O_RDONLY | O_BINARY); 613 if (fd < 0) 614 return -1; 615 616 size = read(fd, hdr, sizeof(uboot_image_header_t)); 617 if (size < sizeof(uboot_image_header_t)) { 618 goto out; 619 } 620 621 bswap_uboot_header(hdr); 622 623 if (hdr->ih_magic != IH_MAGIC) 624 goto out; 625 626 if (hdr->ih_type != image_type) { 627 if (!(image_type == IH_TYPE_KERNEL && 628 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 629 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 630 image_type); 631 goto out; 632 } 633 } 634 635 /* TODO: Implement other image types. */ 636 switch (hdr->ih_type) { 637 case IH_TYPE_KERNEL_NOLOAD: 638 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 639 fprintf(stderr, "this image format (kernel_noload) cannot be " 640 "loaded on this machine type"); 641 goto out; 642 } 643 644 hdr->ih_load = *loadaddr + sizeof(*hdr); 645 hdr->ih_ep += hdr->ih_load; 646 /* fall through */ 647 case IH_TYPE_KERNEL: 648 address = hdr->ih_load; 649 if (translate_fn) { 650 address = translate_fn(translate_opaque, address); 651 } 652 if (loadaddr) { 653 *loadaddr = hdr->ih_load; 654 } 655 656 switch (hdr->ih_comp) { 657 case IH_COMP_NONE: 658 break; 659 case IH_COMP_GZIP: 660 do_uncompress = 1; 661 break; 662 default: 663 fprintf(stderr, 664 "Unable to load u-boot images with compression type %d\n", 665 hdr->ih_comp); 666 goto out; 667 } 668 669 if (ep) { 670 *ep = hdr->ih_ep; 671 } 672 673 /* TODO: Check CPU type. */ 674 if (is_linux) { 675 if (hdr->ih_os == IH_OS_LINUX) { 676 *is_linux = 1; 677 } else { 678 *is_linux = 0; 679 } 680 } 681 682 break; 683 case IH_TYPE_RAMDISK: 684 address = *loadaddr; 685 break; 686 default: 687 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 688 goto out; 689 } 690 691 data = g_malloc(hdr->ih_size); 692 693 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 694 fprintf(stderr, "Error reading file\n"); 695 goto out; 696 } 697 698 if (do_uncompress) { 699 uint8_t *compressed_data; 700 size_t max_bytes; 701 ssize_t bytes; 702 703 compressed_data = data; 704 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 705 data = g_malloc(max_bytes); 706 707 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 708 g_free(compressed_data); 709 if (bytes < 0) { 710 fprintf(stderr, "Unable to decompress gzipped image!\n"); 711 goto out; 712 } 713 hdr->ih_size = bytes; 714 } 715 716 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 717 718 ret = hdr->ih_size; 719 720 out: 721 g_free(data); 722 close(fd); 723 return ret; 724 } 725 726 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 727 int *is_linux, 728 uint64_t (*translate_fn)(void *, uint64_t), 729 void *translate_opaque) 730 { 731 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 732 translate_fn, translate_opaque, NULL); 733 } 734 735 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 736 int *is_linux, 737 uint64_t (*translate_fn)(void *, uint64_t), 738 void *translate_opaque, AddressSpace *as) 739 { 740 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 741 translate_fn, translate_opaque, as); 742 } 743 744 /* Load a ramdisk. */ 745 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 746 { 747 return load_ramdisk_as(filename, addr, max_sz, NULL); 748 } 749 750 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 751 AddressSpace *as) 752 { 753 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 754 NULL, NULL, as); 755 } 756 757 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 758 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 759 uint8_t **buffer) 760 { 761 uint8_t *compressed_data = NULL; 762 uint8_t *data = NULL; 763 gsize len; 764 ssize_t bytes; 765 int ret = -1; 766 767 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 768 NULL)) { 769 goto out; 770 } 771 772 /* Is it a gzip-compressed file? */ 773 if (len < 2 || 774 compressed_data[0] != 0x1f || 775 compressed_data[1] != 0x8b) { 776 goto out; 777 } 778 779 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 780 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 781 } 782 783 data = g_malloc(max_sz); 784 bytes = gunzip(data, max_sz, compressed_data, len); 785 if (bytes < 0) { 786 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 787 filename); 788 goto out; 789 } 790 791 /* trim to actual size and return to caller */ 792 *buffer = g_realloc(data, bytes); 793 ret = bytes; 794 /* ownership has been transferred to caller */ 795 data = NULL; 796 797 out: 798 g_free(compressed_data); 799 g_free(data); 800 return ret; 801 } 802 803 /* Load a gzip-compressed kernel. */ 804 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 805 { 806 int bytes; 807 uint8_t *data; 808 809 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 810 if (bytes != -1) { 811 rom_add_blob_fixed(filename, data, bytes, addr); 812 g_free(data); 813 } 814 return bytes; 815 } 816 817 /* 818 * Functions for reboot-persistent memory regions. 819 * - used for vga bios and option roms. 820 * - also linux kernel (-kernel / -initrd). 821 */ 822 823 typedef struct Rom Rom; 824 825 struct Rom { 826 char *name; 827 char *path; 828 829 /* datasize is the amount of memory allocated in "data". If datasize is less 830 * than romsize, it means that the area from datasize to romsize is filled 831 * with zeros. 832 */ 833 size_t romsize; 834 size_t datasize; 835 836 uint8_t *data; 837 MemoryRegion *mr; 838 AddressSpace *as; 839 int isrom; 840 char *fw_dir; 841 char *fw_file; 842 GMappedFile *mapped_file; 843 844 bool committed; 845 846 hwaddr addr; 847 QTAILQ_ENTRY(Rom) next; 848 }; 849 850 static FWCfgState *fw_cfg; 851 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 852 853 /* 854 * rom->data can be heap-allocated or memory-mapped (e.g. when added with 855 * rom_add_elf_program()) 856 */ 857 static void rom_free_data(Rom *rom) 858 { 859 if (rom->mapped_file) { 860 g_mapped_file_unref(rom->mapped_file); 861 rom->mapped_file = NULL; 862 } else { 863 g_free(rom->data); 864 } 865 866 rom->data = NULL; 867 } 868 869 static void rom_free(Rom *rom) 870 { 871 rom_free_data(rom); 872 g_free(rom->path); 873 g_free(rom->name); 874 g_free(rom->fw_dir); 875 g_free(rom->fw_file); 876 g_free(rom); 877 } 878 879 static inline bool rom_order_compare(Rom *rom, Rom *item) 880 { 881 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 882 (rom->as == item->as && rom->addr >= item->addr); 883 } 884 885 static void rom_insert(Rom *rom) 886 { 887 Rom *item; 888 889 if (roms_loaded) { 890 hw_error ("ROM images must be loaded at startup\n"); 891 } 892 893 /* The user didn't specify an address space, this is the default */ 894 if (!rom->as) { 895 rom->as = &address_space_memory; 896 } 897 898 rom->committed = false; 899 900 /* List is ordered by load address in the same address space */ 901 QTAILQ_FOREACH(item, &roms, next) { 902 if (rom_order_compare(rom, item)) { 903 continue; 904 } 905 QTAILQ_INSERT_BEFORE(item, rom, next); 906 return; 907 } 908 QTAILQ_INSERT_TAIL(&roms, rom, next); 909 } 910 911 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 912 { 913 if (fw_cfg) { 914 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 915 } 916 } 917 918 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 919 { 920 void *data; 921 922 rom->mr = g_malloc(sizeof(*rom->mr)); 923 memory_region_init_resizeable_ram(rom->mr, owner, name, 924 rom->datasize, rom->romsize, 925 fw_cfg_resized, 926 &error_fatal); 927 memory_region_set_readonly(rom->mr, ro); 928 vmstate_register_ram_global(rom->mr); 929 930 data = memory_region_get_ram_ptr(rom->mr); 931 memcpy(data, rom->data, rom->datasize); 932 933 return data; 934 } 935 936 int rom_add_file(const char *file, const char *fw_dir, 937 hwaddr addr, int32_t bootindex, 938 bool option_rom, MemoryRegion *mr, 939 AddressSpace *as) 940 { 941 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 942 Rom *rom; 943 int rc, fd = -1; 944 char devpath[100]; 945 946 if (as && mr) { 947 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 948 "not valid when loading a rom\n"); 949 /* We haven't allocated anything so we don't need any cleanup */ 950 return -1; 951 } 952 953 rom = g_malloc0(sizeof(*rom)); 954 rom->name = g_strdup(file); 955 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 956 rom->as = as; 957 if (rom->path == NULL) { 958 rom->path = g_strdup(file); 959 } 960 961 fd = open(rom->path, O_RDONLY | O_BINARY); 962 if (fd == -1) { 963 fprintf(stderr, "Could not open option rom '%s': %s\n", 964 rom->path, strerror(errno)); 965 goto err; 966 } 967 968 if (fw_dir) { 969 rom->fw_dir = g_strdup(fw_dir); 970 rom->fw_file = g_strdup(file); 971 } 972 rom->addr = addr; 973 rom->romsize = lseek(fd, 0, SEEK_END); 974 if (rom->romsize == -1) { 975 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 976 rom->name, strerror(errno)); 977 goto err; 978 } 979 980 rom->datasize = rom->romsize; 981 rom->data = g_malloc0(rom->datasize); 982 lseek(fd, 0, SEEK_SET); 983 rc = read(fd, rom->data, rom->datasize); 984 if (rc != rom->datasize) { 985 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 986 rom->name, rc, rom->datasize); 987 goto err; 988 } 989 close(fd); 990 rom_insert(rom); 991 if (rom->fw_file && fw_cfg) { 992 const char *basename; 993 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 994 void *data; 995 996 basename = strrchr(rom->fw_file, '/'); 997 if (basename) { 998 basename++; 999 } else { 1000 basename = rom->fw_file; 1001 } 1002 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 1003 basename); 1004 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1005 1006 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 1007 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 1008 } else { 1009 data = rom->data; 1010 } 1011 1012 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 1013 } else { 1014 if (mr) { 1015 rom->mr = mr; 1016 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 1017 } else { 1018 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 1019 } 1020 } 1021 1022 add_boot_device_path(bootindex, NULL, devpath); 1023 return 0; 1024 1025 err: 1026 if (fd != -1) 1027 close(fd); 1028 1029 rom_free(rom); 1030 return -1; 1031 } 1032 1033 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1034 size_t max_len, hwaddr addr, const char *fw_file_name, 1035 FWCfgCallback fw_callback, void *callback_opaque, 1036 AddressSpace *as, bool read_only) 1037 { 1038 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1039 Rom *rom; 1040 MemoryRegion *mr = NULL; 1041 1042 rom = g_malloc0(sizeof(*rom)); 1043 rom->name = g_strdup(name); 1044 rom->as = as; 1045 rom->addr = addr; 1046 rom->romsize = max_len ? max_len : len; 1047 rom->datasize = len; 1048 g_assert(rom->romsize >= rom->datasize); 1049 rom->data = g_malloc0(rom->datasize); 1050 memcpy(rom->data, blob, len); 1051 