1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qapi/error.h" 47 #include "hw/hw.h" 48 #include "disas/disas.h" 49 #include "monitor/monitor.h" 50 #include "sysemu/sysemu.h" 51 #include "uboot_image.h" 52 #include "hw/loader.h" 53 #include "hw/nvram/fw_cfg.h" 54 #include "exec/memory.h" 55 #include "exec/address-spaces.h" 56 #include "hw/boards.h" 57 #include "qemu/cutils.h" 58 59 #include <zlib.h> 60 61 static int roms_loaded; 62 63 /* return the size or -1 if error */ 64 int get_image_size(const char *filename) 65 { 66 int fd, size; 67 fd = open(filename, O_RDONLY | O_BINARY); 68 if (fd < 0) 69 return -1; 70 size = lseek(fd, 0, SEEK_END); 71 close(fd); 72 return size; 73 } 74 75 /* return the size or -1 if error */ 76 /* deprecated, because caller does not specify buffer size! */ 77 int load_image(const char *filename, uint8_t *addr) 78 { 79 int fd, size; 80 fd = open(filename, O_RDONLY | O_BINARY); 81 if (fd < 0) 82 return -1; 83 size = lseek(fd, 0, SEEK_END); 84 if (size == -1) { 85 fprintf(stderr, "file %-20s: get size error: %s\n", 86 filename, strerror(errno)); 87 close(fd); 88 return -1; 89 } 90 91 lseek(fd, 0, SEEK_SET); 92 if (read(fd, addr, size) != size) { 93 close(fd); 94 return -1; 95 } 96 close(fd); 97 return size; 98 } 99 100 /* return the size or -1 if error */ 101 ssize_t load_image_size(const char *filename, void *addr, size_t size) 102 { 103 int fd; 104 ssize_t actsize; 105 106 fd = open(filename, O_RDONLY | O_BINARY); 107 if (fd < 0) { 108 return -1; 109 } 110 111 actsize = read(fd, addr, size); 112 if (actsize < 0) { 113 close(fd); 114 return -1; 115 } 116 close(fd); 117 118 return actsize; 119 } 120 121 /* read()-like version */ 122 ssize_t read_targphys(const char *name, 123 int fd, hwaddr dst_addr, size_t nbytes) 124 { 125 uint8_t *buf; 126 ssize_t did; 127 128 buf = g_malloc(nbytes); 129 did = read(fd, buf, nbytes); 130 if (did > 0) 131 rom_add_blob_fixed("read", buf, did, dst_addr); 132 g_free(buf); 133 return did; 134 } 135 136 int load_image_targphys(const char *filename, 137 hwaddr addr, uint64_t max_sz) 138 { 139 return load_image_targphys_as(filename, addr, max_sz, NULL); 140 } 141 142 /* return the size or -1 if error */ 143 int load_image_targphys_as(const char *filename, 144 hwaddr addr, uint64_t max_sz, AddressSpace *as) 145 { 146 int size; 147 148 size = get_image_size(filename); 149 if (size > max_sz) { 150 return -1; 151 } 152 if (size > 0) { 153 rom_add_file_fixed_as(filename, addr, -1, as); 154 } 155 return size; 156 } 157 158 int load_image_mr(const char *filename, MemoryRegion *mr) 159 { 160 int size; 161 162 if (!memory_access_is_direct(mr, false)) { 163 /* Can only load an image into RAM or ROM */ 164 return -1; 165 } 166 167 size = get_image_size(filename); 168 169 if (size > memory_region_size(mr)) { 170 return -1; 171 } 172 if (size > 0) { 173 if (rom_add_file_mr(filename, mr, -1) < 0) { 174 return -1; 175 } 176 } 177 return size; 178 } 179 180 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 181 const char *source) 182 { 183 const char *nulp; 184 char *ptr; 185 186 if (buf_size <= 0) return; 187 nulp = memchr(source, 0, buf_size); 188 if (nulp) { 189 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 190 } else { 191 rom_add_blob_fixed(name, source, buf_size, dest); 192 ptr = rom_ptr(dest + buf_size - 1); 193 *ptr = 0; 194 } 195 } 196 197 /* A.OUT loader */ 198 199 struct exec 200 { 201 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 202 uint32_t a_text; /* length of text, in bytes */ 203 uint32_t a_data; /* length of data, in bytes */ 204 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 205 