1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "hw/hw.h" 47 #include "disas/disas.h" 48 #include "monitor/monitor.h" 49 #include "sysemu/sysemu.h" 50 #include "uboot_image.h" 51 #include "hw/loader.h" 52 #include "hw/nvram/fw_cfg.h" 53 #include "exec/memory.h" 54 #include "exec/address-spaces.h" 55 #include "hw/boards.h" 56 57 #include <zlib.h> 58 59 static int roms_loaded; 60 61 /* return the size or -1 if error */ 62 int get_image_size(const char *filename) 63 { 64 int fd, size; 65 fd = open(filename, O_RDONLY | O_BINARY); 66 if (fd < 0) 67 return -1; 68 size = lseek(fd, 0, SEEK_END); 69 close(fd); 70 return size; 71 } 72 73 /* return the size or -1 if error */ 74 /* deprecated, because caller does not specify buffer size! */ 75 int load_image(const char *filename, uint8_t *addr) 76 { 77 int fd, size; 78 fd = open(filename, O_RDONLY | O_BINARY); 79 if (fd < 0) 80 return -1; 81 size = lseek(fd, 0, SEEK_END); 82 if (size == -1) { 83 fprintf(stderr, "file %-20s: get size error: %s\n", 84 filename, strerror(errno)); 85 close(fd); 86 return -1; 87 } 88 89 lseek(fd, 0, SEEK_SET); 90 if (read(fd, addr, size) != size) { 91 close(fd); 92 return -1; 93 } 94 close(fd); 95 return size; 96 } 97 98 /* return the size or -1 if error */ 99 ssize_t load_image_size(const char *filename, void *addr, size_t size) 100 { 101 int fd; 102 ssize_t actsize; 103 104 fd = open(filename, O_RDONLY | O_BINARY); 105 if (fd < 0) { 106 return -1; 107 } 108 109 actsize = read(fd, addr, size); 110 if (actsize < 0) { 111 close(fd); 112 return -1; 113 } 114 close(fd); 115 116 return actsize; 117 } 118 119 /* read()-like version */ 120 ssize_t read_targphys(const char *name, 121 int fd, hwaddr dst_addr, size_t nbytes) 122 { 123 uint8_t *buf; 124 ssize_t did; 125 126 buf = g_malloc(nbytes); 127 did = read(fd, buf, nbytes); 128 if (did > 0) 129 rom_add_blob_fixed("read", buf, did, dst_addr); 130 g_free(buf); 131 return did; 132 } 133 134 /* return the size or -1 if error */ 135 int load_image_targphys(const char *filename, 136 hwaddr addr, uint64_t max_sz) 137 { 138 int size; 139 140 size = get_image_size(filename); 141 if (size > max_sz) { 142 return -1; 143 } 144 if (size > 0) { 145 rom_add_file_fixed(filename, addr, -1); 146 } 147 return size; 148 } 149 150 int load_image_mr(const char *filename, MemoryRegion *mr) 151 { 152 int size; 153 154 if (!memory_access_is_direct(mr, false)) { 155 /* Can only load an image into RAM or ROM */ 156 return -1; 157 } 158 159 size = get_image_size(filename); 160 161 if (size > memory_region_size(mr)) { 162 return -1; 163 } 164 if (size > 0) { 165 if (rom_add_file_mr(filename, mr, -1) < 0) { 166 return -1; 167 } 168 } 169 return size; 170 } 171 172 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 173 const char *source) 174 { 175 const char *nulp; 176 char *ptr; 177 178 if (buf_size <= 0) return; 179 nulp = memchr(source, 0, buf_size); 180 if (nulp) { 181 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 182 } else { 183 rom_add_blob_fixed(name, source, buf_size, dest); 184 ptr = rom_ptr(dest + buf_size - 1); 185 *ptr = 0; 186 } 187 } 188 189 /* A.OUT loader */ 190 191 struct exec 192 { 193 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 194 uint32_t a_text; /* length of text, in bytes */ 195 uint32_t a_data; /* length of data, in bytes */ 196 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 