1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qapi/error.h" 47 #include "hw/hw.h" 48 #include "disas/disas.h" 49 #include "monitor/monitor.h" 50 #include "sysemu/sysemu.h" 51 #include "uboot_image.h" 52 #include "hw/loader.h" 53 #include "hw/nvram/fw_cfg.h" 54 #include "exec/memory.h" 55 #include "exec/address-spaces.h" 56 #include "hw/boards.h" 57 #include "qemu/cutils.h" 58 59 #include <zlib.h> 60 61 static int roms_loaded; 62 63 /* return the size or -1 if error */ 64 int get_image_size(const char *filename) 65 { 66 int fd, size; 67 fd = open(filename, O_RDONLY | O_BINARY); 68 if (fd < 0) 69 return -1; 70 size = lseek(fd, 0, SEEK_END); 71 close(fd); 72 return size; 73 } 74 75 /* return the size or -1 if error */ 76 /* deprecated, because caller does not specify buffer size! */ 77 int load_image(const char *filename, uint8_t *addr) 78 { 79 int fd, size; 80 fd = open(filename, O_RDONLY | O_BINARY); 81 if (fd < 0) 82 return -1; 83 size = lseek(fd, 0, SEEK_END); 84 if (size == -1) { 85 fprintf(stderr, "file %-20s: get size error: %s\n", 86 filename, strerror(errno)); 87 close(fd); 88 return -1; 89 } 90 91 lseek(fd, 0, SEEK_SET); 92 if (read(fd, addr, size) != size) { 93 close(fd); 94 return -1; 95 } 96 close(fd); 97 return size; 98 } 99 100 /* return the size or -1 if error */ 101 ssize_t load_image_size(const char *filename, void *addr, size_t size) 102 { 103 int fd; 104 ssize_t actsize; 105 106 fd = open(filename, O_RDONLY | O_BINARY); 107 if (fd < 0) { 108 return -1; 109 } 110 111 actsize = read(fd, addr, size); 112 if (actsize < 0) { 113 close(fd); 114 return -1; 115 } 116 close(fd); 117 118 return actsize; 119 } 120 121 /* read()-like version */ 122 ssize_t read_targphys(const char *name, 123 int fd, hwaddr dst_addr, size_t nbytes) 124 { 125 uint8_t *buf; 126 ssize_t did; 127 128 buf = g_malloc(nbytes); 129 did = read(fd, buf, nbytes); 130 if (did > 0) 131 rom_add_blob_fixed("read", buf, did, dst_addr); 132 g_free(buf); 133 return did; 134 } 135 136 int load_image_targphys(const char *filename, 137 hwaddr addr, uint64_t max_sz) 138 { 139 return load_image_targphys_as(filename, addr, max_sz, NULL); 140 } 141 142 /* return the size or -1 if error */ 143 int load_image_targphys_as(const char *filename, 144 hwaddr addr, uint64_t max_sz, AddressSpace *as) 145 { 146 int size; 147 148 size = get_image_size(filename); 149 if (size > max_sz) { 150 return -1; 151 } 152 if (size > 0) { 153 rom_add_file_fixed_as(filename, addr, -1, as); 154 } 155 return size; 156 } 157 158 int load_image_mr(const char *filename, MemoryRegion *mr) 159 { 160 int size; 161 162 if (!memory_access_is_direct(mr, false)) { 163 /* Can only load an image into RAM or ROM */ 164 return -1; 165 } 166 167 size = get_image_size(filename); 168 169 if (size > memory_region_size(mr)) { 170 return -1; 171 } 172 if (size > 0) { 173 if (rom_add_file_mr(filename, mr, -1) < 0) { 174 return -1; 175 } 176 } 177 return size; 178 } 179 180 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 181 const char *source) 182 { 183 const char *nulp; 184 char *ptr; 185 186 if (buf_size <= 0) return; 187 nulp = memchr(source, 0, buf_size); 188 if (nulp) { 189 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 190 } else { 191 rom_add_blob_fixed(name, source, buf_size, dest); 192 ptr = rom_ptr(dest + buf_size - 1); 193 *ptr = 0; 194 } 195 } 196 197 /* A.OUT loader */ 198 199 struct exec 200 { 201 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 202 uint32_t a_text; /* length of text, in bytes */ 203 uint32_t a_data; /* length of data, in bytes */ 204 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 205 