1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qemu-common.h" 47 #include "qapi/error.h" 48 #include "hw/hw.h" 49 #include "disas/disas.h" 50 #include "monitor/monitor.h" 51 #include "sysemu/reset.h" 52 #include "sysemu/sysemu.h" 53 #include "uboot_image.h" 54 #include "hw/loader.h" 55 #include "hw/nvram/fw_cfg.h" 56 #include "exec/memory.h" 57 #include "exec/address-spaces.h" 58 #include "hw/boards.h" 59 #include "qemu/cutils.h" 60 61 #include <zlib.h> 62 63 static int roms_loaded; 64 65 /* return the size or -1 if error */ 66 int64_t get_image_size(const char *filename) 67 { 68 int fd; 69 int64_t size; 70 fd = open(filename, O_RDONLY | O_BINARY); 71 if (fd < 0) 72 return -1; 73 size = lseek(fd, 0, SEEK_END); 74 close(fd); 75 return size; 76 } 77 78 /* return the size or -1 if error */ 79 ssize_t load_image_size(const char *filename, void *addr, size_t size) 80 { 81 int fd; 82 ssize_t actsize, l = 0; 83 84 fd = open(filename, O_RDONLY | O_BINARY); 85 if (fd < 0) { 86 return -1; 87 } 88 89 while ((actsize = read(fd, addr + l, size - l)) > 0) { 90 l += actsize; 91 } 92 93 close(fd); 94 95 return actsize < 0 ? -1 : l; 96 } 97 98 /* read()-like version */ 99 ssize_t read_targphys(const char *name, 100 int fd, hwaddr dst_addr, size_t nbytes) 101 { 102 uint8_t *buf; 103 ssize_t did; 104 105 buf = g_malloc(nbytes); 106 did = read(fd, buf, nbytes); 107 if (did > 0) 108 rom_add_blob_fixed("read", buf, did, dst_addr); 109 g_free(buf); 110 return did; 111 } 112 113 int load_image_targphys(const char *filename, 114 hwaddr addr, uint64_t max_sz) 115 { 116 return load_image_targphys_as(filename, addr, max_sz, NULL); 117 } 118 119 /* return the size or -1 if error */ 120 int load_image_targphys_as(const char *filename, 121 hwaddr addr, uint64_t max_sz, AddressSpace *as) 122 { 123 int size; 124 125 size = get_image_size(filename); 126 if (size < 0 || size > max_sz) { 127 return -1; 128 } 129 if (size > 0) { 130 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 131 return -1; 132 } 133 } 134 return size; 135 } 136 137 int load_image_mr(const char *filename, MemoryRegion *mr) 138 { 139 int size; 140 141 if (!memory_access_is_direct(mr, false)) { 142 /* Can only load an image into RAM or ROM */ 143 return -1; 144 } 145 146 size = get_image_size(filename); 147 148 if (size < 0 || size > memory_region_size(mr)) { 149 return -1; 150 } 151 if (size > 0) { 152 if (rom_add_file_mr(filename, mr, -1) < 0) { 153 return -1; 154 } 155 } 156 return size; 157 } 158 159 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 160 const char *source) 161 { 162 const char *nulp; 163 char *ptr; 164 165 if (buf_size <= 0) return; 166 nulp = memchr(source, 0, buf_size); 167 if (nulp) { 168 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 169 } else { 170 rom_add_blob_fixed(name, source, buf_size, dest); 171 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 172 *ptr = 0; 173 } 174 } 175 176 /* A.OUT loader */ 177 178 struct exec 179 { 180 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 181 uint32_t a_text; /* length of text, in bytes */ 182 uint32_t a_data; /* length of data, in bytes */ 183 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 184 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 185 uint32_t a_entry; /* start address */ 186 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 187 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 188 }; 189 190 static void bswap_ahdr(struct exec *e) 191 { 192 bswap32s(&e->a_info); 193 bswap32s(&e->a_text); 194 bswap32s(&e->a_data); 195 bswap32s(&e->a_bss); 196 bswap32s(&e->a_syms); 197 bswap32s(&e->a_entry); 198 bswap32s(&e->a_trsize); 199 bswap32s(&e->a_drsize); 200 } 201 202 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 203 #define OMAGIC 0407 204 #define NMAGIC 0410 205 #define ZMAGIC 0413 206 #define QMAGIC 0314 207 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 208 #define N_TXTOFF(x) \ 209 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 210 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 211 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 212 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 213 214 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 215 216 #define N_DATADDR(x, target_page_size) \ 217 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 218 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 219 220 221 int load_aout(const char *filename, hwaddr addr, int max_sz, 222 int bswap_needed, hwaddr target_page_size) 223 { 224 int fd; 225 ssize_t size, ret; 226 struct exec e; 227 uint32_t magic; 228 229 fd = open(filename, O_RDONLY | O_BINARY); 230 if (fd < 0) 231 return -1; 232 233 size = read(fd, &e, sizeof(e)); 234 if (size < 0) 235 goto fail; 236 237 if (bswap_needed) { 238 bswap_ahdr(&e); 239 } 240 241 magic = N_MAGIC(e); 242 switch (magic) { 243 case ZMAGIC: 244 case QMAGIC: 245 case OMAGIC: 246 if (e.a_text + e.a_data > max_sz) 247 goto fail; 248 lseek(fd, N_TXTOFF(e), SEEK_SET); 249 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 250 if (size < 0) 251 goto fail; 252 break; 253 case NMAGIC: 254 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 255 goto fail; 256 lseek(fd, N_TXTOFF(e), SEEK_SET); 257 size = read_targphys(filename, fd, addr, e.a_text); 258 if (size < 0) 259 goto fail; 260 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 261 e.a_data); 262 if (ret < 0) 263 goto fail; 264 size += ret; 265 break; 266 default: 267 goto fail; 268 } 269 close(fd); 270 return size; 271 fail: 272 close(fd); 273 return -1; 274 } 275 276 /* ELF loader */ 277 278 static void *load_at(int fd, off_t offset, size_t size) 279 { 280 void *ptr; 281 if (lseek(fd, offset, SEEK_SET) < 0) 282 return NULL; 283 ptr = g_malloc(size); 284 if (read(fd, ptr, size) != size) { 285 g_free(ptr); 286 return NULL; 287 } 288 return ptr; 289 } 290 291 #ifdef ELF_CLASS 292 #undef ELF_CLASS 293 #endif 294 295 #define ELF_CLASS ELFCLASS32 296 #include "elf.h" 297 298 #define SZ 32 299 #define elf_word uint32_t 300 #define elf_sword int32_t 301 #define bswapSZs bswap32s 302 #include "hw/elf_ops.h" 303 304 #undef elfhdr 305 #undef elf_phdr 306 #undef elf_shdr 307 #undef elf_sym 308 #undef elf_rela 309 #undef elf_note 310 #undef elf_word 311 #undef elf_sword 312 #undef bswapSZs 313 #undef SZ 314 #define elfhdr elf64_hdr 315 #define elf_phdr elf64_phdr 316 #define elf_note elf64_note 317 #define elf_shdr elf64_shdr 318 #define elf_sym elf64_sym 319 #define elf_rela elf64_rela 320 #define elf_word uint64_t 321 #define elf_sword int64_t 322 #define bswapSZs bswap64s 323 #define SZ 64 324 #include "hw/elf_ops.h" 325 326 const char *load_elf_strerror(int error) 327 { 328 switch (error) { 329 case 0: 330 return "No error"; 331 case ELF_LOAD_FAILED: 332 return "Failed to load ELF"; 333 case ELF_LOAD_NOT_ELF: 334 return "The image is not ELF"; 335 case ELF_LOAD_WRONG_ARCH: 336 return "The image is from incompatible architecture"; 337 case ELF_LOAD_WRONG_ENDIAN: 338 return "The image has incorrect endianness"; 339 default: 340 return "Unknown error"; 341 } 342 } 343 344 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 345 { 346 int fd; 347 uint8_t e_ident_local[EI_NIDENT]; 348 uint8_t *e_ident; 349 size_t hdr_size, off; 350 bool is64l; 351 352 if (!hdr) { 353 hdr = e_ident_local; 354 } 355 e_ident = hdr; 356 357 fd = open(filename, O_RDONLY | O_BINARY); 358 if (fd < 0) { 359 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 360 return; 361 } 362 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 363 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 364 goto fail; 365 } 366 if (e_ident[0] != ELFMAG0 || 367 e_ident[1] != ELFMAG1 || 368 e_ident[2] != ELFMAG2 || 369 e_ident[3] != ELFMAG3) { 370 error_setg(errp, "Bad ELF magic"); 371 goto fail; 372 } 373 374 is64l = e_ident[EI_CLASS] == ELFCLASS64; 375 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 376 if (is64) { 377 *is64 = is64l; 378 } 379 380 off = EI_NIDENT; 381 while (hdr != e_ident_local && off < hdr_size) { 382 size_t br = read(fd, hdr + off, hdr_size - off); 383 switch (br) { 384 case 0: 385 error_setg(errp, "File too short: %s", filename); 386 goto fail; 387 case -1: 388 error_setg_errno(errp, errno, "Failed to read file: %s", 389 filename); 390 goto fail; 391 } 392 off += br; 393 } 394 395 fail: 396 close(fd); 397 } 398 399 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 400 int load_elf(const char *filename, 401 uint64_t (*elf_note_fn)(void *, void *, bool), 402 uint64_t (*translate_fn)(void *, uint64_t), 403 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 404 uint64_t *highaddr, int big_endian, int elf_machine, 405 int clear_lsb, int data_swab) 406 { 407 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 408 pentry, lowaddr, highaddr, big_endian, elf_machine, 409 clear_lsb, data_swab, NULL); 410 } 411 412 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 413 int load_elf_as(const char *filename, 414 uint64_t (*elf_note_fn)(void *, void *, bool), 415 uint64_t (*translate_fn)(void *, uint64_t), 416 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 417 uint64_t *highaddr, int big_endian, int elf_machine, 418 int clear_lsb, int data_swab, AddressSpace *as) 419 { 420 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque, 421 pentry, lowaddr, highaddr, big_endian, elf_machine, 422 clear_lsb, data_swab, as, true); 423 } 424 425 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 426 int load_elf_ram(const char *filename, 427 uint64_t (*elf_note_fn)(void *, void *, bool), 428 uint64_t (*translate_fn)(void *, uint64_t), 429 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 