197 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 198 uint32_t a_entry; /* start address */ 199 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 200 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 201 }; 202 203 static void bswap_ahdr(struct exec *e) 204 { 205 bswap32s(&e->a_info); 206 bswap32s(&e->a_text); 207 bswap32s(&e->a_data); 208 bswap32s(&e->a_bss); 209 bswap32s(&e->a_syms); 210 bswap32s(&e->a_entry); 211 bswap32s(&e->a_trsize); 212 bswap32s(&e->a_drsize); 213 } 214 215 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 216 #define OMAGIC 0407 217 #define NMAGIC 0410 218 #define ZMAGIC 0413 219 #define QMAGIC 0314 220 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 221 #define N_TXTOFF(x) \ 222 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 223 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 224 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 225 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 226 227 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 228 229 #define N_DATADDR(x, target_page_size) \ 230 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 231 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 232 233 234 int load_aout(const char *filename, hwaddr addr, int max_sz, 235 int bswap_needed, hwaddr target_page_size) 236 { 237 int fd; 238 ssize_t size, ret; 239 struct exec e; 240 uint32_t magic; 241 242 fd = open(filename, O_RDONLY | O_BINARY); 243 if (fd < 0) 244 return -1; 245 246 size = read(fd, &e, sizeof(e)); 247 if (size < 0) 248 goto fail; 249 250 if (bswap_needed) { 251 bswap_ahdr(&e); 252 } 253 254 magic = N_MAGIC(e); 255 switch (magic) { 256 case ZMAGIC: 257 case QMAGIC: 258 case OMAGIC: 259 if (e.a_text + e.a_data > max_sz) 260 goto fail; 261 lseek(fd, N_TXTOFF(e), SEEK_SET); 262 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 263 if (size < 0) 264 goto fail; 265 break; 266 case NMAGIC: 267 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 268 goto fail; 269 lseek(fd, N_TXTOFF(e), SEEK_SET); 270 size = read_targphys(filename, fd, addr, e.a_text); 271 if (size < 0) 272 goto fail; 273 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 274 e.a_data); 275 if (ret < 0) 276 goto fail; 277 size += ret; 278 break; 279 default: 280 goto fail; 281 } 282 close(fd); 283 return size; 284 fail: 285 close(fd); 286 return -1; 287 } 288 289 /* ELF loader */ 290 291 static void *load_at(int fd, off_t offset, size_t size) 292 { 293 void *ptr; 294 if (lseek(fd, offset, SEEK_SET) < 0) 295 return NULL; 296 ptr = g_malloc(size); 297 if (read(fd, ptr, size) != size) { 298 g_free(ptr); 299 return NULL; 300 } 301 return ptr; 302 } 303 304 #ifdef ELF_CLASS 305 #undef ELF_CLASS 306 #endif 307 308 #define ELF_CLASS ELFCLASS32 309 #include "elf.h" 310 311 #define SZ 32 312 #define elf_word uint32_t 313 #define elf_sword int32_t 314 #define bswapSZs bswap32s 315 #include "hw/elf_ops.h" 316 317 #undef elfhdr 318 #undef elf_phdr 319 #undef elf_shdr 320 #undef elf_sym 321 #undef elf_rela 322 #undef elf_note 323 #undef elf_word 324 #undef elf_sword 325 #undef bswapSZs 326 #undef SZ 327 #define elfhdr elf64_hdr 328 #define elf_phdr elf64_phdr 329 #define elf_note elf64_note 330 #define elf_shdr elf64_shdr 331 #define elf_sym elf64_sym 332 #define elf_rela elf64_rela 333 #define elf_word uint64_t 334 #define elf_sword int64_t 335 #define bswapSZs