1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qemu/datadir.h" 47 #include "qapi/error.h" 48 #include "qapi/qapi-commands-machine.h" 49 #include "qapi/type-helpers.h" 50 #include "trace.h" 51 #include "hw/hw.h" 52 #include "disas/disas.h" 53 #include "migration/vmstate.h" 54 #include "monitor/monitor.h" 55 #include "sysemu/reset.h" 56 #include "sysemu/sysemu.h" 57 #include "uboot_image.h" 58 #include "hw/loader.h" 59 #include "hw/nvram/fw_cfg.h" 60 #include "exec/memory.h" 61 #include "hw/boards.h" 62 #include "qemu/cutils.h" 63 #include "sysemu/runstate.h" 64 65 #include <zlib.h> 66 67 static int roms_loaded; 68 69 /* return the size or -1 if error */ 70 int64_t get_image_size(const char *filename) 71 { 72 int fd; 73 int64_t size; 74 fd = open(filename, O_RDONLY | O_BINARY); 75 if (fd < 0) 76 return -1; 77 size = lseek(fd, 0, SEEK_END); 78 close(fd); 79 return size; 80 } 81 82 /* return the size or -1 if error */ 83 ssize_t load_image_size(const char *filename, void *addr, size_t size) 84 { 85 int fd; 86 ssize_t actsize, l = 0; 87 88 fd = open(filename, O_RDONLY | O_BINARY); 89 if (fd < 0) { 90 return -1; 91 } 92 93 while ((actsize = read(fd, addr + l, size - l)) > 0) { 94 l += actsize; 95 } 96 97 close(fd); 98 99 return actsize < 0 ? -1 : l; 100 } 101 102 /* read()-like version */ 103 ssize_t read_targphys(const char *name, 104 int fd, hwaddr dst_addr, size_t nbytes) 105 { 106 uint8_t *buf; 107 ssize_t did; 108 109 buf = g_malloc(nbytes); 110 did = read(fd, buf, nbytes); 111 if (did > 0) 112 rom_add_blob_fixed("read", buf, did, dst_addr); 113 g_free(buf); 114 return did; 115 } 116 117 int load_image_targphys(const char *filename, 118 hwaddr addr, uint64_t max_sz) 119 { 120 return load_image_targphys_as(filename, addr, max_sz, NULL); 121 } 122 123 /* return the size or -1 if error */ 124 int load_image_targphys_as(const char *filename, 125 hwaddr addr, uint64_t max_sz, AddressSpace *as) 126 { 127 int size; 128 129 size = get_image_size(filename); 130 if (size < 0 || size > max_sz) { 131 return -1; 132 } 133 if (size > 0) { 134 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 135 return -1; 136 } 137 } 138 return size; 139 } 140 141 int load_image_mr(const char *filename, MemoryRegion *mr) 142 { 143 int size; 144 145 if (!memory_access_is_direct(mr, false)) { 146 /* Can only load an image into RAM or ROM */ 147 return -1; 148 } 149 150 size = get_image_size(filename); 151 152 if (size < 0 || size > memory_region_size(mr)) { 153 return -1; 154 } 155 if (size > 0) { 156 if (rom_add_file_mr(filename, mr, -1) < 0) { 157 return -1; 158 } 159 } 160 return size; 161 } 162 163 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 164 const char *source) 165 { 166 const char *nulp; 167 char *ptr; 168 169 if (buf_size <= 0) return; 170 nulp = memchr(source, 0, buf_size); 171 if (nulp) { 172 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 173 } else { 174 rom_add_blob_fixed(name, source, buf_size, dest); 175 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 176 *ptr = 0; 177 } 178 } 179 180 /* A.OUT loader */ 181 182 struct exec 183 { 184 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 185 uint32_t a_text; /* length of text, in bytes */ 186 uint32_t a_data; /* length of data, in bytes */ 187 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 188 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 189 uint32_t a_entry; /* start address */ 190 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 191 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 192 }; 193 194 static void bswap_ahdr(struct exec *e) 195 { 196 bswap32s(&e->a_info); 197 bswap32s(&e->a_text); 198 bswap32s(&e->a_data); 199 bswap32s(&e->a_bss); 200 bswap32s(&e->a_syms); 201 bswap32s(&e->a_entry); 202 bswap32s(&e->a_trsize); 203 bswap32s(&e->a_drsize); 204 } 205 206 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 207 #define OMAGIC 0407 208 #define NMAGIC 0410 209 #define ZMAGIC 0413 210 #define QMAGIC 0314 211 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 212 #define N_TXTOFF(x) \ 213 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 214 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 215 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 216 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 217 218 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 219 220 #define N_DATADDR(x, target_page_size) \ 221 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 222 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 223 224 225 int load_aout(const char *filename, hwaddr addr, int max_sz, 226 int bswap_needed, hwaddr target_page_size) 227 { 228 int fd; 229 ssize_t size, ret; 230 struct exec e; 231 uint32_t magic; 232 233 fd = open(filename, O_RDONLY | O_BINARY); 234 if (fd < 0) 235 return -1; 236 237 size = read(fd, &e, sizeof(e)); 238 if (size < 0) 239 goto fail; 240 241 if (bswap_needed) { 242 bswap_ahdr(&e); 243 } 244 245 magic = N_MAGIC(e); 246 switch (magic) { 247 case ZMAGIC: 248 case QMAGIC: 249 case OMAGIC: 250 if (e.a_text + e.a_data > max_sz) 251 goto fail; 252 lseek(fd, N_TXTOFF(e), SEEK_SET); 253 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 254 if (size < 0) 255 goto fail; 256 break; 257 case NMAGIC: 258 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 259 goto fail; 260 lseek(fd, N_TXTOFF(e), SEEK_SET); 261 size = read_targphys(filename, fd, addr, e.a_text); 262 if (size < 0) 263 goto fail; 264 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 265 e.a_data); 266 if (ret < 0) 267 goto fail; 268 size += ret; 269 break; 270 default: 271 goto fail; 272 } 273 close(fd); 274 return size; 275 fail: 276 close(fd); 277 return -1; 278 } 279 280 /* ELF loader */ 281 282 static void *load_at(int fd, off_t offset, size_t size) 283 { 284 void *ptr; 285 if (lseek(fd, offset, SEEK_SET) < 0) 286 return NULL; 287 ptr = g_malloc(size); 288 