rom_insert(rom); 1052 if (fw_file_name && fw_cfg) { 1053 char devpath[100]; 1054 void *data; 1055 1056 if (read_only) { 1057 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1058 } else { 1059 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1060 } 1061 1062 if (mc->rom_file_has_mr) { 1063 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1064 mr = rom->mr; 1065 } else { 1066 data = rom->data; 1067 } 1068 1069 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1070 fw_callback, NULL, callback_opaque, 1071 data, rom->datasize, read_only); 1072 } 1073 return mr; 1074 } 1075 1076 /* This function is specific for elf program because we don't need to allocate 1077 * all the rom. We just allocate the first part and the rest is just zeros. This 1078 * is why romsize and datasize are different. Also, this function takes its own 1079 * reference to "mapped_file", so we don't have to allocate and copy the buffer. 1080 */ 1081 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, 1082 size_t datasize, size_t romsize, hwaddr addr, 1083 AddressSpace *as) 1084 { 1085 Rom *rom; 1086 1087 rom = g_malloc0(sizeof(*rom)); 1088 rom->name = g_strdup(name); 1089 rom->addr = addr; 1090 rom->datasize = datasize; 1091 rom->romsize = romsize; 1092 rom->data = data; 1093 rom->as = as; 1094 1095 if (mapped_file && data) { 1096 g_mapped_file_ref(mapped_file); 1097 rom->mapped_file = mapped_file; 1098 } 1099 1100 rom_insert(rom); 1101 return 0; 1102 } 1103 1104 int rom_add_vga(const char *file) 1105 { 1106 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1107 } 1108 1109 int rom_add_option(const char *file, int32_t bootindex) 1110 { 1111 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1112 } 1113 1114 static void rom_reset(void *unused) 1115 { 1116 Rom *rom; 1117 1118 /* 1119 * We don't need to fill in the RAM with ROM data because we'll fill 1120 * the data in during the next incoming migration in all cases. Note 1121 * that some of those RAMs can actually be modified by the guest on ARM 1122 * so this is probably the only right thing to do here. 1123 */ 1124 if (runstate_check(RUN_STATE_INMIGRATE)) 1125 return; 1126 1127 QTAILQ_FOREACH(rom, &roms, next) { 1128 if (rom->fw_file) { 1129 continue; 1130 } 1131 if (rom->data == NULL) { 1132 continue; 1133 } 1134 if (rom->mr) { 1135 void *host = memory_region_get_ram_ptr(rom->mr); 1136 memcpy(host, rom->data, rom->datasize); 1137 } else { 1138 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1139 rom->data, rom->datasize); 1140 } 1141 if (rom->isrom) { 1142 /* rom needs to be written only once */ 1143 rom_free_data(rom); 1144 } 1145 /* 1146 * The rom loader is really on the same level as firmware in the guest 1147 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1148 * that the instruction cache for that new region is clear, so that the 1149 * CPU definitely fetches its instructions from the just written data. 1150 */ 1151 cpu_flush_icache_range(rom->addr, rom->datasize); 1152 } 1153 } 1154 1155 int rom_check_and_register_reset(void) 1156 { 1157 hwaddr addr = 0; 1158 MemoryRegionSection section; 1159 Rom *rom; 1160 AddressSpace *as = NULL; 1161 1162 QTAILQ_FOREACH(rom, &roms, next) { 1163 if (rom->fw_file) { 1164 continue; 1165 } 1166 if (!rom->mr) { 1167 if ((addr > rom->addr) && (as == rom->as)) { 1168 fprintf(stderr, "rom: requested regions overlap " 1169 "(rom %s. free=0x" TARGET_FMT_plx 1170 ", addr=0x" TARGET_FMT_plx ")\n", 1171 rom->name, addr, rom->addr); 1172 return -1; 1173 } 1174 addr = rom->addr; 1175 addr += rom->romsize; 1176 as = rom->as; 1177 } 1178 