430 uint64_t *highaddr, int big_endian, int elf_machine, 431 int clear_lsb, int data_swab, AddressSpace *as, 432 bool load_rom) 433 { 434 return load_elf_ram_sym(filename, elf_note_fn, 435 translate_fn, translate_opaque, 436 pentry, lowaddr, highaddr, big_endian, 437 elf_machine, clear_lsb, data_swab, as, 438 load_rom, NULL); 439 } 440 441 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 442 int load_elf_ram_sym(const char *filename, 443 uint64_t (*elf_note_fn)(void *, void *, bool), 444 uint64_t (*translate_fn)(void *, uint64_t), 445 void *translate_opaque, uint64_t *pentry, 446 uint64_t *lowaddr, uint64_t *highaddr, int big_endian, 447 int elf_machine, int clear_lsb, int data_swab, 448 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 449 { 450 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; 451 uint8_t e_ident[EI_NIDENT]; 452 453 fd = open(filename, O_RDONLY | O_BINARY); 454 if (fd < 0) { 455 perror(filename); 456 return -1; 457 } 458 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 459 goto fail; 460 if (e_ident[0] != ELFMAG0 || 461 e_ident[1] != ELFMAG1 || 462 e_ident[2] != ELFMAG2 || 463 e_ident[3] != ELFMAG3) { 464 ret = ELF_LOAD_NOT_ELF; 465 goto fail; 466 } 467 #ifdef HOST_WORDS_BIGENDIAN 468 data_order = ELFDATA2MSB; 469 #else 470 data_order = ELFDATA2LSB; 471 #endif 472 must_swab = data_order != e_ident[EI_DATA]; 473 if (big_endian) { 474 target_data_order = ELFDATA2MSB; 475 } else { 476 target_data_order = ELFDATA2LSB; 477 } 478 479 if (target_data_order != e_ident[EI_DATA]) { 480 ret = ELF_LOAD_WRONG_ENDIAN; 481 goto fail; 482 } 483 484 lseek(fd, 0, SEEK_SET); 485 if (e_ident[EI_CLASS] == ELFCLASS64) { 486 ret = load_elf64(filename, fd, elf_note_fn, 487 translate_fn, translate_opaque, must_swab, 488 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 489 data_swab, as, load_rom, sym_cb); 490 } else { 491 ret = load_elf32(filename, fd, elf_note_fn, 492 translate_fn, translate_opaque, must_swab, 493 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 494 data_swab, as, load_rom, sym_cb); 495 } 496 497 fail: 498 close(fd); 499 return ret; 500 } 501 502 static void bswap_uboot_header(uboot_image_header_t *hdr) 503 { 504 #ifndef HOST_WORDS_BIGENDIAN 505 bswap32s(&hdr->ih_magic); 506 bswap32s(&hdr->ih_hcrc); 507 bswap32s(&hdr->ih_time); 508 bswap32s(&hdr->ih_size); 509 bswap32s(&hdr->ih_load); 510 bswap32s(&hdr->ih_ep); 511 bswap32s(&hdr->ih_dcrc); 512 #endif 513 } 514 515 516 #define ZALLOC_ALIGNMENT 16 517 518 static void *zalloc(void *x, unsigned items, unsigned size) 519 { 520 void *p; 521 522 size *= items; 523 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 524 525 p = g_malloc(size); 526 527 return (p); 528 } 529 530 static void zfree(void *x, void *addr) 531 { 532 g_free(addr); 533 } 534 535 536 #define HEAD_CRC 2 537 #define EXTRA_FIELD 4 538 #define ORIG_NAME 8 539 #define COMMENT 0x10 540 #define RESERVED 0xe0 541 542 #define DEFLATED 8 543 544 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 545 { 546 z_stream s; 547 ssize_t dstbytes; 548 int r, i, flags; 549 550 /* skip header */ 551 i = 10; 552 flags = src[3]; 553 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 554 puts ("Error: Bad gzipped data\n"); 555 return -1; 556 } 557 if ((flags & EXTRA_FIELD) != 0) 558 i = 12 + src[10] + (src[11] << 8); 559 if ((flags & ORIG_NAME) != 0) 560 while (src[i++] != 0) 561 ; 562 if ((flags & COMMENT) != 0) 563 while (src[i++] != 0) 564 ; 565 if ((flags & HEAD_CRC) != 0) 566 i += 2; 567 if (i >= srclen) { 568 puts ("Error: gunzip out of data in header\n"); 569 return -1; 570 } 571 572 s.zalloc = zalloc; 573 s.zfree = zfree; 574 575 r = inflateInit2(&s, -MAX_WBITS); 576 if (r != Z_OK) { 577 printf ("Error: inflateInit2() returned %d\n", r); 578 return (-1); 579 } 580 s.next_in = src + i; 581 s.avail_in = srclen - i; 582 s.next_out = dst; 583 s.avail_out = dstlen; 584 r = inflate(&s, Z_FINISH); 585 if (r != Z_OK && r != Z_STREAM_END) { 586 printf ("Error: inflate() returned %d\n", r); 587 return -1; 588 } 589 dstbytes = s.next_out - (unsigned char *) dst; 590 inflateEnd(&s); 591 592 return dstbytes; 593 } 594 595 /* Load a U-Boot image. */ 596 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 597 int *is_linux, uint8_t image_type, 598 uint64_t (*translate_fn)(void *, uint64_t), 599 void *translate_opaque, AddressSpace *as) 600 { 601 int fd; 602 int size; 603 hwaddr address; 604 uboot_image_header_t h; 605 uboot_image_header_t *hdr = &h; 606 uint8_t *data = NULL; 607 int ret = -1; 608 int do_uncompress = 0; 609 610 fd = open(filename, O_RDONLY | O_BINARY); 611 if (fd < 0) 612 return -1; 613 614 size = read(fd, hdr, sizeof(uboot_image_header_t)); 615 if (size < sizeof(uboot_image_header_t)) { 616 goto out; 617 } 618 619 bswap_uboot_header(hdr); 620 621 if (hdr->ih_magic != IH_MAGIC) 622 goto out; 623 624 if (hdr->ih_type != image_type) { 625 if (!