if (read(fd, ptr, size) != size) { 289 g_free(ptr); 290 return NULL; 291 } 292 return ptr; 293 } 294 295 #ifdef ELF_CLASS 296 #undef ELF_CLASS 297 #endif 298 299 #define ELF_CLASS ELFCLASS32 300 #include "elf.h" 301 302 #define SZ 32 303 #define elf_word uint32_t 304 #define elf_sword int32_t 305 #define bswapSZs bswap32s 306 #include "hw/elf_ops.h" 307 308 #undef elfhdr 309 #undef elf_phdr 310 #undef elf_shdr 311 #undef elf_sym 312 #undef elf_rela 313 #undef elf_note 314 #undef elf_word 315 #undef elf_sword 316 #undef bswapSZs 317 #undef SZ 318 #define elfhdr elf64_hdr 319 #define elf_phdr elf64_phdr 320 #define elf_note elf64_note 321 #define elf_shdr elf64_shdr 322 #define elf_sym elf64_sym 323 #define elf_rela elf64_rela 324 #define elf_word uint64_t 325 #define elf_sword int64_t 326 #define bswapSZs bswap64s 327 #define SZ 64 328 #include "hw/elf_ops.h" 329 330 const char *load_elf_strerror(ssize_t error) 331 { 332 switch (error) { 333 case 0: 334 return "No error"; 335 case ELF_LOAD_FAILED: 336 return "Failed to load ELF"; 337 case ELF_LOAD_NOT_ELF: 338 return "The image is not ELF"; 339 case ELF_LOAD_WRONG_ARCH: 340 return "The image is from incompatible architecture"; 341 case ELF_LOAD_WRONG_ENDIAN: 342 return "The image has incorrect endianness"; 343 case ELF_LOAD_TOO_BIG: 344 return "The image segments are too big to load"; 345 default: 346 return "Unknown error"; 347 } 348 } 349 350 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 351 { 352 int fd; 353 uint8_t e_ident_local[EI_NIDENT]; 354 uint8_t *e_ident; 355 size_t hdr_size, off; 356 bool is64l; 357 358 if (!hdr) { 359 hdr = e_ident_local; 360 } 361 e_ident = hdr; 362 363 fd = open(filename, O_RDONLY | O_BINARY); 364 if (fd < 0) { 365 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 366 return; 367 } 368 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 369 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 370 goto fail; 371 } 372 if (e_ident[0] != ELFMAG0 || 373 e_ident[1] != ELFMAG1 || 374 e_ident[2] != ELFMAG2 || 375 e_ident[3] != ELFMAG3) { 376 error_setg(errp, "Bad ELF magic"); 377 goto fail; 378 } 379 380 is64l = e_ident[EI_CLASS] == ELFCLASS64; 381 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 382 if (is64) { 383 *is64 = is64l; 384 } 385 386 off = EI_NIDENT; 387 while (hdr != e_ident_local && off < hdr_size) { 388 size_t br = read(fd, hdr + off, hdr_size - off); 389 switch (br) { 390 case 0: 391 error_setg(errp, "File too short: %s", filename); 392 goto fail; 393 case -1: 394 error_setg_errno(errp, errno, "Failed to read file: %s", 395 filename); 396 goto fail; 397 } 398 off += br; 399 } 400 401 fail: 402 close(fd); 403 } 404 405 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 406 ssize_t load_elf(const char *filename, 407 uint64_t (*elf_note_fn)(void *, void *, bool), 408 uint64_t (*translate_fn)(void *, uint64_t), 409 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 410 uint64_t *highaddr, uint32_t *pflags, int big_endian, 411 int elf_machine, int clear_lsb, int data_swab) 412 { 413 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 414 pentry, lowaddr, highaddr, pflags, big_endian, 415 elf_machine, clear_lsb, data_swab, NULL); 416 } 417 418 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 419 ssize_t load_elf_as(const char *filename, 420 uint64_t (*elf_note_fn)(void *, void *, bool), 421 uint64_t (*translate_fn)(void *, uint64_t), 422 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 423 uint64_t *highaddr, uint32_t *pflags, int big_endian, 424 int elf_machine, int clear_lsb, int data_swab, 425 AddressSpace *as) 426 { 427 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque, 428 pentry, lowaddr, highaddr, pflags, big_endian, 429 elf_machine, clear_lsb, data_swab, as, true); 430 } 431 432 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 433 ssize_t load_elf_ram(const char *filename, 434 uint64_t (*elf_note_fn)(void *, void *, bool), 435 uint64_t (*translate_fn)(void *, uint64_t), 436 void *translate_opaque, uint64_t *pentry, 437 uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags, 438 int big_endian, int elf_machine, int clear_lsb, 439 int data_swab, AddressSpace *as, bool load_rom) 440 { 441 return load_elf_ram_sym(filename, elf_note_fn, 442 translate_fn, translate_opaque, 443 pentry, lowaddr, highaddr, pflags, big_endian, 444 elf_machine, clear_lsb, data_swab, as, 445 load_rom, NULL); 446 } 447 448 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 449 ssize_t load_elf_ram_sym(const char *filename, 450 uint64_t (*elf_note_fn)(void *, void *, bool), 451 uint64_t (*translate_fn)(void *, uint64_t), 452 void *translate_opaque, uint64_t *pentry, 453 uint64_t *lowaddr, uint64_t *highaddr, 454 uint32_t *pflags, int big_endian, int elf_machine, 455 int clear_lsb, int data_swab, 456 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 457 { 458 int fd, data_order, target_data_order, must_swab; 459 ssize_t ret = ELF_LOAD_FAILED; 460 uint8_t e_ident[EI_NIDENT]; 461 462 fd = open(filename, O_RDONLY | O_BINARY); 463 if (fd < 0) { 464 perror(filename); 465 return -1; 466 } 467 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 468 goto fail; 469 if (e_ident[0] != ELFMAG0 || 470 e_ident[1] != ELFMAG1 || 471 e_ident[2] != ELFMAG2 || 472 e_ident[3] != ELFMAG3) { 473 ret = ELF_LOAD_NOT_ELF; 474 goto fail; 475 } 476 #if HOST_BIG_ENDIAN 477 data_order = ELFDATA2MSB; 478 #else 479 data_order = ELFDATA2LSB; 480 #endif 481 must_swab = data_order != e_ident[EI_DATA]; 482 if (big_endian) { 483 target_data_order = ELFDATA2MSB; 484 } else { 485 target_data_order = ELFDATA2LSB; 486 } 487 488 if (target_data_order != e_ident[EI_DATA]) { 489 ret = ELF_LOAD_WRONG_ENDIAN; 490 goto fail; 491 } 492 493 lseek(fd, 0, SEEK_SET); 494 if (e_ident[EI_CLASS] == ELFCLASS64) { 495 ret = load_elf64(filename, fd, elf_note_fn, 496 translate_fn, translate_opaque, must_swab, 