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1179 rom->addr, 1); 1180 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1181 memory_region_unref(section.mr); 1182 } 1183 qemu_register_reset(rom_reset, NULL); 1184 roms_loaded = 1; 1185 return 0; 1186 } 1187 1188 void rom_set_fw(FWCfgState *f) 1189 { 1190 fw_cfg = f; 1191 } 1192 1193 void rom_set_order_override(int order) 1194 { 1195 if (!fw_cfg) 1196 return; 1197 fw_cfg_set_order_override(fw_cfg, order); 1198 } 1199 1200 void rom_reset_order_override(void) 1201 { 1202 if (!fw_cfg) 1203 return; 1204 fw_cfg_reset_order_override(fw_cfg); 1205 } 1206 1207 void rom_transaction_begin(void) 1208 { 1209 Rom *rom; 1210 1211 /* Ignore ROMs added without the transaction API */ 1212 QTAILQ_FOREACH(rom, &roms, next) { 1213 rom->committed = true; 1214 } 1215 } 1216 1217 void rom_transaction_end(bool commit) 1218 { 1219 Rom *rom; 1220 Rom *tmp; 1221 1222 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1223 if (rom->committed) { 1224 continue; 1225 } 1226 if (commit) { 1227 rom->committed = true; 1228 } else { 1229 QTAILQ_REMOVE(&roms, rom, next); 1230 rom_free(rom); 1231 } 1232 } 1233 } 1234 1235 static Rom *find_rom(hwaddr addr, size_t size) 1236 { 1237 Rom *rom; 1238 1239 QTAILQ_FOREACH(rom, &roms, next) { 1240 if (rom->fw_file) { 1241 continue; 1242 } 1243 if (rom->mr) { 1244 continue; 1245 } 1246 if (rom->addr > addr) { 1247 continue; 1248 } 1249 if (rom->addr + rom->romsize < addr + size) { 1250 continue; 1251 } 1252 return rom; 1253 } 1254 return NULL; 1255 } 1256 1257 /* 1258 * Copies memory from registered ROMs to dest. Any memory that is contained in 1259 * a ROM between addr and addr + size is copied. Note that this can involve 1260 * multiple ROMs, which need not start at addr and need not end at addr + size. 1261 */ 1262 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1263 { 1264 hwaddr end = addr + size; 1265 uint8_t *s, *d = dest; 1266 size_t l = 0; 1267 Rom *rom; 1268 1269 QTAILQ_FOREACH(rom, &roms, next) { 1270 if (rom->fw_file) { 1271 continue; 1272 } 1273 if (rom->mr) { 1274 continue; 1275 } 1276 if (rom->addr + rom->romsize < addr) { 1277 continue; 1278 } 1279 if (rom->addr > end) { 1280 break; 1281 } 1282 1283 d = dest + (rom->addr - addr); 1284 s = rom->data; 1285 l = rom->datasize; 1286 1287 if ((d + l) > (dest + size)) { 1288 l = dest - d; 1289 } 1290 1291 if (l > 0) { 1292 memcpy(d, s, l); 1293 } 1294 1295 if (rom->romsize > rom->datasize) { 1296 /* If datasize is less than romsize, it means that we didn't 1297 * allocate all the ROM because the trailing data are only zeros. 1298 */ 1299 1300 d += l; 1301 l = rom->romsize - rom->datasize; 1302 1303 if ((d + l) > (dest + size)) { 1304 /* Rom size doesn't fit in the destination area. Adjust to avoid 1305 * overflow. 1306 */ 1307 l = dest - d; 1308 } 1309 1310 if (l > 0) { 1311 memset(d, 0x0, l); 1312 } 1313 } 1314 } 1315 1316 return (d + l) - dest; 1317 } 1318 1319 void *rom_ptr(hwaddr addr, size_t size) 1320 { 1321 Rom *rom; 1322 1323 rom = find_rom(addr, size); 1324 if (!rom || !rom->data) 1325 return NULL; 1326 return rom->data + (addr - rom->addr); 1327 } 1328 1329 void hmp_info_roms(Monitor *mon, const QDict *qdict) 1330 { 1331 Rom *rom; 1332 1333 QTAILQ_FOREACH(rom, &roms, next) { 1334 if (rom->mr) { 1335 monitor_printf(mon, "%s" 1336 " size=0x%06zx name=\"%s\"\n", 1337 memory_region_name(rom->mr), 1338 rom->romsize, 1339 rom->name); 1340 } else if (!rom->fw_file) { 1341 monitor_printf(mon, "addr=" TARGET_FMT_plx 1342 " size=0x%06zx mem=%s name=\"%s\"\n", 1343 rom->addr, rom->romsize, 1344 