bswap64s 336 #define SZ 64 337 #include "hw/elf_ops.h" 338 339 const char *load_elf_strerror(int error) 340 { 341 switch (error) { 342 case 0: 343 return "No error"; 344 case ELF_LOAD_FAILED: 345 return "Failed to load ELF"; 346 case ELF_LOAD_NOT_ELF: 347 return "The image is not ELF"; 348 case ELF_LOAD_WRONG_ARCH: 349 return "The image is from incompatible architecture"; 350 case ELF_LOAD_WRONG_ENDIAN: 351 return "The image has incorrect endianness"; 352 default: 353 return "Unknown error"; 354 } 355 } 356 357 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 358 { 359 int fd; 360 uint8_t e_ident_local[EI_NIDENT]; 361 uint8_t *e_ident; 362 size_t hdr_size, off; 363 bool is64l; 364 365 if (!hdr) { 366 hdr = e_ident_local; 367 } 368 e_ident = hdr; 369 370 fd = open(filename, O_RDONLY | O_BINARY); 371 if (fd < 0) { 372 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 373 return; 374 } 375 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 376 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 377 goto fail; 378 } 379 if (e_ident[0] != ELFMAG0 || 380 e_ident[1] != ELFMAG1 || 381 e_ident[2] != ELFMAG2 || 382 e_ident[3] != ELFMAG3) { 383 error_setg(errp, "Bad ELF magic"); 384 goto fail; 385 } 386 387 is64l = e_ident[EI_CLASS] == ELFCLASS64; 388 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 389 if (is64) { 390 *is64 = is64l; 391 } 392 393 off = EI_NIDENT; 394 while (hdr != e_ident_local && off < hdr_size) { 395 size_t br = read(fd, hdr + off, hdr_size - off); 396 switch (br) { 397 case 0: 398 error_setg(errp, "File too short: %s", filename); 399 goto fail; 400 case -1: 401 error_setg_errno(errp, errno, "Failed to read file: %s", 402 filename); 403 goto fail; 404 } 405 off += br; 406 } 407 408 fail: 409 close(fd); 410 } 411 412 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 413 int load_elf(const char *filename, uint64_t (*translate_fn)(void *, uint64_t), 414 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 415 uint64_t *highaddr, int big_endian, int elf_machine, 416 int clear_lsb, int data_swab) 417 { 418 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; 419 uint8_t e_ident[EI_NIDENT]; 420 421 fd = open(filename, O_RDONLY | O_BINARY); 422 if (fd < 0) { 423 perror(filename); 424 return -1; 425 } 426 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 427 goto fail; 428 if (e_ident[0] != ELFMAG0 || 429 e_ident[1] != ELFMAG1 || 430 e_ident[2] != ELFMAG2 || 431 e_ident[3] != ELFMAG3) { 432 ret = ELF_LOAD_NOT_ELF; 433 goto fail; 434 } 435 #ifdef HOST_WORDS_BIGENDIAN 436 data_order = ELFDATA2MSB; 437 #else 438 data_order = ELFDATA2LSB; 439 #endif 440 must_swab = data_order != e_ident[EI_DATA]; 441 if (big_endian) { 442 target_data_order = ELFDATA2MSB; 443 } else { 444 target_data_order = ELFDATA2LSB; 445 } 446 447 if (target_data_order != e_ident[EI_DATA]) { 448 ret = ELF_LOAD_WRONG_ENDIAN; 449 goto fail; 450 } 451 452 lseek(fd, 0, SEEK_SET); 453 if (e_ident[EI_CLASS] == ELFCLASS64) { 454 ret = load_elf64(filename, fd, translate_fn, translate_opaque, must_swab, 455 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 456 data_swab); 457 } else { 458 ret = load_elf32(filename, fd, translate_fn, translate_opaque, must_swab, 459 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 460 data_swab); 461 } 462 463 fail: 464 close(fd); 465 return ret; 466 } 467 468 static void