497 pentry, lowaddr, highaddr, pflags, elf_machine, 498 clear_lsb, data_swab, as, load_rom, sym_cb); 499 } else { 500 ret = load_elf32(filename, fd, elf_note_fn, 501 translate_fn, translate_opaque, must_swab, 502 pentry, lowaddr, highaddr, pflags, elf_machine, 503 clear_lsb, data_swab, as, load_rom, sym_cb); 504 } 505 506 fail: 507 close(fd); 508 return ret; 509 } 510 511 static void bswap_uboot_header(uboot_image_header_t *hdr) 512 { 513 #if !HOST_BIG_ENDIAN 514 bswap32s(&hdr->ih_magic); 515 bswap32s(&hdr->ih_hcrc); 516 bswap32s(&hdr->ih_time); 517 bswap32s(&hdr->ih_size); 518 bswap32s(&hdr->ih_load); 519 bswap32s(&hdr->ih_ep); 520 bswap32s(&hdr->ih_dcrc); 521 #endif 522 } 523 524 525 #define ZALLOC_ALIGNMENT 16 526 527 static void *zalloc(void *x, unsigned items, unsigned size) 528 { 529 void *p; 530 531 size *= items; 532 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 533 534 p = g_malloc(size); 535 536 return (p); 537 } 538 539 static void zfree(void *x, void *addr) 540 { 541 g_free(addr); 542 } 543 544 545 #define HEAD_CRC 2 546 #define EXTRA_FIELD 4 547 #define ORIG_NAME 8 548 #define COMMENT 0x10 549 #define RESERVED 0xe0 550 551 #define DEFLATED 8 552 553 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 554 { 555 z_stream s; 556 ssize_t dstbytes; 557 int r, i, flags; 558 559 /* skip header */ 560 i = 10; 561 if (srclen < 4) { 562 goto toosmall; 563 } 564 flags = src[3]; 565 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 566 puts ("Error: Bad gzipped data\n"); 567 return -1; 568 } 569 if ((flags & EXTRA_FIELD) != 0) { 570 if (srclen < 12) { 571 goto toosmall; 572 } 573 i = 12 + src[10] + (src[11] << 8); 574 } 575 if ((flags & ORIG_NAME) != 0) { 576 while (i < srclen && src[i++] != 0) { 577 /* do nothing */ 578 } 579 } 580 if ((flags & COMMENT) != 0) { 581 while (i < srclen && src[i++] != 0) { 582 /* do nothing */ 583 } 584 } 585 if ((flags & HEAD_CRC) != 0) { 586 i += 2; 587 } 588 if (i >= srclen) { 589 goto toosmall; 590 } 591 592 s.zalloc = zalloc; 593 s.zfree = zfree; 594 595 r = inflateInit2(&s, -MAX_WBITS); 596 if (r != Z_OK) { 597 printf ("Error: inflateInit2() returned %d\n", r); 598 return (-1); 599 } 600 s.next_in = src + i; 601 s.avail_in = srclen - i; 602 s.next_out = dst; 603 s.avail_out = dstlen; 604 r = inflate(&s, Z_FINISH); 605 if (r != Z_OK && r != Z_STREAM_END) { 606 printf ("Error: inflate() returned %d\n", r); 607 return -1; 608 } 609 dstbytes = s.next_out - (unsigned char *) dst; 610 inflateEnd(&s); 611 612 return dstbytes; 613 614 toosmall: 615 puts("Error: gunzip out of data in header\n"); 616 return -1; 617 } 618 619 /* Load a U-Boot image. */ 620 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 621 int *is_linux, uint8_t image_type, 622 uint64_t (*translate_fn)(void *, uint64_t), 623 void *translate_opaque, AddressSpace *as) 624 { 625 int fd; 626 int size; 627 hwaddr address; 628 uboot_image_header_t h; 629 uboot_image_header_t *hdr = &h; 630 uint8_t *data = NULL; 631 int ret = -1; 632 int do_uncompress = 0; 633 634 fd = open(filename, O_RDONLY | O_BINARY); 635 if (fd < 0) 636 return -1; 637 638 size = read(fd, hdr, sizeof(uboot_image_header_t)); 639 if (size < sizeof(uboot_image_header_t)) { 640 goto out; 641 } 642 643 bswap_uboot_header(hdr); 644 645 if (hdr->ih_magic != IH_MAGIC) 646 goto out; 647 648 if (hdr->ih_type != image_type) { 649 if (!(image_type == IH_TYPE_KERNEL && 650 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 651 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 652 image_type); 653 goto out; 654 } 655 } 656 657 /* TODO: Implement other image types. */ 658 switch (hdr->ih_type) { 659 case IH_TYPE_KERNEL_NOLOAD: 660 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 661 fprintf(stderr, "this image format (kernel_noload) cannot be " 662 "loaded on this machine type"); 663 goto out; 664 } 665 666 hdr->ih_load = *loadaddr + sizeof(*hdr); 667 hdr->ih_ep += hdr->ih_load; 668 /* fall through */ 669 case IH_TYPE_KERNEL: 670 address = hdr->ih_load; 671 if (translate_fn) { 672 address = translate_fn(translate_opaque, address); 673 } 674 if (loadaddr) { 675 *loadaddr = hdr->ih_load; 676 } 677 678 switch (hdr->ih_comp) { 679 case IH_COMP_NONE: 680 break; 681 case IH_COMP_GZIP: 682 do_uncompress = 1; 683 break; 684 default: 685 fprintf(stderr, 686 "Unable to load u-boot images with compression type %d\n", 687 hdr->ih_comp); 688 goto out; 689 } 690 691 if (ep) { 692 *ep = hdr->ih_ep; 693 } 694 695 /* TODO: Check CPU type. */ 696 if (is_linux) { 697 if (hdr->ih_os == IH_OS_LINUX) { 698 *is_linux = 1; 699 } else { 700 *is_linux = 0; 701 } 702 } 703 704 break; 705 case IH_TYPE_RAMDISK: 706 address = *loadaddr; 707 break; 708 default: 709 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 710 goto out; 711 } 712 713 data = g_malloc(hdr->ih_size); 714 715 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 716 fprintf(stderr, "Error reading file\n"); 717 goto out; 718 } 719 720 if (do_uncompress) { 721 uint8_t *compressed_data; 722 size_t max_bytes; 723 ssize_t bytes; 724 725 compressed_data = data; 726 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 727 data = g_malloc(max_bytes); 728 729 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 730 g_free(compressed_data); 731 if (bytes < 0) { 732 fprintf(stderr, "Unable to decompress gzipped image!