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 206 uint32_t a_entry; /* start address */ 207 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 208 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 209 }; 210 211 static void bswap_ahdr(struct exec *e) 212 { 213 bswap32s(&e->a_info); 214 bswap32s(&e->a_text); 215 bswap32s(&e->a_data); 216 bswap32s(&e->a_bss); 217 bswap32s(&e->a_syms); 218 bswap32s(&e->a_entry); 219 bswap32s(&e->a_trsize); 220 bswap32s(&e->a_drsize); 221 } 222 223 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 224 #define OMAGIC 0407 225 #define NMAGIC 0410 226 #define ZMAGIC 0413 227 #define QMAGIC 0314 228 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 229 #define N_TXTOFF(x) \ 230 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 231 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 232 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 233 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 234 235 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 236 237 #define N_DATADDR(x, target_page_size) \ 238 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 239 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 240 241 242 int load_aout(const char *filename, hwaddr addr, int max_sz, 243 int bswap_needed, hwaddr target_page_size) 244 { 245 int fd; 246 ssize_t size, ret; 247 struct exec e; 248 uint32_t magic; 249 250 fd = open(filename, O_RDONLY | O_BINARY); 251 if (fd < 0) 252 return -1; 253 254 size = read(fd, &e, sizeof(e)); 255 if (size < 0) 256 goto fail; 257 258 if (bswap_needed) { 259 bswap_ahdr(&e); 260 } 261 262 magic = N_MAGIC(e); 263 switch (magic) { 264 case ZMAGIC: 265 case QMAGIC: 266 case OMAGIC: 267 if (e.a_text + e.a_data > max_sz) 268 goto fail; 269 lseek(fd, N_TXTOFF(e), SEEK_SET); 270 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 271 if (size < 0) 272 goto fail; 273 break; 274 case NMAGIC: 275 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 276 goto fail; 277 lseek(fd, N_TXTOFF(e), SEEK_SET); 278 size = read_targphys(filename, fd, addr, e.a_text); 279 if (size < 0) 280 goto fail; 281 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 282 e.a_data); 283 if (ret < 0) 284 goto fail; 285 size += ret; 286 break; 287 default: 288 goto fail; 289 } 290 close(fd); 291 return size; 292 fail: 293 close(fd); 294 return -1; 295 } 296 297 /* ELF loader */ 298 299 static void *load_at(int fd, off_t offset, size_t size) 300 { 301 void *ptr; 302 if (lseek(fd, offset, SEEK_SET) < 0) 303 return NULL; 304 ptr = g_malloc(size); 305 if (read(fd, ptr, size) != size) { 306 g_free(ptr); 307 return NULL; 308 } 309 return ptr; 310 } 311 312 #ifdef ELF_CLASS 313 #undef ELF_CLASS 314 #endif 315 316 #define ELF_CLASS ELFCLASS32 317 #include "elf.h" 318 319 #define SZ 32 320 #define elf_word uint32_t 321 #define elf_sword int32_t 322 #define bswapSZs bswap32s 323 #include "hw/elf_ops.h" 324 325 #undef elfhdr 326 #undef elf_phdr 327 #undef elf_shdr 328 #undef elf_sym 329 #undef elf_rela 330 #undef elf_note 331 #undef elf_word 332 #undef elf_sword 333 #undef bswapSZs 334 #undef SZ 335 #define elfhdr elf64_hdr 336 #define elf_phdr elf64_phdr 337 #define elf_note elf64_note 338 #define elf_shdr elf64_shdr 339 #define elf_sym elf64_sym 340 #define elf_rela elf64_rela 341 #define elf_word uint64_t 342 #define elf_sword int64_t 343 #define bswapSZs bswap64s 344 #define SZ 64 345 #include "hw/elf_ops.h" 346 347 const char *load_elf_strerror(int error) 348 { 349 switch (error) { 350 case 0: 351 return "No error"; 352 case ELF_LOAD_FAILED: 353 return "Failed to load ELF"; 354 case ELF_LOAD_NOT_ELF: 355 return "The image is not ELF"; 356 case