bswap_uboot_header(uboot_image_header_t *hdr) 469 { 470 #ifndef HOST_WORDS_BIGENDIAN 471 bswap32s(&hdr->ih_magic); 472 bswap32s(&hdr->ih_hcrc); 473 bswap32s(&hdr->ih_time); 474 bswap32s(&hdr->ih_size); 475 bswap32s(&hdr->ih_load); 476 bswap32s(&hdr->ih_ep); 477 bswap32s(&hdr->ih_dcrc); 478 #endif 479 } 480 481 482 #define ZALLOC_ALIGNMENT 16 483 484 static void *zalloc(void *x, unsigned items, unsigned size) 485 { 486 void *p; 487 488 size *= items; 489 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 490 491 p = g_malloc(size); 492 493 return (p); 494 } 495 496 static void zfree(void *x, void *addr) 497 { 498 g_free(addr); 499 } 500 501 502 #define HEAD_CRC 2 503 #define EXTRA_FIELD 4 504 #define ORIG_NAME 8 505 #define COMMENT 0x10 506 #define RESERVED 0xe0 507 508 #define DEFLATED 8 509 510 /* This is the usual maximum in uboot, so if a uImage overflows this, it would 511 * overflow on real hardware too. */ 512 #define UBOOT_MAX_GUNZIP_BYTES (64 << 20) 513 514 static ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, 515 size_t srclen) 516 { 517 z_stream s; 518 ssize_t dstbytes; 519 int r, i, flags; 520 521 /* skip header */ 522 i = 10; 523 flags = src[3]; 524 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 525 puts ("Error: Bad gzipped data\n"); 526 return -1; 527 } 528 if ((flags & EXTRA_FIELD) != 0) 529 i = 12 + src[10] + (src[11] << 8); 530 if ((flags & ORIG_NAME) != 0) 531 while (src[i++] != 0) 532 ; 533 if ((flags & COMMENT) != 0) 534 while (src[i++] != 0) 535 ; 536 if ((flags & HEAD_CRC) != 0) 537 i += 2; 538 if (i >= srclen) { 539 puts ("Error: gunzip out of data in header\n"); 540 return -1; 541 } 542 543 s.zalloc = zalloc; 544 s.zfree = zfree; 545 546 r = inflateInit2(&s, -MAX_WBITS); 547 if (r != Z_OK) { 548 printf ("Error: inflateInit2() returned %d\n", r); 549 return (-1); 550 } 551 s.next_in = src + i; 552 s.avail_in = srclen - i; 553 s.next_out = dst; 554 s.avail_out = dstlen; 555 r = inflate(&s, Z_FINISH); 556 if (r != Z_OK && r != Z_STREAM_END) { 557 printf ("Error: inflate() returned %d\n", r); 558 return -1; 559 } 560 dstbytes = s.next_out - (unsigned char *) dst; 561 inflateEnd(&s); 562 563 return dstbytes; 564 } 565 566 /* Load a U-Boot image. */ 567 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 568 int *is_linux, uint8_t image_type, 569 uint64_t (*translate_fn)(void *, uint64_t), 570 void *translate_opaque) 571 { 572 int fd; 573 int size; 574 hwaddr address; 575 uboot_image_header_t h; 576 uboot_image_header_t *hdr = &h; 577 uint8_t *data = NULL; 578 int ret = -1; 579 int do_uncompress = 0; 580 581 fd = open(filename, O_RDONLY | O_BINARY); 582 if (fd < 0) 583 return -1; 584 585 size = read(fd, hdr, sizeof(uboot_image_header_t)); 586 if (size < 0) 587 goto out; 588 589 bswap_uboot_header(hdr); 590 591 if (hdr->ih_magic != IH_MAGIC) 592 goto out; 593 594 if (hdr->ih_type != image_type) { 595 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 596 image_type); 597 goto out; 598 } 599 600 /* TODO: Implement other image types. */ 601 switch (hdr->ih_type) { 602 case IH_TYPE_KERNEL: 603 address = hdr->ih_load; 604 if (translate_fn) { 605 address = translate_fn(translate_opaque, address); 606 } 607 if (loadaddr) { 608 *loadaddr = hdr->ih_load; 609 } 610 611 switch (hdr->ih_comp) { 612 case IH_COMP_NONE: 613 break; 614 case IH_COMP_GZIP: 615 do_uncompress = 1; 616 break; 617 default: 618 