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 206 uint32_t a_entry; /* start address */ 207 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 208 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 209 }; 210 211 static void bswap_ahdr(struct exec *e) 212 { 213 bswap32s(&e->a_info); 214 bswap32s(&e->a_text); 215 bswap32s(&e->a_data); 216 bswap32s(&e->a_bss); 217 bswap32s(&e->a_syms); 218 bswap32s(&e->a_entry); 219 bswap32s(&e->a_trsize); 220 bswap32s(&e->a_drsize); 221 } 222 223 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 224 #define OMAGIC 0407 225 #define NMAGIC 0410 226 #define ZMAGIC 0413 227 #define QMAGIC 0314 228 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 229 #define N_TXTOFF(x) \ 230 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 231 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 232 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 233 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 234 235 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 236 237 #define N_DATADDR(x, target_page_size) \ 238 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 239 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 240 241 242 int load_aout(const char *filename, hwaddr addr, int max_sz, 243 int bswap_needed, hwaddr target_page_size) 244 { 245 int fd; 246 ssize_t size, ret; 247 struct exec e; 248 uint32_t magic; 249 250 fd = open(filename, O_RDONLY | O_BINARY); 251 if (fd < 0) 252 return -1; 253 254 size = read(fd, &e, sizeof(e)); 255 if (size < 0) 256 goto fail; 257 258 if (bswap_needed) { 259 bswap_ahdr(&e); 260 } 261 262 magic = N_MAGIC(e); 263 switch (magic) { 264 case ZMAGIC: 265 case QMAGIC: 266 case OMAGIC: 267 if (e.a_text + e.a_data > max_sz) 268 goto fail; 269 lseek(fd, N_TXTOFF(e), SEEK_SET); 270 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 271 if (size < 0) 272 goto fail; 273 break; 274 case NMAGIC: 275 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 276 goto fail; 277 lseek(fd, N_TXTOFF(e), SEEK_SET); 278 size = read_targphys(filename, fd, addr, e.a_text); 279 if (size < 0) 280 goto fail; 281 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 282 e.a_data); 283 if (ret < 0) 284 goto fail; 285 size += ret; 286 break; 287 default: 288 goto fail; 289 } 290 close(fd); 291 return size; 292 fail: 293 close(fd); 294 return -1; 295 } 296 297 /* ELF loader */ 298 299 static void *load_at(int fd, off_t offset, size_t size) 300 { 301 void *ptr; 302 if (lseek(fd, offset, SEEK_SET) < 0) 303 return NULL; 304 ptr = g_malloc(size); 305 if (read(fd, ptr, size) != size) { 306 g_free(ptr); 307 return NULL; 308 } 309 return ptr; 310 } 311 312 #ifdef ELF_CLASS 313 #undef ELF_CLASS 314 #endif 315 316 #define ELF_CLASS ELFCLASS32 317 #include "elf.h" 318 319 #define SZ 32 320 #define elf_word uint32_t 321 #define elf_sword int32_t 322 #define bswapSZs bswap32s 323 #include "hw/elf_ops.h" 324 325 #undef elfhdr 326 #undef elf_phdr 327 #undef elf_shdr 328 #undef elf_sym 329 #undef elf_rela 330 #undef elf_note 331 #undef elf_word 332 #undef elf_sword 333 #undef bswapSZs 334 #undef SZ 335 #define elfhdr elf64_hdr 336 #define elf_phdr elf64_phdr 337 #define elf_note elf64_note 338 #define elf_shdr elf64_shdr 339 #define elf_sym elf64_sym 340 #define elf_rela elf64_rela 341 #define elf_word uint64_t 342 #define elf_sword int64_t 343 #define bswapSZs bswap64s 344 #define SZ 64 345 #include "hw/elf_ops.h" 346 347 const char *load_elf_strerror(int error) 348 { 349 switch (error) { 350 case 0: 351 return "No error"; 352 case ELF_LOAD_FAILED: 353 return "Failed to load ELF"; 354 case ELF_LOAD_NOT_ELF: 355 return "The image is not ELF"; 