ELF_LOAD_WRONG_ARCH: 357 return "The image is from incompatible architecture"; 358 case ELF_LOAD_WRONG_ENDIAN: 359 return "The image has incorrect endianness"; 360 default: 361 return "Unknown error"; 362 } 363 } 364 365 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 366 { 367 int fd; 368 uint8_t e_ident_local[EI_NIDENT]; 369 uint8_t *e_ident; 370 size_t hdr_size, off; 371 bool is64l; 372 373 if (!hdr) { 374 hdr = e_ident_local; 375 } 376 e_ident = hdr; 377 378 fd = open(filename, O_RDONLY | O_BINARY); 379 if (fd < 0) { 380 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 381 return; 382 } 383 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 384 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 385 goto fail; 386 } 387 if (e_ident[0] != ELFMAG0 || 388 e_ident[1] != ELFMAG1 || 389 e_ident[2] != ELFMAG2 || 390 e_ident[3] != ELFMAG3) { 391 error_setg(errp, "Bad ELF magic"); 392 goto fail; 393 } 394 395 is64l = e_ident[EI_CLASS] == ELFCLASS64; 396 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 397 if (is64) { 398 *is64 = is64l; 399 } 400 401 off = EI_NIDENT; 402 while (hdr != e_ident_local && off < hdr_size) { 403 size_t br = read(fd, hdr + off, hdr_size - off); 404 switch (br) { 405 case 0: 406 error_setg(errp, "File too short: %s", filename); 407 goto fail; 408 case -1: 409 error_setg_errno(errp, errno, "Failed to read file: %s", 410 filename); 411 goto fail; 412 } 413 off += br; 414 } 415 416 fail: 417 close(fd); 418 } 419 420 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 421 int load_elf(const char *filename, uint64_t (*translate_fn)(void *, uint64_t), 422 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 423 uint64_t *highaddr, int big_endian, int elf_machine, 424 int clear_lsb, int data_swab) 425 { 426 return load_elf_as(filename, translate_fn, translate_opaque, pentry, 427 lowaddr, highaddr, big_endian, elf_machine, clear_lsb, 428 data_swab, NULL); 429 } 430 431 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 432 int load_elf_as(const char *filename, 433 uint64_t (*translate_fn)(void *, uint64_t), 434 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 435 uint64_t *highaddr, int big_endian, int elf_machine, 436 int clear_lsb, int data_swab, AddressSpace *as) 437 { 438 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; 439 uint8_t e_ident[EI_NIDENT]; 440 441 fd = open(filename, O_RDONLY | O_BINARY); 442 if (fd < 0) { 443 perror(filename); 444 return -1; 445 } 446 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 447 goto fail; 448 if (e_ident[0] != ELFMAG0 || 449 e_ident[1] != ELFMAG1 || 450 e_ident[2] != ELFMAG2 || 451 e_ident[3] != ELFMAG3) { 452 ret = ELF_LOAD_NOT_ELF; 453 goto fail; 454 } 455 #ifdef HOST_WORDS_BIGENDIAN 456 data_order = ELFDATA2MSB; 457 #else 458 data_order = ELFDATA2LSB; 459 #endif 460 must_swab = data_order != e_ident[EI_DATA]; 461 if (big_endian) { 462 target_data_order = ELFDATA2MSB; 463 } else { 464 target_data_order = ELFDATA2LSB; 465 } 466 467 if (target_data_order != e_ident[EI_DATA]) { 468 ret = ELF_LOAD_WRONG_ENDIAN; 469 goto fail; 470 } 471 472 lseek(fd, 0, SEEK_SET); 473 if (e_ident[EI_CLASS] == ELFCLASS64) { 474 ret = load_elf64(filename, fd, translate_fn, translate_opaque, must_swab, 475 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 476 data_swab, as); 477 } else { 478 ret = load_elf32(filename, fd, translate_fn, translate_opaque, must_swab, 479 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 480 data_swab, as); 481 } 482 483 fail: 484 close(fd); 485 return ret; 486 } 487 488 static void bswap_uboot_header(uboot_image_header_t *hdr) 489 { 490 #ifndef HOST_WORDS_BIGENDIAN 