fprintf(stderr, 619 "Unable to load u-boot images with compression type %d\n", 620 hdr->ih_comp); 621 goto out; 622 } 623 624 if (ep) { 625 *ep = hdr->ih_ep; 626 } 627 628 /* TODO: Check CPU type. */ 629 if (is_linux) { 630 if (hdr->ih_os == IH_OS_LINUX) { 631 *is_linux = 1; 632 } else { 633 *is_linux = 0; 634 } 635 } 636 637 break; 638 case IH_TYPE_RAMDISK: 639 address = *loadaddr; 640 break; 641 default: 642 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 643 goto out; 644 } 645 646 data = g_malloc(hdr->ih_size); 647 648 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 649 fprintf(stderr, "Error reading file\n"); 650 goto out; 651 } 652 653 if (do_uncompress) { 654 uint8_t *compressed_data; 655 size_t max_bytes; 656 ssize_t bytes; 657 658 compressed_data = data; 659 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 660 data = g_malloc(max_bytes); 661 662 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 663 g_free(compressed_data); 664 if (bytes < 0) { 665 fprintf(stderr, "Unable to decompress gzipped image!\n"); 666 goto out; 667 } 668 hdr->ih_size = bytes; 669 } 670 671 rom_add_blob_fixed(filename, data, hdr->ih_size, address); 672 673 ret = hdr->ih_size; 674 675 out: 676 g_free(data); 677 close(fd); 678 return ret; 679 } 680 681 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 682 int *is_linux, 683 uint64_t (*translate_fn)(void *, uint64_t), 684 void *translate_opaque) 685 { 686 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 687 translate_fn, translate_opaque); 688 } 689 690 /* Load a ramdisk. */ 691 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 692 { 693 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 694 NULL, NULL); 695 } 696 697 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 698 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 699 uint8_t **buffer) 700 { 701 uint8_t *compressed_data = NULL; 702 uint8_t *data = NULL; 703 gsize len; 704 ssize_t bytes; 705 int ret = -1; 706 707 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 708 NULL)) { 709 goto out; 710 } 711 712 /* Is it a gzip-compressed file? */ 713 if (len < 2 || 714 compressed_data[0] != 0x1f || 715 compressed_data[1] != 0x8b) { 716 goto out; 717 } 718 719 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 720 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 721 } 722 723 data = g_malloc(max_sz); 724 bytes = gunzip(data, max_sz, compressed_data, len); 725 if (bytes < 0) { 726 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 727 filename); 728 goto out; 729 } 730 731 /* trim to actual size and return to caller */ 732 *buffer = g_realloc(data, bytes); 733 ret = bytes; 734 /* ownership has been transferred to caller */ 735 data = NULL; 736 737 out: 738 g_free(compressed_data); 739 g_free(data); 740 return ret; 741 } 742 743 /* Load a gzip-compressed kernel. */ 744 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 745 { 746 int bytes; 747 uint8_t *data; 748 749 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 750 if (bytes != -1) { 751 rom_add_blob_fixed(filename, data, bytes, addr); 752 g_free(data); 753 } 754 return bytes; 755 } 756 757 /* 758 * Functions for reboot-persistent memory regions. 759 * - used for vga bios and option roms. 760 * - also linux kernel (-kernel / -initrd). 