(image_type == IH_TYPE_KERNEL && 626 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 627 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 628 image_type); 629 goto out; 630 } 631 } 632 633 /* TODO: Implement other image types. */ 634 switch (hdr->ih_type) { 635 case IH_TYPE_KERNEL_NOLOAD: 636 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 637 fprintf(stderr, "this image format (kernel_noload) cannot be " 638 "loaded on this machine type"); 639 goto out; 640 } 641 642 hdr->ih_load = *loadaddr + sizeof(*hdr); 643 hdr->ih_ep += hdr->ih_load; 644 /* fall through */ 645 case IH_TYPE_KERNEL: 646 address = hdr->ih_load; 647 if (translate_fn) { 648 address = translate_fn(translate_opaque, address); 649 } 650 if (loadaddr) { 651 *loadaddr = hdr->ih_load; 652 } 653 654 switch (hdr->ih_comp) { 655 case IH_COMP_NONE: 656 break; 657 case IH_COMP_GZIP: 658 do_uncompress = 1; 659 break; 660 default: 661 fprintf(stderr, 662 "Unable to load u-boot images with compression type %d\n", 663 hdr->ih_comp); 664 goto out; 665 } 666 667 if (ep) { 668 *ep = hdr->ih_ep; 669 } 670 671 /* TODO: Check CPU type. */ 672 if (is_linux) { 673 if (hdr->ih_os == IH_OS_LINUX) { 674 *is_linux = 1; 675 } else { 676 *is_linux = 0; 677 } 678 } 679 680 break; 681 case IH_TYPE_RAMDISK: 682 address = *loadaddr; 683 break; 684 default: 685 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 686 goto out; 687 } 688 689 data = g_malloc(hdr->ih_size); 690 691 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 692 fprintf(stderr, "Error reading file\n"); 693 goto out; 694 } 695 696 if (do_uncompress) { 697 uint8_t *compressed_data; 698 size_t max_bytes; 699 ssize_t bytes; 700 701 compressed_data = data; 702 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 703 data = g_malloc(max_bytes); 704 705 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 706 g_free(compressed_data); 707 if (bytes < 0) { 708 fprintf(stderr, "Unable to decompress gzipped image!\n"); 709 goto out; 710 } 711 hdr->ih_size = bytes; 712 } 713 714 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 715 716 ret = hdr->ih_size; 717 718 out: 719 g_free(data); 720 close(fd); 721 return ret; 722 } 723 724 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 725 int *is_linux, 726 uint64_t (*translate_fn)(void *, uint64_t), 727 void *translate_opaque) 728 { 729 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 730 translate_fn, translate_opaque, NULL); 731 } 732 733 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 734 int *is_linux, 735 uint64_t (*translate_fn)(void *, uint64_t), 736 void *translate_opaque, AddressSpace *as) 737 { 738 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 739 translate_fn, translate_opaque, as); 740 } 741 742 /* Load a ramdisk. */ 743 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 744 { 745 return load_ramdisk_as(filename, addr, max_sz, NULL); 746 } 747 748 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 749 AddressSpace *as) 750 { 751 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 752 NULL, NULL, as); 753 } 754 755 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 756 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 757 uint8_t **buffer) 758 { 759 uint8_t *compressed_data = NULL; 760 uint8_t *data = NULL; 761 gsize len; 762 ssize_t bytes; 763 int ret = -1; 764 765 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 766 NULL)) { 767 goto out; 768 } 769 770 /* Is it a gzip-compressed file? */ 771 if (len < 2 || 772 compressed_data[0] != 0x1f || 773 compressed_data[1] != 0x8b) { 774 goto out; 775 } 776 777 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 778 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 779 } 780 781 data = g_malloc(max_sz); 782 bytes = gunzip(data, max_sz, compressed_data, len); 783 if (bytes < 0) { 784 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 785 filename); 786 goto out; 787 } 788 789 /* trim to actual size and return to caller */ 790 *buffer = g_realloc(data, bytes); 791 ret = bytes; 792 /* ownership has been transferred to caller */ 793 data = NULL; 794 795 out: 796 g_free(compressed_data); 797 g_free(data); 798 return ret; 799 } 800 801 /* Load a gzip-compressed kernel. */ 802 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 803 { 804 int bytes; 805 uint8_t *data; 806 807 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 808 if (bytes != -1) { 809 rom_add_blob_fixed(filename, data, bytes, addr); 810 g_free(data); 811 } 812 return bytes; 813 } 814 815 /* 816 * Functions for reboot-persistent memory regions. 817 * - used for vga bios and option roms. 818 * - also linux kernel (-kernel / -initrd). 