491 bswap32s(&hdr->ih_magic); 492 bswap32s(&hdr->ih_hcrc); 493 bswap32s(&hdr->ih_time); 494 bswap32s(&hdr->ih_size); 495 bswap32s(&hdr->ih_load); 496 bswap32s(&hdr->ih_ep); 497 bswap32s(&hdr->ih_dcrc); 498 #endif 499 } 500 501 502 #define ZALLOC_ALIGNMENT 16 503 504 static void *zalloc(void *x, unsigned items, unsigned size) 505 { 506 void *p; 507 508 size *= items; 509 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 510 511 p = g_malloc(size); 512 513 return (p); 514 } 515 516 static void zfree(void *x, void *addr) 517 { 518 g_free(addr); 519 } 520 521 522 #define HEAD_CRC 2 523 #define EXTRA_FIELD 4 524 #define ORIG_NAME 8 525 #define COMMENT 0x10 526 #define RESERVED 0xe0 527 528 #define DEFLATED 8 529 530 /* This is the usual maximum in uboot, so if a uImage overflows this, it would 531 * overflow on real hardware too. */ 532 #define UBOOT_MAX_GUNZIP_BYTES (64 << 20) 533 534 static ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, 535 size_t srclen) 536 { 537 z_stream s; 538 ssize_t dstbytes; 539 int r, i, flags; 540 541 /* skip header */ 542 i = 10; 543 flags = src[3]; 544 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 545 puts ("Error: Bad gzipped data\n"); 546 return -1; 547 } 548 if ((flags & EXTRA_FIELD) != 0) 549 i = 12 + src[10] + (src[11] << 8); 550 if ((flags & ORIG_NAME) != 0) 551 while (src[i++] != 0) 552 ; 553 if ((flags & COMMENT) != 0) 554 while (src[i++] != 0) 555 ; 556 if ((flags & HEAD_CRC) != 0) 557 i += 2; 558 if (i >= srclen) { 559 puts ("Error: gunzip out of data in header\n"); 560 return -1; 561 } 562 563 s.zalloc = zalloc; 564 s.zfree = zfree; 565 566 r = inflateInit2(&s, -MAX_WBITS); 567 if (r != Z_OK) { 568 printf ("Error: inflateInit2() returned %d\n", r); 569 return (-1); 570 } 571 s.next_in = src + i; 572 s.avail_in = srclen - i; 573 s.next_out = dst; 574 s.avail_out = dstlen; 575 r = inflate(&s, Z_FINISH); 576 if (r != Z_OK && r != Z_STREAM_END) { 577 printf ("Error: inflate() returned %d\n", r); 578 return -1; 579 } 580 dstbytes = s.next_out - (unsigned char *) dst; 581 inflateEnd(&s); 582 583 return dstbytes; 584 } 585 586 /* Load a U-Boot image. */ 587 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 588 int *is_linux, uint8_t image_type, 589 uint64_t (*translate_fn)(void *, uint64_t), 590 void *translate_opaque, AddressSpace *as) 591 { 592 int fd; 593 int size; 594 hwaddr address; 595 uboot_image_header_t h; 596 uboot_image_header_t *hdr = &h; 597 uint8_t *data = NULL; 598 int ret = -1; 599 int do_uncompress = 0; 600 601 fd = open(filename, O_RDONLY | O_BINARY); 602 if (fd < 0) 603 return -1; 604 605 size = read(fd, hdr, sizeof(uboot_image_header_t)); 606 if (size < 0) 607 goto out; 608 609 bswap_uboot_header(hdr); 610 611 if (hdr->ih_magic != IH_MAGIC) 612 goto out; 613 614 if (hdr->ih_type != image_type) { 615 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 616 image_type); 617 goto out; 618 } 619 620 /* TODO: Implement other image types. */ 621 switch (hdr->ih_type) { 622 case IH_TYPE_KERNEL: 623 address = hdr->ih_load; 624 if (translate_fn) { 625 address = translate_fn(translate_opaque, address); 626 } 627 if (loadaddr) { 628 *loadaddr = hdr->ih_load; 629 } 630 631 switch (hdr->ih_comp) { 632 case IH_COMP_NONE: 633 break; 634 case IH_COMP_GZIP: 635 do_uncompress = 1; 636 break; 637 default: 638 fprintf(stderr, 639 "Unable to load u-boot images with compression type %d\n", 640 hdr->ih_comp); 641 goto out; 642 } 643 644 if (ep) { 645 *ep = hdr->ih_ep; 646 } 647 648 /* TODO: Check CPU type. */ 649 if (is_linux) { 650 if (hdr->ih_os == IH_OS_LINUX) { 651 *is_linux = 1; 652 } else { 653 *is_linux = 0; 654 } 655 } 656 