761 */ 762 763 typedef struct Rom Rom; 764 765 struct Rom { 766 char *name; 767 char *path; 768 769 /* datasize is the amount of memory allocated in "data". If datasize is less 770 * than romsize, it means that the area from datasize to romsize is filled 771 * with zeros. 772 */ 773 size_t romsize; 774 size_t datasize; 775 776 uint8_t *data; 777 MemoryRegion *mr; 778 int isrom; 779 char *fw_dir; 780 char *fw_file; 781 782 hwaddr addr; 783 QTAILQ_ENTRY(Rom) next; 784 }; 785 786 static FWCfgState *fw_cfg; 787 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 788 789 static void rom_insert(Rom *rom) 790 { 791 Rom *item; 792 793 if (roms_loaded) { 794 hw_error ("ROM images must be loaded at startup\n"); 795 } 796 797 /* list is ordered by load address */ 798 QTAILQ_FOREACH(item, &roms, next) { 799 if (rom->addr >= item->addr) 800 continue; 801 QTAILQ_INSERT_BEFORE(item, rom, next); 802 return; 803 } 804 QTAILQ_INSERT_TAIL(&roms, rom, next); 805 } 806 807 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 808 { 809 if (fw_cfg) { 810 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 811 } 812 } 813 814 static void *rom_set_mr(Rom *rom, Object *owner, const char *name) 815 { 816 void *data; 817 818 rom->mr = g_malloc(sizeof(*rom->mr)); 819 memory_region_init_resizeable_ram(rom->mr, owner, name, 820 rom->datasize, rom->romsize, 821 fw_cfg_resized, 822 &error_fatal); 823 memory_region_set_readonly(rom->mr, true); 824 vmstate_register_ram_global(rom->mr); 825 826 data = memory_region_get_ram_ptr(rom->mr); 827 memcpy(data, rom->data, rom->datasize); 828 829 return data; 830 } 831 832 int rom_add_file(const char *file, const char *fw_dir, 833 hwaddr addr, int32_t bootindex, 834 bool option_rom, MemoryRegion *mr) 835 { 836 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 837 Rom *rom; 838 int rc, fd = -1; 839 char devpath[100]; 840 841 rom = g_malloc0(sizeof(*rom)); 842 rom->name = g_strdup(file); 843 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 844 if (rom->path == NULL) { 845 rom->path = g_strdup(file); 846 } 847 848 fd = open(rom->path, O_RDONLY | O_BINARY); 849 if (fd == -1) { 850 fprintf(stderr, "Could not open option rom '%s': %s\n", 851 rom->path, strerror(errno)); 852 goto err; 853 } 854 855 if (fw_dir) { 856 rom->fw_dir = g_strdup(fw_dir); 857 rom->fw_file = g_strdup(file); 858 } 859 rom->addr = addr; 860 rom->romsize = lseek(fd, 0, SEEK_END); 861 if (rom->romsize == -1) { 862 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 863 rom->name, strerror(errno)); 864 goto err; 865 } 866 867 rom->datasize = rom->romsize; 868 rom->data = g_malloc0(rom->datasize); 869 lseek(fd, 0, SEEK_SET); 870 rc = read(fd, rom->data, rom->datasize); 871 if (rc != rom->datasize) { 872 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 873 rom->name, rc, rom->datasize); 874 goto err; 875 } 876 close(fd); 877 rom_insert(rom); 878 if (rom->fw_file && fw_cfg) { 879 const char *basename; 880 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 881 void *data; 882 883 basename = strrchr(rom->fw_file, '/'); 884 if (basename) { 885 basename++; 886 } else { 887 basename = rom->fw_file; 888 } 889 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 890 basename); 891 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 892 893 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 894 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath); 895 } else { 896 data = rom->data; 897 } 898 899 