rom->isrom ? "rom" : "ram", 1345 rom->name); 1346 } else { 1347 monitor_printf(mon, "fw=%s/%s" 1348 " size=0x%06zx name=\"%s\"\n", 1349 rom->fw_dir, 1350 rom->fw_file, 1351 rom->romsize, 1352 rom->name); 1353 } 1354 } 1355 } 1356 1357 typedef enum HexRecord HexRecord; 1358 enum HexRecord { 1359 DATA_RECORD = 0, 1360 EOF_RECORD, 1361 EXT_SEG_ADDR_RECORD, 1362 START_SEG_ADDR_RECORD, 1363 EXT_LINEAR_ADDR_RECORD, 1364 START_LINEAR_ADDR_RECORD, 1365 }; 1366 1367 /* Each record contains a 16-bit address which is combined with the upper 16 1368 * bits of the implicit "next address" to form a 32-bit address. 1369 */ 1370 #define NEXT_ADDR_MASK 0xffff0000 1371 1372 #define DATA_FIELD_MAX_LEN 0xff 1373 #define LEN_EXCEPT_DATA 0x5 1374 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1375 * sizeof(checksum) */ 1376 typedef struct { 1377 uint8_t byte_count; 1378 uint16_t address; 1379 uint8_t record_type; 1380 uint8_t data[DATA_FIELD_MAX_LEN]; 1381 uint8_t checksum; 1382 } HexLine; 1383 1384 /* return 0 or -1 if error */ 1385 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1386 uint32_t *index, const bool in_process) 1387 { 1388 /* +-------+---------------+-------+---------------------+--------+ 1389 * | byte | |record | | | 1390 * | count | address | type | data |checksum| 1391 * +-------+---------------+-------+---------------------+--------+ 1392 * ^ ^ ^ ^ ^ ^ 1393 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1394 */ 1395 uint8_t value = 0; 1396 uint32_t idx = *index; 1397 /* ignore space */ 1398 if (g_ascii_isspace(c)) { 1399 return true; 1400 } 1401 if (!g_ascii_isxdigit(c) || !in_process) { 1402 return false; 1403 } 1404 value = g_ascii_xdigit_value(c); 1405 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1406 if (idx < 2) { 1407 line->byte_count |= value; 1408 } else if (2 <= idx && idx < 6) { 1409 line->address <<= 4; 1410 line->address += g_ascii_xdigit_value(c); 1411 } else if (6 <= idx && idx < 8) { 1412 line->record_type |= value; 1413 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1414 line->data[(idx - 8) >> 1] |= value; 1415 } else if (8 + 2 * line->byte_count <= idx && 1416 idx < 10 + 2 * line->byte_count) { 1417 line->checksum |= value; 1418 } else { 1419 return false; 1420 } 1421 *our_checksum += value; 1422 ++(*index); 1423 return true; 1424 } 1425 1426 typedef struct { 1427 const char *filename; 1428 HexLine line; 1429 uint8_t *bin_buf; 1430 hwaddr *start_addr; 1431 int total_size; 1432 uint32_t next_address_to_write; 1433 uint32_t current_address; 1434 uint32_t current_rom_index; 1435 uint32_t rom_start_address; 1436 AddressSpace *as; 1437 } HexParser; 1438 1439 /* return size or -1 if error */ 1440 static int handle_record_type(HexParser *parser) 1441 { 1442 HexLine *line = &(parser->line); 1443 switch (line->record_type) { 1444 case DATA_RECORD: 1445 parser->current_address = 1446 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1447 /* verify this is a contiguous block of memory */ 1448 if (parser->current_address != parser->next_address_to_write) { 1449 if (parser->current_rom_index != 0) { 1450 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1451 parser->current_rom_index, 1452 parser->rom_start_address, parser->as); 1453 } 1454 parser->rom_start_address = parser->current_address; 1455 parser->current_rom_index = 0; 1456 } 1457 1458 /* copy from line buffer to output bin_buf */ 1459 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1460 line->byte_count); 1461 parser->current_rom_index += line->byte_count; 1462 parser->total_size += line->byte_count; 1463 /* save