\n"); 733 goto out; 734 } 735 hdr->ih_size = bytes; 736 } 737 738 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 739 740 ret = hdr->ih_size; 741 742 out: 743 g_free(data); 744 close(fd); 745 return ret; 746 } 747 748 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 749 int *is_linux, 750 uint64_t (*translate_fn)(void *, uint64_t), 751 void *translate_opaque) 752 { 753 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 754 translate_fn, translate_opaque, NULL); 755 } 756 757 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 758 int *is_linux, 759 uint64_t (*translate_fn)(void *, uint64_t), 760 void *translate_opaque, AddressSpace *as) 761 { 762 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 763 translate_fn, translate_opaque, as); 764 } 765 766 /* Load a ramdisk. */ 767 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 768 { 769 return load_ramdisk_as(filename, addr, max_sz, NULL); 770 } 771 772 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 773 AddressSpace *as) 774 { 775 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 776 NULL, NULL, as); 777 } 778 779 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 780 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 781 uint8_t **buffer) 782 { 783 uint8_t *compressed_data = NULL; 784 uint8_t *data = NULL; 785 gsize len; 786 ssize_t bytes; 787 int ret = -1; 788 789 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 790 NULL)) { 791 goto out; 792 } 793 794 /* Is it a gzip-compressed file? */ 795 if (len < 2 || 796 compressed_data[0] != 0x1f || 797 compressed_data[1] != 0x8b) { 798 goto out; 799 } 800 801 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 802 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 803 } 804 805 data = g_malloc(max_sz); 806 bytes = gunzip(data, max_sz, compressed_data, len); 807 if (bytes < 0) { 808 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 809 filename); 810 goto out; 811 } 812 813 /* trim to actual size and return to caller */ 814 *buffer = g_realloc(data, bytes); 815 ret = bytes; 816 /* ownership has been transferred to caller */ 817 data = NULL; 818 819 out: 820 g_free(compressed_data); 821 g_free(data); 822 return ret; 823 } 824 825 /* Load a gzip-compressed kernel. */ 826 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 827 { 828 int bytes; 829 uint8_t *data; 830 831 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 832 if (bytes != -1) { 833 rom_add_blob_fixed(filename, data, bytes, addr); 834 g_free(data); 835 } 836 return bytes; 837 } 838 839 /* 840 * Functions for reboot-persistent memory regions. 841 * - used for vga bios and option roms. 842 * - also linux kernel (-kernel / -initrd). 843 */ 844 845 typedef struct Rom Rom; 846 847 struct Rom { 848 char *name; 849 char *path; 850 851 /* datasize is the amount of memory allocated in "data". If datasize is less 852 * than romsize, it means that the area from datasize to romsize is filled 853 * with zeros. 854 */ 855 size_t romsize; 856 size_t datasize; 857 858 uint8_t *data; 859 MemoryRegion *mr; 860 AddressSpace *as; 861 int isrom; 862 char *fw_dir; 863 char *fw_file; 864 GMappedFile *mapped_file; 865 866 bool committed; 867 868 hwaddr addr; 869 QTAILQ_ENTRY(Rom) next; 870 }; 871 872 static FWCfgState *fw_cfg; 873 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 874 875 /* 876 * rom->data can be heap-allocated or memory-mapped (e.g. when added with 877 * rom_add_elf_program()) 878 */ 879 static void rom_free_data(Rom *rom) 880 { 881 if (rom->mapped_file) { 882 g_mapped_file_unref(rom->mapped_file); 883 rom->mapped_file = NULL; 884 } else { 885 g_free(rom->data); 886 } 887 888 rom->data = NULL; 889 } 890 891 static void rom_free(Rom *rom) 892 { 893 rom_free_data(rom); 894 g_free(rom->path); 895 g_free(rom->name); 896 g_free(rom->fw_dir); 897 g_free(rom->fw_file); 898 g_free(rom); 899 } 900 901 static inline bool rom_order_compare(Rom *rom, Rom *item) 902 { 903 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 904 (rom->as == item->as && rom->addr >= item->addr); 905 } 906 907 static void rom_insert(Rom *rom) 908 { 909 Rom *item; 910 911 if (roms_loaded) { 912 hw_error ("ROM images must be loaded at startup\n"); 913 } 914 915 /* The user didn't specify an address space, this is the default */ 916 if (!rom->as) { 917 rom->as = &address_space_memory; 918 } 919 920 rom->committed = false; 921 922 /* List is ordered by load address in the same address space */ 923 QTAILQ_FOREACH(item, &roms, next) { 924 if (rom_order_compare(rom, item)) { 925 continue; 926 } 927 QTAILQ_INSERT_BEFORE(item, rom, next); 928 return; 929 } 930 QTAILQ_INSERT_TAIL(&roms, rom, next); 931 } 932 933 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 934 { 935 if (fw_cfg) { 936 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 937 } 938 } 939 940 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 941 { 942 void *data; 943 944 rom->mr = g_malloc(sizeof(*rom->mr)); 945 memory_region_init_resizeable_ram(rom->mr, owner, name, 946 rom->datasize, rom->romsize, 947 fw_cfg_resized, 948 &error_fatal); 949 memory_region_set_readonly(rom->mr, ro); 950 vmstate_register_ram_global(rom->mr); 951 952 data = memory_region_get_ram_ptr(rom->mr); 953 memcpy(data, rom->data, rom->datasize); 954 955 return data; 956 } 957 958 int rom_add_file(const char *file, const char *fw_dir, 959 hwaddr addr, int32_t bootindex, 960 bool option_rom, MemoryRegion *mr, 961 AddressSpace *as) 962 { 963 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 964 Rom *rom; 965 int rc, fd = -1; 966 char devpath[100]; 967 968 if (as && mr) { 969 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 970 "not valid when loading a rom\n"); 971 /* We haven't allocated anything so we don't need any cleanup */ 972 return -1; 973 } 974 975 rom = g_malloc0(sizeof(*rom)); 976 rom->name = g_strdup(file); 977 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 978 rom->as = as; 979 if (rom->path == NULL) { 980 rom->path = g_strdup(file); 981 } 982 983 fd = open(rom->path, O_RDONLY | O_BINARY); 984 if (fd == -1) { 985 fprintf(stderr, "Could not open option rom '%s': %s\n", 986 rom->path, strerror(errno)); 987 goto err; 988 } 989 990 if (fw_dir) { 991 rom->fw_dir = g_strdup(fw_dir); 992 rom->fw_file = g_strdup(file); 993 } 994 rom->addr = addr; 995 rom->romsize = lseek(fd, 0, SEEK_END); 996 if (rom->romsize == -1) { 997 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 