657 break; 658 case IH_TYPE_RAMDISK: 659 address = *loadaddr; 660 break; 661 default: 662 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 663 goto out; 664 } 665 666 data = g_malloc(hdr->ih_size); 667 668 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 669 fprintf(stderr, "Error reading file\n"); 670 goto out; 671 } 672 673 if (do_uncompress) { 674 uint8_t *compressed_data; 675 size_t max_bytes; 676 ssize_t bytes; 677 678 compressed_data = data; 679 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 680 data = g_malloc(max_bytes); 681 682 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 683 g_free(compressed_data); 684 if (bytes < 0) { 685 fprintf(stderr, "Unable to decompress gzipped image!\n"); 686 goto out; 687 } 688 hdr->ih_size = bytes; 689 } 690 691 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 692 693 ret = hdr->ih_size; 694 695 out: 696 g_free(data); 697 close(fd); 698 return ret; 699 } 700 701 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 702 int *is_linux, 703 uint64_t (*translate_fn)(void *, uint64_t), 704 void *translate_opaque) 705 { 706 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 707 translate_fn, translate_opaque, NULL); 708 } 709 710 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 711 int *is_linux, 712 uint64_t (*translate_fn)(void *, uint64_t), 713 void *translate_opaque, AddressSpace *as) 714 { 715 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 716 translate_fn, translate_opaque, as); 717 } 718 719 /* Load a ramdisk. */ 720 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 721 { 722 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 723 NULL, NULL, NULL); 724 } 725 726 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 727 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 728 uint8_t **buffer) 729 { 730 uint8_t *compressed_data = NULL; 731 uint8_t *data = NULL; 732 gsize len; 733 ssize_t bytes; 734 int ret = -1; 735 736 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 737 NULL)) { 738 goto out; 739 } 740 741 /* Is it a gzip-compressed file? */ 742 if (len < 2 || 743 compressed_data[0] != 0x1f || 744 compressed_data[1] != 0x8b) { 745 goto out; 746 } 747 748 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 749 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 750 } 751 752 data = g_malloc(max_sz); 753 bytes = gunzip(data, max_sz, compressed_data, len); 754 if (bytes < 0) { 755 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 756 filename); 757 goto out; 758 } 759 760 /* trim to actual size and return to caller */ 761 *buffer = g_realloc(data, bytes); 762 ret = bytes; 763 /* ownership has been transferred to caller */ 764 data = NULL; 765 766 out: 767 g_free(compressed_data); 768 g_free(data); 769 return ret; 770 } 771 772 /* Load a gzip-compressed kernel. */ 773 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 774 { 775 int bytes; 776 uint8_t *data; 777 778 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 779 if (bytes != -1) { 780 rom_add_blob_fixed(filename, data, bytes, addr); 781 g_free(data); 782 } 783 return bytes; 784 } 785 786 /* 787 * Functions for reboot-persistent memory regions. 788 * - used for vga bios and option roms. 789 * - also linux kernel (-kernel / -initrd). 790 */ 791 792 typedef struct Rom Rom; 793 794 struct Rom { 795 char *name; 796 char *path; 797 798 /* datasize is the amount of memory allocated in "data". If datasize is less 799 * than romsize, it means that the area from datasize to romsize is filled 800 * with zeros. 