356 case ELF_LOAD_WRONG_ARCH: 357 return "The image is from incompatible architecture"; 358 case ELF_LOAD_WRONG_ENDIAN: 359 return "The image has incorrect endianness"; 360 default: 361 return "Unknown error"; 362 } 363 } 364 365 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 366 { 367 int fd; 368 uint8_t e_ident_local[EI_NIDENT]; 369 uint8_t *e_ident; 370 size_t hdr_size, off; 371 bool is64l; 372 373 if (!hdr) { 374 hdr = e_ident_local; 375 } 376 e_ident = hdr; 377 378 fd = open(filename, O_RDONLY | O_BINARY); 379 if (fd < 0) { 380 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 381 return; 382 } 383 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 384 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 385 goto fail; 386 } 387 if (e_ident[0] != ELFMAG0 || 388 e_ident[1] != ELFMAG1 || 389 e_ident[2] != ELFMAG2 || 390 e_ident[3] != ELFMAG3) { 391 error_setg(errp, "Bad ELF magic"); 392 goto fail; 393 } 394 395 is64l = e_ident[EI_CLASS] == ELFCLASS64; 396 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 397 if (is64) { 398 *is64 = is64l; 399 } 400 401 off = EI_NIDENT; 402 while (hdr != e_ident_local && off < hdr_size) { 403 size_t br = read(fd, hdr + off, hdr_size - off); 404 switch (br) { 405 case 0: 406 error_setg(errp, "File too short: %s", filename); 407 goto fail; 408 case -1: 409 error_setg_errno(errp, errno, "Failed to read file: %s", 410 filename); 411 goto fail; 412 } 413 off += br; 414 } 415 416 fail: 417 close(fd); 418 } 419 420 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 421 int load_elf(const char *filename, uint64_t (*translate_fn)(void *, uint64_t), 422 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 423 uint64_t *highaddr, int big_endian, int elf_machine, 424 int clear_lsb, int data_swab) 425 { 426 return load_elf_as(filename, translate_fn, translate_opaque, pentry, 427 lowaddr, highaddr, big_endian, elf_machine, clear_lsb, 428 data_swab, NULL); 429 } 430 431 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 432 int load_elf_as(const char *filename, 433 uint64_t (*translate_fn)(void *, uint64_t), 434 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 435 uint64_t *highaddr, int big_endian, int elf_machine, 436 int clear_lsb, int data_swab, AddressSpace *as) 437 { 438 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; 439 uint8_t e_ident[EI_NIDENT]; 440 441 fd = open(filename, O_RDONLY | O_BINARY); 442 if (fd < 0) { 443 perror(filename); 444 return -1; 445 } 446 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 447 goto fail; 448 if (e_ident[0] != ELFMAG0 || 449 e_ident[1] != ELFMAG1 || 450 e_ident[2] != ELFMAG2 || 451 e_ident[3] != ELFMAG3) { 452 ret = ELF_LOAD_NOT_ELF; 453 goto fail; 454 } 455 #ifdef HOST_WORDS_BIGENDIAN 456 data_order = ELFDATA2MSB; 457 #else 458 data_order = ELFDATA2LSB; 459 #endif 460 must_swab = data_order != e_ident[EI_DATA]; 461 if (big_endian) { 462 target_data_order = ELFDATA2MSB; 463 } else { 464 target_data_order = ELFDATA2LSB; 465 } 466 467 if (target_data_order != e_ident[EI_DATA]) { 468 ret = ELF_LOAD_WRONG_ENDIAN; 469 goto fail; 470 } 471 472 lseek(fd, 0, SEEK_SET); 473 if (e_ident[EI_CLASS] == ELFCLASS64) { 474 ret = load_elf64(filename, fd, translate_fn, translate_opaque, must_swab, 475 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 476 data_swab, as); 477 } else { 478 ret = load_elf32(filename, fd, translate_fn, translate_opaque, must_swab, 479 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 480 data_swab, as); 481 } 482 483 fail: 484 close(fd); 485 return ret; 486 } 487 488 static void bswap_uboot_header(uboot_image_header_t *hdr) 489 { 490 #ifndef