819 */ 820 821 typedef struct Rom Rom; 822 823 struct Rom { 824 char *name; 825 char *path; 826 827 /* datasize is the amount of memory allocated in "data". If datasize is less 828 * than romsize, it means that the area from datasize to romsize is filled 829 * with zeros. 830 */ 831 size_t romsize; 832 size_t datasize; 833 834 uint8_t *data; 835 MemoryRegion *mr; 836 AddressSpace *as; 837 int isrom; 838 char *fw_dir; 839 char *fw_file; 840 841 bool committed; 842 843 hwaddr addr; 844 QTAILQ_ENTRY(Rom) next; 845 }; 846 847 static FWCfgState *fw_cfg; 848 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 849 850 /* rom->data must be heap-allocated (do not use with rom_add_elf_program()) */ 851 static void rom_free(Rom *rom) 852 { 853 g_free(rom->data); 854 g_free(rom->path); 855 g_free(rom->name); 856 g_free(rom->fw_dir); 857 g_free(rom->fw_file); 858 g_free(rom); 859 } 860 861 static inline bool rom_order_compare(Rom *rom, Rom *item) 862 { 863 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 864 (rom->as == item->as && rom->addr >= item->addr); 865 } 866 867 static void rom_insert(Rom *rom) 868 { 869 Rom *item; 870 871 if (roms_loaded) { 872 hw_error ("ROM images must be loaded at startup\n"); 873 } 874 875 /* The user didn't specify an address space, this is the default */ 876 if (!rom->as) { 877 rom->as = &address_space_memory; 878 } 879 880 rom->committed = false; 881 882 /* List is ordered by load address in the same address space */ 883 QTAILQ_FOREACH(item, &roms, next) { 884 if (rom_order_compare(rom, item)) { 885 continue; 886 } 887 QTAILQ_INSERT_BEFORE(item, rom, next); 888 return; 889 } 890 QTAILQ_INSERT_TAIL(&roms, rom, next); 891 } 892 893 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 894 { 895 if (fw_cfg) { 896 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 897 } 898 } 899 900 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 901 { 902 void *data; 903 904 rom->mr = g_malloc(sizeof(*rom->mr)); 905 memory_region_init_resizeable_ram(rom->mr, owner, name, 906 rom->datasize, rom->romsize, 907 fw_cfg_resized, 908 &error_fatal); 909 memory_region_set_readonly(rom->mr, ro); 910 vmstate_register_ram_global(rom->mr); 911 912 data = memory_region_get_ram_ptr(rom->mr); 913 memcpy(data, rom->data, rom->datasize); 914 915 return data; 916 } 917 918 int rom_add_file(const char *file, const char *fw_dir, 919 hwaddr addr, int32_t bootindex, 920 bool option_rom, MemoryRegion *mr, 921 AddressSpace *as) 922 { 923 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 924 Rom *rom; 925 int rc, fd = -1; 926 char devpath[100]; 927 928 if (as && mr) { 929 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 930 "not valid when loading a rom\n"); 931 /* We haven't allocated anything so we don't need any cleanup */ 932 return -1; 933 } 934 935 rom = g_malloc0(sizeof(*rom)); 936 rom->name = g_strdup(file); 937 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 938 rom->as = as; 939 if (rom->path == NULL) { 940 rom->path = g_strdup(file); 941 } 942 943 fd = open(rom->path, O_RDONLY | O_BINARY); 944 if (fd == -1) { 945 fprintf(stderr, "Could not open option rom '%s': %s\n", 946 rom->path, strerror(errno)); 947 goto err; 948 } 949 950 if (fw_dir) { 951 rom->fw_dir = g_strdup(fw_dir); 952 rom->fw_file = g_strdup(file); 953 } 954 rom->addr = addr; 955 rom->romsize = lseek(fd, 0, SEEK_END); 956 if (rom->romsize == -1) { 957 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 958 rom->name, strerror(errno)); 959 goto err; 960 } 961 962 rom->datasize = rom->romsize; 963 rom->data = g_malloc0(rom->datasize); 964 lseek(fd, 0, SEEK_SET); 965 rc = read(fd, rom->data, rom->datasize); 966 if (rc != rom->datasize) { 967 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 968 rom->name, rc, rom->datasize); 969 goto err; 970 } 971 close(fd); 972 rom_insert(rom); 973 if (rom->fw_file && fw_cfg) { 974 const char *basename; 975 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 976 void *data; 977 978 basename = strrchr(rom->fw_file, '/'); 979 if (basename) { 980 basename++; 981 } else { 982 basename = rom->fw_file; 983 } 984 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 985 basename); 986 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 987 988 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 989 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 990 } else { 991 data = rom->data; 992 } 993 994 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 995 } else { 996 if (mr) { 997 rom->mr = mr; 998 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 999 } else { 1000 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 1001 } 1002 } 1003 1004 add_boot_device_path(bootindex, NULL, devpath); 1005 return 0; 1006 1007 err: 1008 if (fd != -1) 1009 close(fd); 1010 1011 rom_free(rom); 1012 return -1; 1013 } 1014 1015 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1016 