998 rom->name, strerror(errno)); 999 goto err; 1000 } 1001 1002 rom->datasize = rom->romsize; 1003 rom->data = g_malloc0(rom->datasize); 1004 lseek(fd, 0, SEEK_SET); 1005 rc = read(fd, rom->data, rom->datasize); 1006 if (rc != rom->datasize) { 1007 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 1008 rom->name, rc, rom->datasize); 1009 goto err; 1010 } 1011 close(fd); 1012 rom_insert(rom); 1013 if (rom->fw_file && fw_cfg) { 1014 const char *basename; 1015 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 1016 void *data; 1017 1018 basename = strrchr(rom->fw_file, '/'); 1019 if (basename) { 1020 basename++; 1021 } else { 1022 basename = rom->fw_file; 1023 } 1024 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 1025 basename); 1026 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1027 1028 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 1029 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 1030 } else { 1031 data = rom->data; 1032 } 1033 1034 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 1035 } else { 1036 if (mr) { 1037 rom->mr = mr; 1038 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 1039 } else { 1040 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 1041 } 1042 } 1043 1044 add_boot_device_path(bootindex, NULL, devpath); 1045 return 0; 1046 1047 err: 1048 if (fd != -1) 1049 close(fd); 1050 1051 rom_free(rom); 1052 return -1; 1053 } 1054 1055 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1056 size_t max_len, hwaddr addr, const char *fw_file_name, 1057 FWCfgCallback fw_callback, void *callback_opaque, 1058 AddressSpace *as, bool read_only) 1059 { 1060 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1061 Rom *rom; 1062 MemoryRegion *mr = NULL; 1063 1064 rom = g_malloc0(sizeof(*rom)); 1065 rom->name = g_strdup(name); 1066 rom->as = as; 1067 rom->addr = addr; 1068 rom->romsize = max_len ? max_len : len; 1069 rom->datasize = len; 1070 g_assert(rom->romsize >= rom->datasize); 1071 rom->data = g_malloc0(rom->datasize); 1072 memcpy(rom->data, blob, len); 1073 rom_insert(rom); 1074 if (fw_file_name && fw_cfg) { 1075 char devpath[100]; 1076 void *data; 1077 1078 if (read_only) { 1079 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1080 } else { 1081 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1082 } 1083 1084 if (mc->rom_file_has_mr) { 1085 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1086 mr = rom->mr; 1087 } else { 1088 data = rom->data; 1089 } 1090 1091 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1092 fw_callback, NULL, callback_opaque, 1093 data, rom->datasize, read_only); 1094 } 1095 return mr; 1096 } 1097 1098 /* This function is specific for elf program because we don't need to allocate 1099 * all the rom. We just allocate the first part and the rest is just zeros. This 1100 * is why romsize and datasize are different. Also, this function takes its own 1101 * reference to "mapped_file", so we don't have to allocate and copy the buffer. 1102 */ 1103 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, 1104 size_t datasize, size_t romsize, hwaddr addr, 1105 AddressSpace *as) 1106 { 1107 Rom *rom; 1108 1109 rom = g_malloc0(sizeof(*rom)); 1110 rom->name = g_strdup(name); 1111 rom->addr = addr; 1112 rom->datasize = datasize; 1113 rom->romsize = romsize; 1114 rom->data = data; 1115 rom->as = as; 1116 1117 if (mapped_file && data) { 1118 g_mapped_file_ref(mapped_file); 1119 rom->mapped_file = mapped_file; 1120 } 1121 1122 rom_insert(rom); 1123 return 0; 1124 } 1125 1126 int rom_add_vga(const char *file) 1127 { 1128 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1129 } 1130 1131 int rom_add_option(const char *file, int32_t bootindex) 1132 { 1133 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1134 } 1135 1136 static void rom_reset(void *unused) 1137 { 1138 Rom *rom; 1139 1140 QTAILQ_FOREACH(rom, &roms, next) { 1141 if (rom->fw_file) { 1142 continue; 1143 } 1144 /* 1145 * We don't need to fill in the RAM with ROM data because we'll fill 1146 * the data in during the next incoming migration in all cases. Note 1147 * that some of those RAMs can actually be modified by the guest. 1148 */ 1149 if (runstate_check(RUN_STATE_INMIGRATE)) { 1150 if (rom->data && rom->isrom) { 1151 /* 1152 * Free it so that a rom_reset after migration doesn't 1153 * overwrite a potentially modified 'rom'. 1154 */ 1155 rom_free_data(rom); 1156 } 1157 continue; 1158 } 1159 1160 if (rom->data == NULL) { 1161 continue; 1162 } 1163 if (rom->mr) { 1164 void *host = memory_region_get_ram_ptr(rom->mr); 1165 memcpy(host, rom->data, rom->datasize); 1166 memset(host + rom->datasize, 0, rom->romsize - rom->datasize); 1167 } else { 1168 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1169 rom->data, rom->datasize); 1170 address_space_set(rom->as, rom->addr + rom->datasize, 0, 1171 rom->romsize - rom->datasize, 1172 MEMTXATTRS_UNSPECIFIED); 1173 } 1174 if (rom->isrom) { 1175 /* rom needs to be written only once */ 1176 rom_free_data(rom); 1177 } 1178 /* 1179 * The rom loader is really on the same level as firmware in the guest 1180 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1181 * that the instruction cache for that new region is clear, so that the 1182 * CPU definitely fetches its instructions from the just written data. 1183 */ 1184 cpu_flush_icache_range(rom->addr, rom->datasize); 1185 1186 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom); 1187 } 1188 } 1189 1190 /* Return true if two consecutive ROMs in the ROM list overlap */ 1191 static bool roms_overlap(Rom *last_rom, Rom *this_rom) 1192 { 1193 if (!last_rom) { 1194 return false; 1195 } 1196 return last_rom->as == this_rom->as && 1197 last_rom->addr + last_rom->romsize > this_rom->addr; 1198 } 1199 1200 static const char *rom_as_name(Rom *rom) 1201 { 1202 const char *name = rom->as ? rom->as->name : NULL; 1203 return name ?: "anonymous"; 1204 } 1205 1206 static void rom_print_overlap_error_header(void) 1207 { 1208 error_report("Some ROM regions are overlapping"); 1209 error_printf( 1210 "These ROM regions might have been loaded by " 1211 "direct user request or by default.