HOST_WORDS_BIGENDIAN 491 bswap32s(&hdr->ih_magic); 492 bswap32s(&hdr->ih_hcrc); 493 bswap32s(&hdr->ih_time); 494 bswap32s(&hdr->ih_size); 495 bswap32s(&hdr->ih_load); 496 bswap32s(&hdr->ih_ep); 497 bswap32s(&hdr->ih_dcrc); 498 #endif 499 } 500 501 502 #define ZALLOC_ALIGNMENT 16 503 504 static void *zalloc(void *x, unsigned items, unsigned size) 505 { 506 void *p; 507 508 size *= items; 509 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 510 511 p = g_malloc(size); 512 513 return (p); 514 } 515 516 static void zfree(void *x, void *addr) 517 { 518 g_free(addr); 519 } 520 521 522 #define HEAD_CRC 2 523 #define EXTRA_FIELD 4 524 #define ORIG_NAME 8 525 #define COMMENT 0x10 526 #define RESERVED 0xe0 527 528 #define DEFLATED 8 529 530 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 531 { 532 z_stream s; 533 ssize_t dstbytes; 534 int r, i, flags; 535 536 /* skip header */ 537 i = 10; 538 flags = src[3]; 539 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 540 puts ("Error: Bad gzipped data\n"); 541 return -1; 542 } 543 if ((flags & EXTRA_FIELD) != 0) 544 i = 12 + src[10] + (src[11] << 8); 545 if ((flags & ORIG_NAME) != 0) 546 while (src[i++] != 0) 547 ; 548 if ((flags & COMMENT) != 0) 549 while (src[i++] != 0) 550 ; 551 if ((flags & HEAD_CRC) != 0) 552 i += 2; 553 if (i >= srclen) { 554 puts ("Error: gunzip out of data in header\n"); 555 return -1; 556 } 557 558 s.zalloc = zalloc; 559 s.zfree = zfree; 560 561 r = inflateInit2(&s, -MAX_WBITS); 562 if (r != Z_OK) { 563 printf ("Error: inflateInit2() returned %d\n", r); 564 return (-1); 565 } 566 s.next_in = src + i; 567 s.avail_in = srclen - i; 568 s.next_out = dst; 569 s.avail_out = dstlen; 570 r = inflate(&s, Z_FINISH); 571 if (r != Z_OK && r != Z_STREAM_END) { 572 printf ("Error: inflate() returned %d\n", r); 573 return -1; 574 } 575 dstbytes = s.next_out - (unsigned char *) dst; 576 inflateEnd(&s); 577 578 return dstbytes; 579 } 580 581 /* Load a U-Boot image. */ 582 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 583 int *is_linux, uint8_t image_type, 584 uint64_t (*translate_fn)(void *, uint64_t), 585 void *translate_opaque, AddressSpace *as) 586 { 587 int fd; 588 int size; 589 hwaddr address; 590 uboot_image_header_t h; 591 uboot_image_header_t *hdr = &h; 592 uint8_t *data = NULL; 593 int ret = -1; 594 int do_uncompress = 0; 595 596 fd = open(filename, O_RDONLY | O_BINARY); 597 if (fd < 0) 598 return -1; 599 600 size = read(fd, hdr, sizeof(uboot_image_header_t)); 601 if (size < 0) 602 goto out; 603 604 bswap_uboot_header(hdr); 605 606 if (hdr->ih_magic != IH_MAGIC) 607 goto out; 608 609 if (hdr->ih_type != image_type) { 610 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 611 image_type); 612 goto out; 613 } 614 615 /* TODO: Implement other image types. */ 616 switch (hdr->ih_type) { 617 case IH_TYPE_KERNEL: 618 address = hdr->ih_load; 619 if (translate_fn) { 620 address = translate_fn(translate_opaque, address); 621 } 622 if (loadaddr) { 623 *loadaddr = hdr->ih_load; 624 } 625 626 switch (hdr->ih_comp) { 627 case IH_COMP_NONE: 628 break; 629 case IH_COMP_GZIP: 630 do_uncompress = 1; 631 break; 632 default: 633 fprintf(stderr, 634 "Unable to load u-boot images with compression type %d\n", 635 hdr->ih_comp); 636 goto out; 637 } 638 639 if (ep) { 640 *ep = hdr->ih_ep; 641 } 642 643 /* TODO: Check CPU type. */ 644 if (is_linux) { 645 if (hdr->ih_os == IH_OS_LINUX) { 646 *is_linux = 1; 647 } else { 648 *is_linux = 0; 649 } 650 } 651 652 break; 653 case IH_TYPE_RAMDISK: 654 address = *loadaddr; 655 break; 656 default: 657 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 658 goto out; 659 } 660 661 data = g_malloc(hdr->ih_size); 662 663 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 664 fprintf(stderr, "Error reading file\n"); 665 goto out; 666 } 667 668 if (do_uncompress) { 669 uint8_t *compressed_data; 670 size_t max_bytes; 671 ssize_t bytes; 672 673 compressed_data = data; 674 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 675 data = g_malloc(max_bytes); 676 677 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 678 g_free(compressed_data); 679 if (bytes < 0) { 680 fprintf(stderr, "Unable to decompress gzipped image!