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 900 } else { 901 if (mr) { 902 rom->mr = mr; 903 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 904 } else { 905 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 906 } 907 } 908 909 add_boot_device_path(bootindex, NULL, devpath); 910 return 0; 911 912 err: 913 if (fd != -1) 914 close(fd); 915 g_free(rom->data); 916 g_free(rom->path); 917 g_free(rom->name); 918 g_free(rom); 919 return -1; 920 } 921 922 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 923 size_t max_len, hwaddr addr, const char *fw_file_name, 924 FWCfgReadCallback fw_callback, void *callback_opaque) 925 { 926 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 927 Rom *rom; 928 MemoryRegion *mr = NULL; 929 930 rom = g_malloc0(sizeof(*rom)); 931 rom->name = g_strdup(name); 932 rom->addr = addr; 933 rom->romsize = max_len ? max_len : len; 934 rom->datasize = len; 935 rom->data = g_malloc0(rom->datasize); 936 memcpy(rom->data, blob, len); 937 rom_insert(rom); 938 if (fw_file_name && fw_cfg) { 939 char devpath[100]; 940 void *data; 941 942 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 943 944 if (mc->rom_file_has_mr) { 945 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath); 946 mr = rom->mr; 947 } else { 948 data = rom->data; 949 } 950 951 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 952 fw_callback, callback_opaque, 953 data, rom->datasize); 954 } 955 return mr; 956 } 957 958 /* This function is specific for elf program because we don't need to allocate 959 * all the rom. We just allocate the first part and the rest is just zeros. This 960 * is why romsize and datasize are different. Also, this function seize the 961 * memory ownership of "data", so we don't have to allocate and copy the buffer. 962 */ 963 int rom_add_elf_program(const char *name, void *data, size_t datasize, 964 size_t romsize, hwaddr addr) 965 { 966 Rom *rom; 967 968 rom = g_malloc0(sizeof(*rom)); 969 rom->name = g_strdup(name); 970 rom->addr = addr; 971 rom->datasize = datasize; 972 rom->romsize = romsize; 973 rom->data = data; 974 rom_insert(rom); 975 return 0; 976 } 977 978 int rom_add_vga(const char *file) 979 { 980 return rom_add_file(file, "vgaroms", 0, -1, true, NULL); 981 } 982 983 int rom_add_option(const char *file, int32_t bootindex) 984 { 985 return rom_add_file(file, "genroms", 0, bootindex, true, NULL); 986 } 987 988 static void rom_reset(void *unused) 989 { 990 Rom *rom; 991 992 QTAILQ_FOREACH(rom, &roms, next) { 993 if (rom->fw_file) { 994 continue; 995 } 996 if (rom->data == NULL) { 997 continue; 998 } 999 if (rom->mr) { 1000 void *host = memory_region_get_ram_ptr(rom->mr); 1001 memcpy(host, rom->data, rom->datasize); 1002 } else { 1003 cpu_physical_memory_write_rom(&address_space_memory, 1004 rom->addr, rom->data, rom->datasize); 1005 } 1006 if (rom->isrom) { 1007 /* rom needs to be written only once */ 1008 g_free(rom->data); 1009 rom->data = NULL; 1010 } 1011 /* 1012 * The rom loader is really on the same level as firmware in the guest 1013 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1014 * that the instruction cache for that new region is clear, so that the 1015 * CPU definitely fetches its instructions from the just written data. 1016 */ 1017 cpu_flush_icache_range(rom->addr, rom->datasize); 1018 } 1019 } 1020 1021 int rom_check_and_register_reset(void) 1022 { 1023 hwaddr