\n" 1212 "They could be BIOS/firmware images, a guest kernel, " 1213 "initrd or some other file loaded into guest memory.\n" 1214 "Check whether you intended to load all this guest code, and " 1215 "whether it has been built to load to the correct addresses.\n"); 1216 } 1217 1218 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom) 1219 { 1220 error_printf( 1221 "\nThe following two regions overlap (in the %s address space):\n", 1222 rom_as_name(rom)); 1223 error_printf( 1224 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n", 1225 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize); 1226 error_printf( 1227 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n", 1228 rom->name, rom->addr, rom->addr + rom->romsize); 1229 } 1230 1231 int rom_check_and_register_reset(void) 1232 { 1233 MemoryRegionSection section; 1234 Rom *rom, *last_rom = NULL; 1235 bool found_overlap = false; 1236 1237 QTAILQ_FOREACH(rom, &roms, next) { 1238 if (rom->fw_file) { 1239 continue; 1240 } 1241 if (!rom->mr) { 1242 if (roms_overlap(last_rom, rom)) { 1243 if (!found_overlap) { 1244 found_overlap = true; 1245 rom_print_overlap_error_header(); 1246 } 1247 rom_print_one_overlap_error(last_rom, rom); 1248 /* Keep going through the list so we report all overlaps */ 1249 } 1250 last_rom = rom; 1251 } 1252 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1253 rom->addr, 1); 1254 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1255 memory_region_unref(section.mr); 1256 } 1257 if (found_overlap) { 1258 return -1; 1259 } 1260 1261 qemu_register_reset(rom_reset, NULL); 1262 roms_loaded = 1; 1263 return 0; 1264 } 1265 1266 void rom_set_fw(FWCfgState *f) 1267 { 1268 fw_cfg = f; 1269 } 1270 1271 void rom_set_order_override(int order) 1272 { 1273 if (!fw_cfg) 1274 return; 1275 fw_cfg_set_order_override(fw_cfg, order); 1276 } 1277 1278 void rom_reset_order_override(void) 1279 { 1280 if (!fw_cfg) 1281 return; 1282 fw_cfg_reset_order_override(fw_cfg); 1283 } 1284 1285 void rom_transaction_begin(void) 1286 { 1287 Rom *rom; 1288 1289 /* Ignore ROMs added without the transaction API */ 1290 QTAILQ_FOREACH(rom, &roms, next) { 1291 rom->committed = true; 1292 } 1293 } 1294 1295 void rom_transaction_end(bool commit) 1296 { 1297 Rom *rom; 1298 Rom *tmp; 1299 1300 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1301 if (rom->committed) { 1302 continue; 1303 } 1304 if (commit) { 1305 rom->committed = true; 1306 } else { 1307 QTAILQ_REMOVE(&roms, rom, next); 1308 rom_free(rom); 1309 } 1310 } 1311 } 1312 1313 static Rom *find_rom(hwaddr addr, size_t size) 1314 { 1315 Rom *rom; 1316 1317 QTAILQ_FOREACH(rom, &roms, next) { 1318 if (rom->fw_file) { 1319 continue; 1320 } 1321 if (rom->mr) { 1322 continue; 1323 } 1324 if (rom->addr > addr) { 1325 continue; 1326 } 1327 if (rom->addr + rom->romsize < addr + size) { 1328 continue; 1329 } 1330 return rom; 1331 } 1332 return NULL; 1333 } 1334 1335 typedef struct RomSec { 1336 hwaddr base; 1337 int se; /* start/end flag */ 1338 } RomSec; 1339 1340 1341 /* 1342 * Sort into address order. We break ties between rom-startpoints 1343 * and rom-endpoints in favour of the startpoint, by sorting the 0->1 1344 * transition before the 1->0 transition. Either way round would 1345 * work, but this way saves a little work later by avoiding 1346 * dealing with "gaps" of 0 length. 1347 */ 1348 static gint sort_secs(gconstpointer a, gconstpointer b) 1349 { 1350 RomSec *ra = (RomSec *) a; 1351 RomSec *rb = (RomSec *) b; 1352 1353 if (ra->base == rb->base) { 1354 return ra->se - rb->se; 1355 } 1356 return ra->base > rb->base ? 1 : -1; 1357 } 1358 1359 static GList *add_romsec_to_list(GList *secs, hwaddr base, int se) 1360 { 1361 RomSec *cand = g_new(RomSec, 1); 1362 cand->base = base; 1363 cand->se = se; 1364 return g_list_prepend(secs, cand); 1365 } 1366 1367 RomGap rom_find_largest_gap_between(hwaddr base, size_t size) 1368 { 1369 Rom *rom; 1370 RomSec *cand; 1371 RomGap res = {0, 0}; 1372 hwaddr gapstart = base; 1373 GList *it, *secs = NULL; 1374 int count = 0; 1375 1376 QTAILQ_FOREACH(rom, &roms, next) { 1377 /* Ignore blobs being loaded to special places */ 1378 if (rom->mr || rom->fw_file) { 1379 continue; 1380 } 1381 /* ignore anything finishing bellow base */ 1382 if (rom->addr + rom->romsize <= base) { 1383 continue; 1384 } 1385 /* ignore anything starting above the region */ 1386 if (rom->addr >= base + size) { 1387 continue; 1388 } 1389 1390 /* Save the start and end of each relevant ROM */ 1391 secs = add_romsec_to_list(secs, rom->addr, 1); 1392 1393 if (rom->addr + rom->romsize < base + size) { 1394 secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1); 1395 } 1396 } 1397 1398 /* sentinel */ 1399 secs = add_romsec_to_list(secs, base + size, 1); 1400 1401 secs = g_list_sort(secs, sort_secs); 1402 1403 for (it = g_list_first(secs); it; it = g_list_next(it)) { 1404 cand = (RomSec *) it->data; 1405 if (count == 0 && count + cand->se == 1) { 1406 size_t gap = cand->base - gapstart; 1407 if (gap > res.size) { 1408 res.base = gapstart; 1409 res.size = gap; 1410 } 1411 } else if (count == 1 && count + cand->se == 0) { 1412 gapstart = cand->base; 1413 } 1414 count += cand->se; 1415 } 1416 1417 g_list_free_full(secs, g_free); 1418 return res; 1419 } 1420 1421 /* 1422 * Copies memory from registered ROMs to dest. Any memory that is contained in 1423 * a ROM between addr and addr + size is copied. Note that this can involve 1424 * multiple ROMs, which need not start at addr and need not end at addr + size. 1425 */ 1426 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1427 { 1428 hwaddr end = addr + size; 1429 uint8_t *s, *d = dest; 1430 size_t l = 0; 1431 Rom *rom; 1432 1433 QTAILQ_FOREACH(rom, &roms, next) { 1434 if (rom->fw_file) { 1435 continue; 1436 } 1437 if (rom->mr) { 1438 continue; 1439 } 1440 if (rom->addr + rom->romsize < addr) { 1441 continue; 1442 } 1443 if (rom->addr > end || rom->addr < addr) { 1444 break; 1445 } 1446 1447 d = dest + (rom->addr - addr); 1448 s = rom->data; 1449 l = rom->datasize; 1450 1451 if ((d + l) > (dest + size)) { 1452 l = dest - d; 1453 } 1454 1455 if (l > 0) { 1456 memcpy(d, s, l); 1457 } 1458 1459 if (rom->romsize > rom->datasize) { 1460 /* If datasize is less than romsize, it means that we didn't 1461 * allocate all the ROM because the trailing data are only zeros. 