801 */ 802 size_t romsize; 803 size_t datasize; 804 805 uint8_t *data; 806 MemoryRegion *mr; 807 AddressSpace *as; 808 int isrom; 809 char *fw_dir; 810 char *fw_file; 811 812 hwaddr addr; 813 QTAILQ_ENTRY(Rom) next; 814 }; 815 816 static FWCfgState *fw_cfg; 817 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 818 819 static inline bool rom_order_compare(Rom *rom, Rom *item) 820 { 821 return (rom->as > item->as) || 822 (rom->as == item->as && rom->addr >= item->addr); 823 } 824 825 static void rom_insert(Rom *rom) 826 { 827 Rom *item; 828 829 if (roms_loaded) { 830 hw_error ("ROM images must be loaded at startup\n"); 831 } 832 833 /* The user didn't specify an address space, this is the default */ 834 if (!rom->as) { 835 rom->as = &address_space_memory; 836 } 837 838 /* List is ordered by load address in the same address space */ 839 QTAILQ_FOREACH(item, &roms, next) { 840 if (rom_order_compare(rom, item)) { 841 continue; 842 } 843 QTAILQ_INSERT_BEFORE(item, rom, next); 844 return; 845 } 846 QTAILQ_INSERT_TAIL(&roms, rom, next); 847 } 848 849 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 850 { 851 if (fw_cfg) { 852 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 853 } 854 } 855 856 static void *rom_set_mr(Rom *rom, Object *owner, const char *name) 857 { 858 void *data; 859 860 rom->mr = g_malloc(sizeof(*rom->mr)); 861 memory_region_init_resizeable_ram(rom->mr, owner, name, 862 rom->datasize, rom->romsize, 863 fw_cfg_resized, 864 &error_fatal); 865 memory_region_set_readonly(rom->mr, true); 866 vmstate_register_ram_global(rom->mr); 867 868 data = memory_region_get_ram_ptr(rom->mr); 869 memcpy(data, rom->data, rom->datasize); 870 871 return data; 872 } 873 874 int rom_add_file(const char *file, const char *fw_dir, 875 hwaddr addr, int32_t bootindex, 876 bool option_rom, MemoryRegion *mr, 877 AddressSpace *as) 878 { 879 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 880 Rom *rom; 881 int rc, fd = -1; 882 char devpath[100]; 883 884 if (as && mr) { 885 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 886 "not valid when loading a rom\n"); 887 /* We haven't allocated anything so we don't need any cleanup */ 888 return -1; 889 } 890 891 rom = g_malloc0(sizeof(*rom)); 892 rom->name = g_strdup(file); 893 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 894 rom->as = as; 895 if (rom->path == NULL) { 896 rom->path = g_strdup(file); 897 } 898 899 fd = open(rom->path, O_RDONLY | O_BINARY); 900 if (fd == -1) { 901 fprintf(stderr, "Could not open option rom '%s': %s\n", 902 rom->path, strerror(errno)); 903 goto err; 904 } 905 906 if (fw_dir) { 907 rom->fw_dir = g_strdup(fw_dir); 908 rom->fw_file = g_strdup(file); 909 } 910 rom->addr = addr; 911 rom->romsize = lseek(fd, 0, SEEK_END); 912 if (rom->romsize == -1) { 913 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 914 rom->name, strerror(errno)); 915 goto err; 916 } 917 918 rom->datasize = rom->romsize; 919 rom->data = g_malloc0(rom->datasize); 920 lseek(fd, 0, SEEK_SET); 921 rc = read(fd, rom->data, rom->datasize); 922 if (rc != rom->datasize) { 923 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 924 rom->name, rc, rom->datasize); 925 goto err; 926 } 927 close(fd); 928 rom_insert(rom); 929 if (rom->fw_file && fw_cfg) { 930 const char *basename; 931 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 932 void *data; 933 934 basename = strrchr(rom->fw_file, '/'); 935 if (basename) { 936 basename++; 937 } else { 938 basename = rom->fw_file; 939 } 940 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 941 basename); 942 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 943 944 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 945 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath); 946 } else { 947 