size_t max_len, hwaddr addr, const char *fw_file_name, 1017 FWCfgCallback fw_callback, void *callback_opaque, 1018 AddressSpace *as, bool read_only) 1019 { 1020 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1021 Rom *rom; 1022 MemoryRegion *mr = NULL; 1023 1024 rom = g_malloc0(sizeof(*rom)); 1025 rom->name = g_strdup(name); 1026 rom->as = as; 1027 rom->addr = addr; 1028 rom->romsize = max_len ? max_len : len; 1029 rom->datasize = len; 1030 g_assert(rom->romsize >= rom->datasize); 1031 rom->data = g_malloc0(rom->datasize); 1032 memcpy(rom->data, blob, len); 1033 rom_insert(rom); 1034 if (fw_file_name && fw_cfg) { 1035 char devpath[100]; 1036 void *data; 1037 1038 if (read_only) { 1039 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1040 } else { 1041 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1042 } 1043 1044 if (mc->rom_file_has_mr) { 1045 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1046 mr = rom->mr; 1047 } else { 1048 data = rom->data; 1049 } 1050 1051 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1052 fw_callback, NULL, callback_opaque, 1053 data, rom->datasize, read_only); 1054 } 1055 return mr; 1056 } 1057 1058 /* This function is specific for elf program because we don't need to allocate 1059 * all the rom. We just allocate the first part and the rest is just zeros. This 1060 * is why romsize and datasize are different. Also, this function seize the 1061 * memory ownership of "data", so we don't have to allocate and copy the buffer. 1062 */ 1063 int rom_add_elf_program(const char *name, void *data, size_t datasize, 1064 size_t romsize, hwaddr addr, AddressSpace *as) 1065 { 1066 Rom *rom; 1067 1068 rom = g_malloc0(sizeof(*rom)); 1069 rom->name = g_strdup(name); 1070 rom->addr = addr; 1071 rom->datasize = datasize; 1072 rom->romsize = romsize; 1073 rom->data = data; 1074 rom->as = as; 1075 rom_insert(rom); 1076 return 0; 1077 } 1078 1079 int rom_add_vga(const char *file) 1080 { 1081 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1082 } 1083 1084 int rom_add_option(const char *file, int32_t bootindex) 1085 { 1086 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1087 } 1088 1089 static void rom_reset(void *unused) 1090 { 1091 Rom *rom; 1092 1093 QTAILQ_FOREACH(rom, &roms, next) { 1094 if (rom->fw_file) { 1095 continue; 1096 } 1097 if (rom->data == NULL) { 1098 continue; 1099 } 1100 if (rom->mr) { 1101 void *host = memory_region_get_ram_ptr(rom->mr); 1102 memcpy(host, rom->data, rom->datasize); 1103 } else { 1104 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1105 rom->data, rom->datasize); 1106 } 1107 if (rom->isrom) { 1108 /* rom needs to be written only once */ 1109 g_free(rom->data); 1110 rom->data = NULL; 1111 } 1112 /* 1113 * The rom loader is really on the same level as firmware in the guest 1114 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1115 * that the instruction cache for that new region is clear, so that the 1116 * CPU definitely fetches its instructions from the just written data. 1117 */ 1118 cpu_flush_icache_range(rom->addr, rom->datasize); 1119 } 1120 } 1121 1122 int rom_check_and_register_reset(void) 1123 { 1124 hwaddr addr = 0; 1125 MemoryRegionSection section; 1126 Rom *rom; 1127 AddressSpace *as = NULL; 1128 1129 QTAILQ_FOREACH(rom, &roms, next) { 1130 if (rom->fw_file) { 1131 continue; 1132 } 1133 if (!rom->mr) { 1134 if ((addr > rom->addr) && (as == rom->as)) { 1135 fprintf(stderr, "rom: requested regions overlap " 1136 "(rom %s. free=0x" TARGET_FMT_plx 1137 ", addr=0x" TARGET_FMT_plx ")\n", 1138 rom->name, addr, rom->addr); 1139 return -1; 1140 } 1141 addr = rom->addr; 1142 addr += rom->romsize; 1143 as = rom->as; 1144 } 1145 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1146 rom->addr, 1); 1147 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1148 memory_region_unref(section.mr); 1149 } 1150 qemu_register_reset(rom_reset, NULL); 1151 roms_loaded = 1; 1152 return 0; 1153 } 1154 1155 void rom_set_fw(FWCfgState *f) 1156 { 1157 fw_cfg = f; 1158 } 1159 1160 void rom_set_order_override(int order) 1161 { 1162 if (!fw_cfg) 1163 return; 1164 fw_cfg_set_order_override(fw_cfg, order); 1165 } 1166 1167 void rom_reset_order_override(void) 1168 { 1169 if (!fw_cfg) 1170 return; 1171 fw_cfg_reset_order_override(fw_cfg); 1172 } 1173 1174 void rom_transaction_begin(void) 1175 { 1176 Rom *rom; 1177 1178 /* Ignore ROMs added without the transaction API */ 1179 QTAILQ_FOREACH(rom, &roms, next) { 1180 rom->committed = true; 1181 } 1182 } 1183 1184 void rom_transaction_end(bool commit) 1185 { 1186 Rom *rom; 1187 Rom *tmp; 1188 1189 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1190 if (rom->committed) { 1191 continue; 1192 } 1193 if (commit) { 1194 rom->committed = true; 1195 } else { 1196 QTAILQ_REMOVE(&roms, rom, next); 1197 rom_free(rom); 