addr = 0; 1024 MemoryRegionSection section; 1025 Rom *rom; 1026 1027 QTAILQ_FOREACH(rom, &roms, next) { 1028 if (rom->fw_file) { 1029 continue; 1030 } 1031 if (addr > rom->addr) { 1032 fprintf(stderr, "rom: requested regions overlap " 1033 "(rom %s. free=0x" TARGET_FMT_plx 1034 ", addr=0x" TARGET_FMT_plx ")\n", 1035 rom->name, addr, rom->addr); 1036 return -1; 1037 } 1038 addr = rom->addr; 1039 addr += rom->romsize; 1040 section = memory_region_find(get_system_memory(), rom->addr, 1); 1041 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1042 memory_region_unref(section.mr); 1043 } 1044 qemu_register_reset(rom_reset, NULL); 1045 roms_loaded = 1; 1046 return 0; 1047 } 1048 1049 void rom_set_fw(FWCfgState *f) 1050 { 1051 fw_cfg = f; 1052 } 1053 1054 static Rom *find_rom(hwaddr addr) 1055 { 1056 Rom *rom; 1057 1058 QTAILQ_FOREACH(rom, &roms, next) { 1059 if (rom->fw_file) { 1060 continue; 1061 } 1062 if (rom->mr) { 1063 continue; 1064 } 1065 if (rom->addr > addr) { 1066 continue; 1067 } 1068 if (rom->addr + rom->romsize < addr) { 1069 continue; 1070 } 1071 return rom; 1072 } 1073 return NULL; 1074 } 1075 1076 /* 1077 * Copies memory from registered ROMs to dest. Any memory that is contained in 1078 * a ROM between addr and addr + size is copied. Note that this can involve 1079 * multiple ROMs, which need not start at addr and need not end at addr + size. 1080 */ 1081 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1082 { 1083 hwaddr end = addr + size; 1084 uint8_t *s, *d = dest; 1085 size_t l = 0; 1086 Rom *rom; 1087 1088 QTAILQ_FOREACH(rom, &roms, next) { 1089 if (rom->fw_file) { 1090 continue; 1091 } 1092 if (rom->mr) { 1093 continue; 1094 } 1095 if (rom->addr + rom->romsize < addr) { 1096 continue; 1097 } 1098 if (rom->addr > end) { 1099 break; 1100 } 1101 1102 d = dest + (rom->addr - addr); 1103 s = rom->data; 1104 l = rom->datasize; 1105 1106 if ((d + l) > (dest + size)) { 1107 l = dest - d; 1108 } 1109 1110 if (l > 0) { 1111 memcpy(d, s, l); 1112 } 1113 1114 if (rom->romsize > rom->datasize) { 1115 /* If datasize is less than romsize, it means that we didn't 1116 * allocate all the ROM because the trailing data are only zeros. 1117 */ 1118 1119 d += l; 1120 l = rom->romsize - rom->datasize; 1121 1122 if ((d + l) > (dest + size)) { 1123 /* Rom size doesn't fit in the destination area. Adjust to avoid 1124 * overflow. 1125 */ 1126 l = dest - d; 1127 } 1128 1129 if (l > 0) { 1130 memset(d, 0x0, l); 1131 } 1132 } 1133 } 1134 1135 return (d + l) - dest; 1136 } 1137 1138 void *rom_ptr(hwaddr addr) 1139 { 1140 Rom *rom; 1141 1142 rom = find_rom(addr); 1143 if (!rom || !rom->data) 1144 return NULL; 1145 return rom->data + (addr - rom->addr); 1146 } 1147 1148 void hmp_info_roms(Monitor *mon, const QDict *qdict) 1149 { 1150 Rom *rom; 1151 1152 QTAILQ_FOREACH(rom, &roms, next) { 1153 if (rom->mr) { 1154 monitor_printf(mon, "%s" 1155 " size=0x%06zx name=\"%s\"\n", 1156 memory_region_name(rom->mr), 1157 rom->romsize, 1158 rom->name); 1159 } else if (!rom->fw_file) { 1160 monitor_printf(mon, "addr=" TARGET_FMT_plx 1161 " size=0x%06zx mem=%s name=\"%s\"\n", 1162 rom->addr, rom->romsize, 1163 rom->isrom ? "rom" : "ram", 1164 rom->name); 1165 } else { 1166 monitor_printf(mon, "fw=%s/%s" 1167 " size=0x%06zx name=\"%s\"\n", 1168 rom->fw_dir, 1169 rom->fw_file, 1170 rom->romsize, 1171 rom->name); 1172 } 1173 } 1174 } 1175