1462 */ 1463 1464 d += l; 1465 l = rom->romsize - rom->datasize; 1466 1467 if ((d + l) > (dest + size)) { 1468 /* Rom size doesn't fit in the destination area. Adjust to avoid 1469 * overflow. 1470 */ 1471 l = dest - d; 1472 } 1473 1474 if (l > 0) { 1475 memset(d, 0x0, l); 1476 } 1477 } 1478 } 1479 1480 return (d + l) - dest; 1481 } 1482 1483 void *rom_ptr(hwaddr addr, size_t size) 1484 { 1485 Rom *rom; 1486 1487 rom = find_rom(addr, size); 1488 if (!rom || !rom->data) 1489 return NULL; 1490 return rom->data + (addr - rom->addr); 1491 } 1492 1493 typedef struct FindRomCBData { 1494 size_t size; /* Amount of data we want from ROM, in bytes */ 1495 MemoryRegion *mr; /* MR at the unaliased guest addr */ 1496 hwaddr xlat; /* Offset of addr within mr */ 1497 void *rom; /* Output: rom data pointer, if found */ 1498 } FindRomCBData; 1499 1500 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr, 1501 hwaddr offset_in_region, void *opaque) 1502 { 1503 FindRomCBData *cbdata = opaque; 1504 hwaddr alias_addr; 1505 1506 if (mr != cbdata->mr) { 1507 return false; 1508 } 1509 1510 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region; 1511 cbdata->rom = rom_ptr(alias_addr, cbdata->size); 1512 if (!cbdata->rom) { 1513 return false; 1514 } 1515 /* Found a match, stop iterating */ 1516 return true; 1517 } 1518 1519 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size) 1520 { 1521 /* 1522 * Find any ROM data for the given guest address range. If there 1523 * is a ROM blob then return a pointer to the host memory 1524 * corresponding to 'addr'; otherwise return NULL. 1525 * 1526 * We look not only for ROM blobs that were loaded directly to 1527 * addr, but also for ROM blobs that were loaded to aliases of 1528 * that memory at other addresses within the AddressSpace. 1529 * 1530 * Note that we do not check @as against the 'as' member in the 1531 * 'struct Rom' returned by rom_ptr(). The Rom::as is the 1532 * AddressSpace which the rom blob should be written to, whereas 1533 * our @as argument is the AddressSpace which we are (effectively) 1534 * reading from, and the same underlying RAM will often be visible 1535 * in multiple AddressSpaces. (A common example is a ROM blob 1536 * written to the 'system' address space but then read back via a 1537 * CPU's cpu->as pointer.) This does mean we might potentially 1538 * return a false-positive match if a ROM blob was loaded into an 1539 * AS which is entirely separate and distinct from the one we're 1540 * querying, but this issue exists also for rom_ptr() and hasn't 1541 * caused any problems in practice. 1542 */ 1543 FlatView *fv; 1544 void *rom; 1545 hwaddr len_unused; 1546 FindRomCBData cbdata = {}; 1547 1548 /* Easy case: there's data at the actual address */ 1549 rom = rom_ptr(addr, size); 1550 if (rom) { 1551 return rom; 1552 } 1553 1554 RCU_READ_LOCK_GUARD(); 1555 1556 fv = address_space_to_flatview(as); 1557 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused, 1558 false, MEMTXATTRS_UNSPECIFIED); 1559 if (!cbdata.mr) { 1560 /* Nothing at this address, so there can't be any aliasing */ 1561 return NULL; 1562 } 1563 cbdata.size = size; 1564 flatview_for_each_range(fv, find_rom_cb, &cbdata); 1565 return cbdata.rom; 1566 } 1567 1568 HumanReadableText *qmp_x_query_roms(Error **errp) 1569 { 1570 Rom *rom; 1571 g_autoptr(GString) buf = g_string_new(""); 1572 1573 QTAILQ_FOREACH(rom, &roms, next) { 1574 if (rom->mr) { 1575 g_string_append_printf(buf, "%s" 1576 " size=0x%06zx name=\"%s\"\n", 1577 memory_region_name(rom->mr), 1578 rom->romsize, 1579 rom->name); 1580 } else if (!rom->fw_file) { 1581 g_string_append_printf(buf, "addr=" TARGET_FMT_plx 1582 " size=0x%06zx mem=%s name=\"%s\"\n", 1583 rom->addr, rom->romsize, 1584 rom->isrom ? "rom" : "ram", 1585 rom->name); 1586 } else { 1587 g_string_append_printf(buf, "fw=%s/%s" 1588 " size=0x%06zx name=\"%s\"\n", 1589 rom->fw_dir, 1590 rom->fw_file, 1591 rom->romsize, 1592 rom->name); 1593 } 1594 } 1595 1596 return human_readable_text_from_str(buf); 1597 } 1598 1599 typedef enum HexRecord HexRecord; 1600 enum HexRecord { 1601 DATA_RECORD = 0, 1602 EOF_RECORD, 1603 EXT_SEG_ADDR_RECORD, 1604 START_SEG_ADDR_RECORD, 1605 EXT_LINEAR_ADDR_RECORD, 1606 START_LINEAR_ADDR_RECORD, 1607 }; 1608 1609 /* Each record contains a 16-bit address which is combined with the upper 16 1610 * bits of the implicit "next address" to form a 32-bit address. 