\n"); 681 goto out; 682 } 683 hdr->ih_size = bytes; 684 } 685 686 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 687 688 ret = hdr->ih_size; 689 690 out: 691 g_free(data); 692 close(fd); 693 return ret; 694 } 695 696 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 697 int *is_linux, 698 uint64_t (*translate_fn)(void *, uint64_t), 699 void *translate_opaque) 700 { 701 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 702 translate_fn, translate_opaque, NULL); 703 } 704 705 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 706 int *is_linux, 707 uint64_t (*translate_fn)(void *, uint64_t), 708 void *translate_opaque, AddressSpace *as) 709 { 710 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 711 translate_fn, translate_opaque, as); 712 } 713 714 /* Load a ramdisk. */ 715 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 716 { 717 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 718 NULL, NULL, NULL); 719 } 720 721 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 722 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 723 uint8_t **buffer) 724 { 725 uint8_t *compressed_data = NULL; 726 uint8_t *data = NULL; 727 gsize len; 728 ssize_t bytes; 729 int ret = -1; 730 731 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 732 NULL)) { 733 goto out; 734 } 735 736 /* Is it a gzip-compressed file? */ 737 if (len < 2 || 738 compressed_data[0] != 0x1f || 739 compressed_data[1] != 0x8b) { 740 goto out; 741 } 742 743 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 744 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 745 } 746 747 data = g_malloc(max_sz); 748 bytes = gunzip(data, max_sz, compressed_data, len); 749 if (bytes < 0) { 750 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 751 filename); 752 goto out; 753 } 754 755 /* trim to actual size and return to caller */ 756 *buffer = g_realloc(data, bytes); 757 ret = bytes; 758 /* ownership has been transferred to caller */ 759 data = NULL; 760 761 out: 762 g_free(compressed_data); 763 g_free(data); 764 return ret; 765 } 766 767 /* Load a gzip-compressed kernel. */ 768 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 769 { 770 int bytes; 771 uint8_t *data; 772 773 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 774 if (bytes != -1) { 775 rom_add_blob_fixed(filename, data, bytes, addr); 776 g_free(data); 777 } 778 return bytes; 779 } 780 781 /* 782 * Functions for reboot-persistent memory regions. 783 * - used for vga bios and option roms. 784 * - also linux kernel (-kernel / -initrd). 785 */ 786 787 typedef struct Rom Rom; 788 789 struct Rom { 790 char *name; 791 char *path; 792 793 /* datasize is the amount of memory allocated in "data". If datasize is less 794 * than romsize, it means that the area from datasize to romsize is filled 795 * with zeros. 