next address to write */ 1464 parser->next_address_to_write = 1465 parser->current_address + line->byte_count; 1466 break; 1467 1468 case EOF_RECORD: 1469 if (parser->current_rom_index != 0) { 1470 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1471 parser->current_rom_index, 1472 parser->rom_start_address, parser->as); 1473 } 1474 return parser->total_size; 1475 case EXT_SEG_ADDR_RECORD: 1476 case EXT_LINEAR_ADDR_RECORD: 1477 if (line->byte_count != 2 && line->address != 0) { 1478 return -1; 1479 } 1480 1481 if (parser->current_rom_index != 0) { 1482 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1483 parser->current_rom_index, 1484 parser->rom_start_address, parser->as); 1485 } 1486 1487 /* save next address to write, 1488 * in case of non-contiguous block of memory */ 1489 parser->next_address_to_write = (line->data[0] << 12) | 1490 (line->data[1] << 4); 1491 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1492 parser->next_address_to_write <<= 12; 1493 } 1494 1495 parser->rom_start_address = parser->next_address_to_write; 1496 parser->current_rom_index = 0; 1497 break; 1498 1499 case START_SEG_ADDR_RECORD: 1500 if (line->byte_count != 4 && line->address != 0) { 1501 return -1; 1502 } 1503 1504 /* x86 16-bit CS:IP segmented addressing */ 1505 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1506 ((line->data[2] << 8) | line->data[3]); 1507 break; 1508 1509 case START_LINEAR_ADDR_RECORD: 1510 if (line->byte_count != 4 && line->address != 0) { 1511 return -1; 1512 } 1513 1514 *(parser->start_addr) = ldl_be_p(line->data); 1515 break; 1516 1517 default: 1518 return -1; 1519 } 1520 1521 return parser->total_size; 1522 } 1523 1524 /* return size or -1 if error */ 1525 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1526 size_t hex_blob_size, AddressSpace *as) 1527 { 1528 bool in_process = false; /* avoid re-enter and 1529 * check whether record begin with ':' */ 1530 uint8_t *end = hex_blob + hex_blob_size; 1531 uint8_t our_checksum = 0; 1532 uint32_t record_index = 0; 1533 HexParser parser = { 1534 .filename = filename, 1535 .bin_buf = g_malloc(hex_blob_size), 1536 .start_addr = addr, 1537 .as = as, 1538 }; 1539 1540 rom_transaction_begin(); 1541 1542 for (; hex_blob < end; ++hex_blob) { 1543 switch (*hex_blob) { 1544 case '\r': 1545 case '\n': 1546 if (!in_process) { 1547 break; 1548 } 1549 1550 in_process = false; 1551 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1552 record_index || 1553 our_checksum != 0) { 1554 parser.total_size = -1; 1555 goto out; 1556 } 1557 1558 if (handle_record_type(&parser) == -1) { 1559 parser.total_size = -1; 1560 goto out; 1561 } 1562 break; 1563 1564 /* start of a new record. */ 1565 case ':': 1566 memset(&parser.line, 0, sizeof(HexLine)); 1567 in_process = true; 1568 record_index = 0; 1569 break; 1570 1571 /* decoding lines */ 1572 default: 1573 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1574 &record_index, in_process)) { 1575 parser.total_size = -1; 1576 goto out; 1577 } 1578 break; 1579 } 1580 } 1581 1582 out: 1583 g_free(parser.bin_buf); 1584 rom_transaction_end(parser.total_size != -1); 1585 return parser.total_size; 1586 } 1587 1588 /* return size or -1 if error */ 1589 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as) 1590 { 1591 gsize hex_blob_size; 1592 gchar *hex_blob; 1593 int total_size = 0; 1594 1595 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1596 return -1; 1597 } 1598 1599 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1600 hex_blob_size, as); 1601 1602 g_free(hex_blob); 1603 return total_size; 1604 } 1605