1198 } 1199 } 1200 } 1201 1202 static Rom *find_rom(hwaddr addr, size_t size) 1203 { 1204 Rom *rom; 1205 1206 QTAILQ_FOREACH(rom, &roms, next) { 1207 if (rom->fw_file) { 1208 continue; 1209 } 1210 if (rom->mr) { 1211 continue; 1212 } 1213 if (rom->addr > addr) { 1214 continue; 1215 } 1216 if (rom->addr + rom->romsize < addr + size) { 1217 continue; 1218 } 1219 return rom; 1220 } 1221 return NULL; 1222 } 1223 1224 /* 1225 * Copies memory from registered ROMs to dest. Any memory that is contained in 1226 * a ROM between addr and addr + size is copied. Note that this can involve 1227 * multiple ROMs, which need not start at addr and need not end at addr + size. 1228 */ 1229 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1230 { 1231 hwaddr end = addr + size; 1232 uint8_t *s, *d = dest; 1233 size_t l = 0; 1234 Rom *rom; 1235 1236 QTAILQ_FOREACH(rom, &roms, next) { 1237 if (rom->fw_file) { 1238 continue; 1239 } 1240 if (rom->mr) { 1241 continue; 1242 } 1243 if (rom->addr + rom->romsize < addr) { 1244 continue; 1245 } 1246 if (rom->addr > end) { 1247 break; 1248 } 1249 1250 d = dest + (rom->addr - addr); 1251 s = rom->data; 1252 l = rom->datasize; 1253 1254 if ((d + l) > (dest + size)) { 1255 l = dest - d; 1256 } 1257 1258 if (l > 0) { 1259 memcpy(d, s, l); 1260 } 1261 1262 if (rom->romsize > rom->datasize) { 1263 /* If datasize is less than romsize, it means that we didn't 1264 * allocate all the ROM because the trailing data are only zeros. 1265 */ 1266 1267 d += l; 1268 l = rom->romsize - rom->datasize; 1269 1270 if ((d + l) > (dest + size)) { 1271 /* Rom size doesn't fit in the destination area. Adjust to avoid 1272 * overflow. 1273 */ 1274 l = dest - d; 1275 } 1276 1277 if (l > 0) { 1278 memset(d, 0x0, l); 1279 } 1280 } 1281 } 1282 1283 return (d + l) - dest; 1284 } 1285 1286 void *rom_ptr(hwaddr addr, size_t size) 1287 { 1288 Rom *rom; 1289 1290 rom = find_rom(addr, size); 1291 if (!rom || !rom->data) 1292 return NULL; 1293 return rom->data + (addr - rom->addr); 1294 } 1295 1296 void hmp_info_roms(Monitor *mon, const QDict *qdict) 1297 { 1298 Rom *rom; 1299 1300 QTAILQ_FOREACH(rom, &roms, next) { 1301 if (rom->mr) { 1302 monitor_printf(mon, "%s" 1303 " size=0x%06zx name=\"%s\"\n", 1304 memory_region_name(rom->mr), 1305 rom->romsize, 1306 rom->name); 1307 } else if (!rom->fw_file) { 1308 monitor_printf(mon, "addr=" TARGET_FMT_plx 1309 " size=0x%06zx mem=%s name=\"%s\"\n", 1310 rom->addr, rom->romsize, 1311 rom->isrom ? "rom" : "ram", 1312 rom->name); 1313 } else { 1314 monitor_printf(mon, "fw=%s/%s" 1315 " size=0x%06zx name=\"%s\"\n", 1316 rom->fw_dir, 1317 rom->fw_file, 1318 rom->romsize, 1319 rom->name); 1320 } 1321 } 1322 } 1323 1324 typedef enum HexRecord HexRecord; 1325 enum HexRecord { 1326 DATA_RECORD = 0, 1327 EOF_RECORD, 1328 EXT_SEG_ADDR_RECORD, 1329 START_SEG_ADDR_RECORD, 1330 EXT_LINEAR_ADDR_RECORD, 1331 START_LINEAR_ADDR_RECORD, 1332 }; 1333 1334 /* Each record contains a 16-bit address which is combined with the upper 16 1335 * bits of the implicit "next address" to form a 32-bit address. 1336 */ 1337 #define NEXT_ADDR_MASK 0xffff0000 1338 1339 #define DATA_FIELD_MAX_LEN 0xff 1340 #define LEN_EXCEPT_DATA 0x5 1341 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1342 * sizeof(checksum) */ 1343 typedef struct { 1344 uint8_t byte_count; 1345 uint16_t address; 1346 uint8_t record_type; 1347 uint8_t data[DATA_FIELD_MAX_LEN]; 1348 uint8_t checksum; 1349 } HexLine; 1350 1351 /* return 0 or -1 if error */ 1352 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1353 uint32_t *index, const bool in_process) 1354 { 1355 /* +-------+---------------+-------+---------------------+--------+ 1356 * | byte | |record | | | 1357 * | count | address | type | data |checksum| 1358 * +-------+---------------+-------+---------------------+--------+ 1359 * ^ ^ ^ ^ ^ ^ 1360 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1361 */ 1362 uint8_t value = 0; 1363 uint32_t idx = *index; 1364 /* ignore space */ 1365 if (g_ascii_isspace(c)) { 1366 return true; 1367 } 1368 if (!g_ascii_isxdigit(c) || !in_process) { 1369 return false; 1370 } 1371 value = g_ascii_xdigit_value(c); 1372 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1373 if (idx < 2) { 1374 line->byte_count |= value; 1375 } else if (2 <= idx && idx < 6) { 1376 line->address <<= 4; 1377 line->address += g_ascii_xdigit_value(c); 1378 } else if (6 <= idx && idx < 8) { 1379 line->record_type |= value; 1380 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1381 line->data[(idx - 8) >> 1] |= value; 1382 } else if (8 + 2 * line->byte_count <= idx && 1383 idx < 10 + 2 * line->byte_count) { 1384 line->checksum |= value; 1385 } else { 1386 return false; 1387 } 1388 *our_checksum += value; 1389 ++(*index); 1390 return true; 1391 } 1392 1393 typedef struct { 1394 