796 */ 797 size_t romsize; 798 size_t datasize; 799 800 uint8_t *data; 801 MemoryRegion *mr; 802 AddressSpace *as; 803 int isrom; 804 char *fw_dir; 805 char *fw_file; 806 807 hwaddr addr; 808 QTAILQ_ENTRY(Rom) next; 809 }; 810 811 static FWCfgState *fw_cfg; 812 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 813 814 static inline bool rom_order_compare(Rom *rom, Rom *item) 815 { 816 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 817 (rom->as == item->as && rom->addr >= item->addr); 818 } 819 820 static void rom_insert(Rom *rom) 821 { 822 Rom *item; 823 824 if (roms_loaded) { 825 hw_error ("ROM images must be loaded at startup\n"); 826 } 827 828 /* The user didn't specify an address space, this is the default */ 829 if (!rom->as) { 830 rom->as = &address_space_memory; 831 } 832 833 /* List is ordered by load address in the same address space */ 834 QTAILQ_FOREACH(item, &roms, next) { 835 if (rom_order_compare(rom, item)) { 836 continue; 837 } 838 QTAILQ_INSERT_BEFORE(item, rom, next); 839 return; 840 } 841 QTAILQ_INSERT_TAIL(&roms, rom, next); 842 } 843 844 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 845 { 846 if (fw_cfg) { 847 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 848 } 849 } 850 851 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 852 { 853 void *data; 854 855 rom->mr = g_malloc(sizeof(*rom->mr)); 856 memory_region_init_resizeable_ram(rom->mr, owner, name, 857 rom->datasize, rom->romsize, 858 fw_cfg_resized, 859 &error_fatal); 860 memory_region_set_readonly(rom->mr, ro); 861 vmstate_register_ram_global(rom->mr); 862 863 data = memory_region_get_ram_ptr(rom->mr); 864 memcpy(data, rom->data, rom->datasize); 865 866 return data; 867 } 868 869 int rom_add_file(const char *file, const char *fw_dir, 870 hwaddr addr, int32_t bootindex, 871 bool option_rom, MemoryRegion *mr, 872 AddressSpace *as) 873 { 874 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 875 Rom *rom; 876 int rc, fd = -1; 877 char devpath[100]; 878 879 if (as && mr) { 880 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 881 "not valid when loading a rom\n"); 882 /* We haven't allocated anything so we don't need any cleanup */ 883 return -1; 884 } 885 886 rom = g_malloc0(sizeof(*rom)); 887 rom->name = g_strdup(file); 888 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 889 rom->as = as; 890 if (rom->path == NULL) { 891 rom->path = g_strdup(file); 892 } 893 894 fd = open(rom->path, O_RDONLY | O_BINARY); 895 if (fd == -1) { 896 fprintf(stderr, "Could not open option rom '%s': %s\n", 897 rom->path, strerror(errno)); 898 goto err; 899 } 900 901 if (fw_dir) { 902 rom->fw_dir = g_strdup(fw_dir); 903 rom->fw_file = g_strdup(file); 904 } 905 rom->addr = addr; 906 rom->romsize = lseek(fd, 0, SEEK_END); 907 if (rom->romsize == -1) { 908 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 909 rom->name, strerror(errno)); 910 goto err; 911 } 912 913 rom->datasize = rom->romsize; 914 rom->data = g_malloc0(rom->datasize); 915 lseek(fd, 0, SEEK_SET); 916 rc = read(fd, rom->data, rom->datasize); 917 if (rc != rom->datasize) { 918 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 919 rom->name, rc, rom->datasize); 920 goto err; 921 } 922 close(fd); 923 rom_insert(rom); 924 if (rom->fw_file && fw_cfg) { 925 const char *basename; 926 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 927 void *data; 928 929 basename = strrchr(rom->fw_file, '/'); 930 if (basename) { 931 basename++; 932 } else { 933 basename = rom->fw_file; 934 } 935 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 936 basename); 937 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 938 939 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 940 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 941 } else { 942 data = rom->data; 943 } 944 945 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 946 } else { 947 if (mr) { 948 rom->mr = mr; 949 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 