data = rom->data; 948 } 949 950 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 951 } else { 952 if (mr) { 953 rom->mr = mr; 954 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 955 } else { 956 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 957 } 958 } 959 960 add_boot_device_path(bootindex, NULL, devpath); 961 return 0; 962 963 err: 964 if (fd != -1) 965 close(fd); 966 967 g_free(rom->data); 968 g_free(rom->path); 969 g_free(rom->name); 970 if (fw_dir) { 971 g_free(rom->fw_dir); 972 g_free(rom->fw_file); 973 } 974 g_free(rom); 975 976 return -1; 977 } 978 979 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 980 size_t max_len, hwaddr addr, const char *fw_file_name, 981 FWCfgReadCallback fw_callback, void *callback_opaque) 982 { 983 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 984 Rom *rom; 985 MemoryRegion *mr = NULL; 986 987 rom = g_malloc0(sizeof(*rom)); 988 rom->name = g_strdup(name); 989 rom->addr = addr; 990 rom->romsize = max_len ? max_len : len; 991 rom->datasize = len; 992 rom->data = g_malloc0(rom->datasize); 993 memcpy(rom->data, blob, len); 994 rom_insert(rom); 995 if (fw_file_name && fw_cfg) { 996 char devpath[100]; 997 void *data; 998 999 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1000 1001 if (mc->rom_file_has_mr) { 1002 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath); 1003 mr = rom->mr; 1004 } else { 1005 data = rom->data; 1006 } 1007 1008 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1009 fw_callback, callback_opaque, 1010 data, rom->datasize); 1011 } 1012 return mr; 1013 } 1014 1015 /* This function is specific for elf program because we don't need to allocate 1016 * all the rom. We just allocate the first part and the rest is just zeros. This 1017 * is why romsize and datasize are different. Also, this function seize the 1018 * memory ownership of "data", so we don't have to allocate and copy the buffer. 1019 */ 1020 int rom_add_elf_program(const char *name, void *data, size_t datasize, 1021 size_t romsize, hwaddr addr, AddressSpace *as) 1022 { 1023 Rom *rom; 1024 1025 rom = g_malloc0(sizeof(*rom)); 1026 rom->name = g_strdup(name); 1027 rom->addr = addr; 1028 rom->datasize = datasize; 1029 rom->romsize = romsize; 1030 rom->data = data; 1031 rom->as = as; 1032 rom_insert(rom); 1033 return 0; 1034 } 1035 1036 int rom_add_vga(const char *file) 1037 { 1038 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1039 } 1040 1041 int rom_add_option(const char *file, int32_t bootindex) 1042 { 1043 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1044 } 1045 1046 static void rom_reset(void *unused) 1047 { 1048 Rom *rom; 1049 1050 QTAILQ_FOREACH(rom, &roms, next) { 1051 if (rom->fw_file) { 1052 continue; 1053 } 1054 if (rom->data == NULL) { 1055 continue; 1056 } 1057 if (rom->mr) { 1058 void *host = memory_region_get_ram_ptr(rom->mr); 1059 memcpy(host, rom->data, rom->datasize); 1060 } else { 1061 cpu_physical_memory_write_rom(rom->as, rom->addr, rom->data, 1062 rom->datasize); 1063 } 1064 if (rom->isrom) { 1065 /* rom needs to be written only once */ 1066 g_free(rom->data); 1067 rom->data = NULL; 1068 } 1069 /* 1070 * The rom loader is really on the same level as firmware in the guest 1071 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1072 * that the instruction cache for that new region is clear, so that the 1073 * CPU definitely fetches its instructions from the just written data. 1074 */ 1075 cpu_flush_icache_range(rom->addr, rom->datasize); 1076 } 1077 } 1078 1079 int rom_check_and_register_reset(void) 1080 { 1081 hwaddr addr = 0; 1082 MemoryRegionSection section; 1083 Rom *rom; 1084 AddressSpace *as = NULL; 1085 1086 QTAILQ_FOREACH(rom, &roms, next) { 1087 if (rom->fw_file) { 1088 continue; 1089 } 1090 if ((addr > rom->addr) && (as == rom->as)) { 1091 fprintf(stderr, "rom: requested regions overlap " 1092 "(rom %s. free=0x" TARGET_FMT_plx 1093 ", addr=0x" TARGET_FMT_plx ")\n", 1094 rom->name, addr, rom->addr); 1095 return -1; 1096 } 1097 addr = rom->addr; 1098 addr += rom->romsize; 1099 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1100 rom->addr, 1); 1101 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1102 memory_region_unref(section.mr); 1103 as = rom->as; 1104 } 1105 qemu_register_reset(rom_reset, NULL); 1106 roms_loaded = 1; 1107 return 0; 1108 } 1109 1110 void rom_set_fw(FWCfgState *f) 1111 { 1112 fw_cfg = f; 1113 } 1114 1115 void rom_set_order_override(int order) 1116 { 1117 if (!fw_cfg) 1118 return; 1119 fw_cfg_set_order_override(fw_cfg, order); 1120 } 1121 1122 void rom_reset_order_override(void) 1123 { 1124 if (!fw_cfg) 1125 return; 1126 fw_cfg_reset_order_override(fw_cfg); 1127 } 1128 1129 static Rom *find_rom(hwaddr addr) 1130 { 1131 Rom *rom; 1132 1133 QTAILQ_FOREACH(rom, &roms, next) { 1134 if (rom->fw_file) { 1135 continue; 1136 } 1137 if (rom->mr) { 1138 continue; 1139 } 1140 if (rom->addr > addr) { 1141 continue; 1142 } 1143 if (rom->addr + rom->romsize < addr) { 1144 continue; 1145 } 1146 return rom; 1147 } 1148 return NULL; 1149 } 1150 1151 /* 1152 * Copies memory from registered ROMs to dest. Any memory that is contained in 1153 * a ROM between addr and addr + size is copied. Note that this can involve 1154 * multiple ROMs, which need not start at addr and need not end at addr + size. 1155 */ 1156 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1157 { 1158 hwaddr end = addr + size; 1159 uint8_t *s, *d = dest; 1160 size_t l = 0; 1161 Rom *rom; 1162 1163 QTAILQ_FOREACH(rom, &roms, next) { 1164 if (rom->fw_file) { 1165 continue; 1166 } 1167 if (rom->mr) { 1168 continue; 1169 } 1170 if (rom->addr + rom->romsize < addr) { 1171 continue; 1172 } 1173 if (rom->addr > end) { 1174 break; 1175 } 1176 1177 d = dest + (rom->addr - addr); 1178 s = rom->data; 1179 l = rom->datasize; 1180 1181 if ((d + l) > (dest + size)) { 1182 l = dest - d; 1183 } 1184 1185 if (l > 0) { 1186 memcpy(d, s, l); 1187 } 1188 1189 if (rom->romsize > rom->datasize) { 1190 /* If datasize is less than romsize, it means that we didn't 1191 * allocate all the ROM because the trailing data are only zeros. 1192 */ 1193 1194 d += l; 1195 l = rom->romsize - rom->datasize; 1196 1197 if ((d + l) > (dest + size)) { 1198 /* Rom size doesn't fit in the destination area. Adjust to avoid 1199 * overflow. 1200 */ 1201 l = dest - d; 1202 } 1203 1204 if (l > 0) { 1205 memset(d, 0x0, l); 1206 } 1207 } 1208 } 1209 1210 return (d + l) - dest; 1211 } 1212 1213 void *rom_ptr(hwaddr addr) 1214 { 1215 Rom *rom; 1216 1217 rom = find_rom(addr); 1218 if (!rom || !rom->data) 1219 return NULL; 1220 return rom->data + (addr - rom->addr); 1221 } 1222 1223 void hmp_info_roms(Monitor *mon, const QDict *qdict) 1224 { 1225 Rom *rom; 1226 1227 QTAILQ_FOREACH(rom, &roms, next) { 1228 if (rom->mr) { 1229 monitor_printf(mon, "%s" 1230 " size=0x%06zx name=\"%s\"\n", 1231 memory_region_name(rom->mr), 1232 rom->romsize, 1233 rom->name); 1234 } else if (!rom->fw_file) { 1235 monitor_printf(mon, "addr=" TARGET_FMT_plx 1236 " size=0x%06zx mem=%s name=\"%s\"\n", 1237 rom->addr, rom->romsize, 1238 rom->isrom ? "rom" : "ram", 1239 rom->name); 1240 } else { 1241 monitor_printf(mon, "fw=%s/%s" 1242 " size=0x%06zx name=\"%s\"\n", 1243 rom->fw_dir, 1244 rom->fw_file, 1245 rom->romsize, 1246 rom->name); 1247 } 1248 } 1249 } 1250