1611 */ 1612 #define NEXT_ADDR_MASK 0xffff0000 1613 1614 #define DATA_FIELD_MAX_LEN 0xff 1615 #define LEN_EXCEPT_DATA 0x5 1616 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1617 * sizeof(checksum) */ 1618 typedef struct { 1619 uint8_t byte_count; 1620 uint16_t address; 1621 uint8_t record_type; 1622 uint8_t data[DATA_FIELD_MAX_LEN]; 1623 uint8_t checksum; 1624 } HexLine; 1625 1626 /* return 0 or -1 if error */ 1627 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1628 uint32_t *index, const bool in_process) 1629 { 1630 /* +-------+---------------+-------+---------------------+--------+ 1631 * | byte | |record | | | 1632 * | count | address | type | data |checksum| 1633 * +-------+---------------+-------+---------------------+--------+ 1634 * ^ ^ ^ ^ ^ ^ 1635 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1636 */ 1637 uint8_t value = 0; 1638 uint32_t idx = *index; 1639 /* ignore space */ 1640 if (g_ascii_isspace(c)) { 1641 return true; 1642 } 1643 if (!g_ascii_isxdigit(c) || !in_process) { 1644 return false; 1645 } 1646 value = g_ascii_xdigit_value(c); 1647 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1648 if (idx < 2) { 1649 line->byte_count |= value; 1650 } else if (2 <= idx && idx < 6) { 1651 line->address <<= 4; 1652 line->address += g_ascii_xdigit_value(c); 1653 } else if (6 <= idx && idx < 8) { 1654 line->record_type |= value; 1655 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1656 line->data[(idx - 8) >> 1] |= value; 1657 } else if (8 + 2 * line->byte_count <= idx && 1658 idx < 10 + 2 * line->byte_count) { 1659 line->checksum |= value; 1660 } else { 1661 return false; 1662 } 1663 *our_checksum += value; 1664 ++(*index); 1665 return true; 1666 } 1667 1668 typedef struct { 1669 const char *filename; 1670 HexLine line; 1671 uint8_t *bin_buf; 1672 hwaddr *start_addr; 1673 int total_size; 1674 uint32_t next_address_to_write; 1675 uint32_t current_address; 1676 uint32_t current_rom_index; 1677 uint32_t rom_start_address; 1678 AddressSpace *as; 1679 bool complete; 1680 } HexParser; 1681 1682 /* return size or -1 if error */ 1683 static int handle_record_type(HexParser *parser) 1684 { 1685 HexLine *line = &(parser->line); 1686 switch (line->record_type) { 1687 case DATA_RECORD: 1688 parser->current_address = 1689 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1690 /* verify this is a contiguous block of memory */ 1691 if (parser->current_address != parser->next_address_to_write) { 1692 if (parser->current_rom_index != 0) { 1693 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1694 parser->current_rom_index, 1695 parser->rom_start_address, parser->as); 1696 } 1697 parser->rom_start_address = parser->current_address; 1698 parser->current_rom_index = 0; 1699 } 1700 1701 /* copy from line buffer to output bin_buf */ 1702 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1703 line->byte_count); 1704 parser->current_rom_index += line->byte_count; 1705 parser->total_size += line->byte_count; 1706 /* save next address to write */ 1707 parser->next_address_to_write = 1708 parser->current_address + line->byte_count; 1709 break; 1710 1711 case EOF_RECORD: 1712 if (parser->current_rom_index != 0) { 1713 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1714 parser->current_rom_index, 1715 parser->rom_start_address, parser->as); 1716 } 1717 parser->complete = true; 1718 return parser->total_size; 1719 case EXT_SEG_ADDR_RECORD: 1720 case EXT_LINEAR_ADDR_RECORD: 1721 if (line->byte_count != 2 && line->address != 0) { 1722 return -1; 1723 } 1724 1725 if (parser->current_rom_index != 0) { 1726 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1727 parser->current_rom_index, 1728 parser->rom_start_address, parser->as); 1729 } 1730 1731 /* save next address to write, 1732 * in case of non-contiguous block of memory */ 1733 parser->next_address_to_write = (line->data[0] << 12) | 1734 (line->data[1] << 4); 1735 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1736 parser->next_address_to_write <<= 12; 1737 } 1738 1739 parser->rom_start_address = parser->next_address_to_write; 1740 parser->current_rom_index = 0; 1741 break; 1742 1743 case START_SEG_ADDR_RECORD: 1744 if (line->byte_count != 4 && line->address != 0) { 1745 return -1; 1746 } 1747 1748 /* x86 16-bit CS:IP segmented addressing */ 1749 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1750 ((line->data[2] << 8) | line->data[3]); 1751 break; 1752 1753 case START_LINEAR_ADDR_RECORD: 1754 if (line->byte_count != 4 && line->address != 0) { 1755 return -1; 1756 } 1757 1758 *(parser->start_addr) = ldl_be_p(line->data); 1759 break; 1760 1761 default: 1762 return -1; 1763 } 1764 1765 return parser->total_size; 1766 } 1767 1768 /* return size or -1 if error */ 1769 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1770 size_t hex_blob_size, AddressSpace *as) 1771 { 1772 bool in_process = false; /* avoid re-enter and 1773 * check whether record begin with ':' */ 1774 uint8_t *end = hex_blob + hex_blob_size; 1775 uint8_t our_checksum = 0; 1776 uint32_t record_index = 0; 1777 HexParser parser = { 1778 .filename = filename, 1779 .bin_buf = g_malloc(hex_blob_size), 1780 .start_addr = addr, 1781 .as = as, 1782 .complete = false 1783 }; 1784 1785 rom_transaction_begin(); 1786 1787 for (; hex_blob < end && !parser.complete; ++hex_blob) { 1788 switch (*hex_blob) { 1789 case '\r': 1790 case '\n': 1791 if (!in_process) { 1792 break; 1793 } 1794 1795 in_process = false; 1796 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1797 record_index || 1798 our_checksum != 0) { 1799 parser.total_size = -1; 1800 goto out; 1801 } 1802 1803 if (handle_record_type(&parser) == -1) { 1804 parser.total_size = -1; 1805 goto out; 1806 } 1807 break; 1808 1809 /* start of a new record. */ 1810 case ':': 1811 memset(&parser.line, 0, sizeof(HexLine)); 1812 in_process = true; 1813 record_index = 0; 1814 break; 1815 1816 /* decoding lines */ 1817 default: 1818 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1819 &record_index, in_process)) { 1820 parser.total_size = -1; 1821 goto out; 1822 } 1823 break; 1824 } 1825 } 1826 1827 out: 1828 g_free(parser.bin_buf); 1829 rom_transaction_end(parser.total_size != -1); 1830 return parser.total_size; 1831 } 1832 1833 /* return size or -1 if error */ 1834 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as) 1835 { 1836 gsize hex_blob_size; 1837 gchar *hex_blob; 1838 int total_size = 0; 1839 1840 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1841 return -1; 1842 } 1843 1844 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1845 hex_blob_size, as); 1846 1847 g_free(hex_blob); 1848 return total_size; 1849 } 1850