950 } else { 951 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 952 } 953 } 954 955 add_boot_device_path(bootindex, NULL, devpath); 956 return 0; 957 958 err: 959 if (fd != -1) 960 close(fd); 961 962 g_free(rom->data); 963 g_free(rom->path); 964 g_free(rom->name); 965 if (fw_dir) { 966 g_free(rom->fw_dir); 967 g_free(rom->fw_file); 968 } 969 g_free(rom); 970 971 return -1; 972 } 973 974 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 975 size_t max_len, hwaddr addr, const char *fw_file_name, 976 FWCfgReadCallback fw_callback, void *callback_opaque, 977 AddressSpace *as, bool read_only) 978 { 979 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 980 Rom *rom; 981 MemoryRegion *mr = NULL; 982 983 rom = g_malloc0(sizeof(*rom)); 984 rom->name = g_strdup(name); 985 rom->as = as; 986 rom->addr = addr; 987 rom->romsize = max_len ? max_len : len; 988 rom->datasize = len; 989 rom->data = g_malloc0(rom->datasize); 990 memcpy(rom->data, blob, len); 991 rom_insert(rom); 992 if (fw_file_name && fw_cfg) { 993 char devpath[100]; 994 void *data; 995 996 if (read_only) { 997 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 998 } else { 999 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1000 } 1001 1002 if (mc->rom_file_has_mr) { 1003 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1004 mr = rom->mr; 1005 } else { 1006 data = rom->data; 1007 } 1008 1009 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1010 fw_callback, callback_opaque, 1011 data, rom->datasize, read_only); 1012 } 1013 return mr; 1014 } 1015 1016 /* This function is specific for elf program because we don't need to allocate 1017 * all the rom. We just allocate the first part and the rest is just zeros. This 1018 * is why romsize and datasize are different. Also, this function seize the 1019 * memory ownership of "data", so we don't have to allocate and copy the buffer. 1020 */ 1021 int rom_add_elf_program(const char *name, void *data, size_t datasize, 1022 size_t romsize, hwaddr addr, AddressSpace *as) 1023 { 1024 Rom *rom; 1025 1026 rom = g_malloc0(sizeof(*rom)); 1027 rom->name = g_strdup(name); 1028 rom->addr = addr; 1029 rom->datasize = datasize; 1030 rom->romsize = romsize; 1031 rom->data = data; 1032 rom->as = as; 1033 rom_insert(rom); 1034 return 0; 1035 } 1036 1037 int rom_add_vga(const char *file) 1038 { 1039 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1040 } 1041 1042 int rom_add_option(const char *file, int32_t bootindex) 1043 { 1044 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1045 } 1046 1047 static void rom_reset(void *unused) 1048 { 1049 Rom *rom; 1050 1051 QTAILQ_FOREACH(rom, &roms, next) { 1052 if (rom->fw_file) { 1053 continue; 1054 } 1055 if (rom->data == NULL) { 1056 continue; 1057 } 1058 if (rom->mr) { 1059 void *host = memory_region_get_ram_ptr(rom->mr); 1060 memcpy(host, rom->data, rom->datasize); 1061 } else { 1062 cpu_physical_memory_write_rom(rom->as, rom->addr, rom->data, 1063 rom->datasize); 1064 } 1065 if (rom->isrom) { 1066 /* rom needs to be written only once */ 1067 g_free(rom->data); 1068 rom->data = NULL; 1069 } 1070 /* 1071 * The rom loader is really on the same level as firmware in the guest 1072 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1073 * that the instruction cache for that new region is clear, so that the 1074 * CPU definitely fetches its instructions from the just written data. 1075 */ 1076 cpu_flush_icache_range(rom->addr, rom->datasize); 1077 } 1078 } 1079 1080 int rom_check_and_register_reset(void) 1081 { 1082 hwaddr addr = 0; 1083 MemoryRegionSection section; 1084 Rom *rom; 1085 AddressSpace *as = NULL; 1086 1087 QTAILQ_FOREACH(rom, &roms, next) { 1088 if (rom->fw_file) { 1089 continue; 1090 } 1091 if ((addr > rom->addr) && (as == rom->as)) { 1092 fprintf(stderr, "rom: requested regions overlap " 1093 "(rom %s. free=0x" TARGET_FMT_plx 1094 ", addr=0x" TARGET_FMT_plx ")\n", 1095 rom->name, addr, rom->addr); 1096 return -1; 1097 } 1098 addr = rom->addr; 1099 addr += rom->romsize; 1100 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1101 rom->addr, 1); 1102 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1103 memory_region_unref(section.mr); 1104 as = rom->as; 1105 } 1106 qemu_register_reset(rom_reset, NULL); 1107 roms_loaded = 1; 1108 return 0; 1109 } 1110 1111 void rom_set_fw(FWCfgState *f) 1112 { 1113 fw_cfg = f; 1114 } 1115 1116 void rom_set_order_override(int order) 1117 { 1118 if (!fw_cfg) 1119 return; 1120 fw_cfg_set_order_override(fw_cfg, order); 1121 } 1122 1123 void rom_reset_order_override(void) 1124 { 1125 if (!fw_cfg) 1126 return; 1127 fw_cfg_reset_order_override(fw_cfg); 1128 } 1129 1130 static Rom *find_rom(hwaddr addr) 1131 { 1132 Rom *rom; 1133 1134 QTAILQ_FOREACH(rom, &roms, next) { 1135 if (rom->fw_file) { 1136 continue; 1137 } 1138 if (rom->mr) { 1139 continue; 1140 } 1141 if (rom->addr > addr) { 1142 continue; 1143 } 1144 if (rom->addr + rom->romsize < addr) { 1145 continue; 1146 } 1147 return rom; 1148 } 1149 return NULL; 1150 } 1151 1152 /* 1153 * Copies memory from registered ROMs to dest. Any memory that is contained in 1154 * a ROM between addr and addr + size is copied. Note that this can involve 1155 * multiple ROMs, which need not start at addr and need not end at addr + size. 1156 */ 1157 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1158 { 1159 hwaddr end = addr + size; 1160 uint8_t *s, *d = dest; 1161 size_t l = 0; 1162 Rom *rom; 1163 1164 QTAILQ_FOREACH(rom, &roms, next) { 1165 if (rom->fw_file) { 1166 continue; 1167 } 1168 if (rom->mr) { 1169 continue; 1170 } 1171 if (rom->addr + rom->romsize < addr) { 1172 continue; 1173 } 1174 if (rom->addr > end) { 1175 break; 1176 } 1177 1178 d = dest + (rom->addr - addr); 1179 s = rom->data; 1180 l = rom->datasize; 1181 1182 if ((d + l) > (dest + size)) { 1183 l = dest - d; 1184 } 1185 1186 if (l > 0) { 1187 memcpy(d, s, l); 1188 } 1189 1190 if (rom->romsize > rom->datasize) { 1191 /* If datasize is less than romsize, it means that we didn't 1192 * allocate all the ROM because the trailing data are only zeros. 1193 */ 1194 1195 d += l; 1196 l = rom->romsize - rom->datasize; 1197 1198 if ((d + l) > (dest + size)) { 1199 /* Rom size doesn't fit in the destination area. Adjust to avoid 1200 * overflow. 1201 */ 1202 l = dest - d; 1203 } 1204 1205 if (l > 0) { 1206 memset(d, 0x0, l); 1207 } 1208 } 1209 } 1210 1211 return (d + l) - dest; 1212 } 1213 1214 void *rom_ptr(hwaddr addr) 1215 { 1216 Rom *rom; 1217 1218 rom = find_rom(addr); 1219 if (!rom || !rom->data) 1220 return NULL; 1221 return rom->data + (addr - rom->addr); 1222 } 1223 1224 void hmp_info_roms(Monitor *mon, const QDict *qdict) 1225 { 1226 Rom *rom; 1227 1228 QTAILQ_FOREACH(rom, &roms, next) { 1229 if (rom->mr) { 1230 monitor_printf(mon, "%s" 1231 " size=0x%06zx name=\"%s\"\n", 1232 memory_region_name(rom->mr), 1233 rom->romsize, 1234 rom->name); 1235 } else if (!rom->fw_file) { 1236 monitor_printf(mon, "addr=" TARGET_FMT_plx 1237 " size=0x%06zx mem=%s name=\"%s\"\n", 1238 rom->addr, rom->romsize, 1239 rom->isrom ? "rom" : "ram", 1240 rom->name); 1241 } else { 1242 monitor_printf(mon, "fw=%s/%s" 1243 " size=0x%06zx name=\"%s\"\n", 1244 rom->fw_dir, 1245 rom->fw_file, 1246 rom->romsize, 1247 rom->name); 1248 } 1249 } 1250 } 1251