const char *filename; 1395 HexLine line; 1396 uint8_t *bin_buf; 1397 hwaddr *start_addr; 1398 int total_size; 1399 uint32_t next_address_to_write; 1400 uint32_t current_address; 1401 uint32_t current_rom_index; 1402 uint32_t rom_start_address; 1403 AddressSpace *as; 1404 } HexParser; 1405 1406 /* return size or -1 if error */ 1407 static int handle_record_type(HexParser *parser) 1408 { 1409 HexLine *line = &(parser->line); 1410 switch (line->record_type) { 1411 case DATA_RECORD: 1412 parser->current_address = 1413 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1414 /* verify this is a contiguous block of memory */ 1415 if (parser->current_address != parser->next_address_to_write) { 1416 if (parser->current_rom_index != 0) { 1417 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1418 parser->current_rom_index, 1419 parser->rom_start_address, parser->as); 1420 } 1421 parser->rom_start_address = parser->current_address; 1422 parser->current_rom_index = 0; 1423 } 1424 1425 /* copy from line buffer to output bin_buf */ 1426 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1427 line->byte_count); 1428 parser->current_rom_index += line->byte_count; 1429 parser->total_size += line->byte_count; 1430 /* save next address to write */ 1431 parser->next_address_to_write = 1432 parser->current_address + line->byte_count; 1433 break; 1434 1435 case EOF_RECORD: 1436 if (parser->current_rom_index != 0) { 1437 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1438 parser->current_rom_index, 1439 parser->rom_start_address, parser->as); 1440 } 1441 return parser->total_size; 1442 case EXT_SEG_ADDR_RECORD: 1443 case EXT_LINEAR_ADDR_RECORD: 1444 if (line->byte_count != 2 && line->address != 0) { 1445 return -1; 1446 } 1447 1448 if (parser->current_rom_index != 0) { 1449 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1450 parser->current_rom_index, 1451 parser->rom_start_address, parser->as); 1452 } 1453 1454 /* save next address to write, 1455 * in case of non-contiguous block of memory */ 1456 parser->next_address_to_write = (line->data[0] << 12) | 1457 (line->data[1] << 4); 1458 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1459 parser->next_address_to_write <<= 12; 1460 } 1461 1462 parser->rom_start_address = parser->next_address_to_write; 1463 parser->current_rom_index = 0; 1464 break; 1465 1466 case START_SEG_ADDR_RECORD: 1467 if (line->byte_count != 4 && line->address != 0) { 1468 return -1; 1469 } 1470 1471 /* x86 16-bit CS:IP segmented addressing */ 1472 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1473 ((line->data[2] << 8) | line->data[3]); 1474 break; 1475 1476 case START_LINEAR_ADDR_RECORD: 1477 if (line->byte_count != 4 && line->address != 0) { 1478 return -1; 1479 } 1480 1481 *(parser->start_addr) = ldl_be_p(line->data); 1482 break; 1483 1484 default: 1485 return -1; 1486 } 1487 1488 return parser->total_size; 1489 } 1490 1491 /* return size or -1 if error */ 1492 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1493 size_t hex_blob_size, AddressSpace *as) 1494 { 1495 bool in_process = false; /* avoid re-enter and 1496 * check whether record begin with ':' */ 1497 uint8_t *end = hex_blob + hex_blob_size; 1498 uint8_t our_checksum = 0; 1499 uint32_t record_index = 0; 1500 HexParser parser = { 1501 .filename = filename, 1502 .bin_buf = g_malloc(hex_blob_size), 1503 .start_addr = addr, 1504 .as = as, 1505 }; 1506 1507 rom_transaction_begin(); 1508 1509 for (; hex_blob < end; ++hex_blob) { 1510 switch (*hex_blob) { 1511 case '\r': 1512 case '\n': 1513 if (!in_process) { 1514 break; 1515 } 1516 1517 in_process = false; 1518 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1519 record_index || 1520 our_checksum != 0) { 1521 parser.total_size = -1; 1522 goto out; 1523 } 1524 1525 if (handle_record_type(&parser) == -1) { 1526 parser.total_size = -1; 1527 goto out; 1528 } 1529 break; 1530 1531 /* start of a new record. */ 1532 case ':': 1533 memset(&parser.line, 0, sizeof(HexLine)); 1534 in_process = true; 1535 record_index = 0; 1536 break; 1537 1538 /* decoding lines */ 1539 default: 1540 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1541 &record_index, in_process)) { 1542 parser.total_size = -1; 1543 goto out; 1544 } 1545 break; 1546 } 1547 } 1548 1549 out: 1550 g_free(parser.bin_buf); 1551 rom_transaction_end(parser.total_size != -1); 1552 return parser.total_size; 1553 } 1554 1555 /* return size or -1 if error */ 1556 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as) 1557 { 1558 gsize hex_blob_size; 1559 gchar *hex_blob; 1560 int total_size = 0; 1561 1562 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1563 return -1; 1564 } 1565 1566 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1567 hex_blob_size, as); 1568 1569 g_free(hex_blob); 1570 return total_size; 1571 } 1572