xref: /openbmc/qemu/hw/core/loader.c (revision 59a3a1c0)
1 /*
2  * QEMU Executable loader
3  *
4  * Copyright (c) 2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  *
24  * Gunzip functionality in this file is derived from u-boot:
25  *
26  * (C) Copyright 2008 Semihalf
27  *
28  * (C) Copyright 2000-2005
29  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
30  *
31  * This program is free software; you can redistribute it and/or
32  * modify it under the terms of the GNU General Public License as
33  * published by the Free Software Foundation; either version 2 of
34  * the License, or (at your option) any later version.
35  *
36  * This program is distributed in the hope that it will be useful,
37  * but WITHOUT ANY WARRANTY; without even the implied warranty of
38  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
39  * GNU General Public License for more details.
40  *
41  * You should have received a copy of the GNU General Public License along
42  * with this program; if not, see <http://www.gnu.org/licenses/>.
43  */
44 
45 #include "qemu/osdep.h"
46 #include "qemu-common.h"
47 #include "qapi/error.h"
48 #include "hw/hw.h"
49 #include "disas/disas.h"
50 #include "migration/vmstate.h"
51 #include "monitor/monitor.h"
52 #include "sysemu/reset.h"
53 #include "sysemu/sysemu.h"
54 #include "uboot_image.h"
55 #include "hw/loader.h"
56 #include "hw/nvram/fw_cfg.h"
57 #include "exec/memory.h"
58 #include "exec/address-spaces.h"
59 #include "hw/boards.h"
60 #include "qemu/cutils.h"
61 
62 #include <zlib.h>
63 
64 static int roms_loaded;
65 
66 /* return the size or -1 if error */
67 int64_t get_image_size(const char *filename)
68 {
69     int fd;
70     int64_t size;
71     fd = open(filename, O_RDONLY | O_BINARY);
72     if (fd < 0)
73         return -1;
74     size = lseek(fd, 0, SEEK_END);
75     close(fd);
76     return size;
77 }
78 
79 /* return the size or -1 if error */
80 ssize_t load_image_size(const char *filename, void *addr, size_t size)
81 {
82     int fd;
83     ssize_t actsize, l = 0;
84 
85     fd = open(filename, O_RDONLY | O_BINARY);
86     if (fd < 0) {
87         return -1;
88     }
89 
90     while ((actsize = read(fd, addr + l, size - l)) > 0) {
91         l += actsize;
92     }
93 
94     close(fd);
95 
96     return actsize < 0 ? -1 : l;
97 }
98 
99 /* read()-like version */
100 ssize_t read_targphys(const char *name,
101                       int fd, hwaddr dst_addr, size_t nbytes)
102 {
103     uint8_t *buf;
104     ssize_t did;
105 
106     buf = g_malloc(nbytes);
107     did = read(fd, buf, nbytes);
108     if (did > 0)
109         rom_add_blob_fixed("read", buf, did, dst_addr);
110     g_free(buf);
111     return did;
112 }
113 
114 int load_image_targphys(const char *filename,
115                         hwaddr addr, uint64_t max_sz)
116 {
117     return load_image_targphys_as(filename, addr, max_sz, NULL);
118 }
119 
120 /* return the size or -1 if error */
121 int load_image_targphys_as(const char *filename,
122                            hwaddr addr, uint64_t max_sz, AddressSpace *as)
123 {
124     int size;
125 
126     size = get_image_size(filename);
127     if (size < 0 || size > max_sz) {
128         return -1;
129     }
130     if (size > 0) {
131         if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
132             return -1;
133         }
134     }
135     return size;
136 }
137 
138 int load_image_mr(const char *filename, MemoryRegion *mr)
139 {
140     int size;
141 
142     if (!memory_access_is_direct(mr, false)) {
143         /* Can only load an image into RAM or ROM */
144         return -1;
145     }
146 
147     size = get_image_size(filename);
148 
149     if (size < 0 || size > memory_region_size(mr)) {
150         return -1;
151     }
152     if (size > 0) {
153         if (rom_add_file_mr(filename, mr, -1) < 0) {
154             return -1;
155         }
156     }
157     return size;
158 }
159 
160 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
161                       const char *source)
162 {
163     const char *nulp;
164     char *ptr;
165 
166     if (buf_size <= 0) return;
167     nulp = memchr(source, 0, buf_size);
168     if (nulp) {
169         rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
170     } else {
171         rom_add_blob_fixed(name, source, buf_size, dest);
172         ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
173         *ptr = 0;
174     }
175 }
176 
177 /* A.OUT loader */
178 
179 struct exec
180 {
181   uint32_t a_info;   /* Use macros N_MAGIC, etc for access */
182   uint32_t a_text;   /* length of text, in bytes */
183   uint32_t a_data;   /* length of data, in bytes */
184   uint32_t a_bss;    /* length of uninitialized data area, in bytes */
185   uint32_t a_syms;   /* length of symbol table data in file, in bytes */
186   uint32_t a_entry;  /* start address */
187   uint32_t a_trsize; /* length of relocation info for text, in bytes */
188   uint32_t a_drsize; /* length of relocation info for data, in bytes */
189 };
190 
191 static void bswap_ahdr(struct exec *e)
192 {
193     bswap32s(&e->a_info);
194     bswap32s(&e->a_text);
195     bswap32s(&e->a_data);
196     bswap32s(&e->a_bss);
197     bswap32s(&e->a_syms);
198     bswap32s(&e->a_entry);
199     bswap32s(&e->a_trsize);
200     bswap32s(&e->a_drsize);
201 }
202 
203 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
204 #define OMAGIC 0407
205 #define NMAGIC 0410
206 #define ZMAGIC 0413
207 #define QMAGIC 0314
208 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
209 #define N_TXTOFF(x)							\
210     (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) :	\
211      (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
212 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
213 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
214 
215 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
216 
217 #define N_DATADDR(x, target_page_size) \
218     (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
219      : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
220 
221 
222 int load_aout(const char *filename, hwaddr addr, int max_sz,
223               int bswap_needed, hwaddr target_page_size)
224 {
225     int fd;
226     ssize_t size, ret;
227     struct exec e;
228     uint32_t magic;
229 
230     fd = open(filename, O_RDONLY | O_BINARY);
231     if (fd < 0)
232         return -1;
233 
234     size = read(fd, &e, sizeof(e));
235     if (size < 0)
236         goto fail;
237 
238     if (bswap_needed) {
239         bswap_ahdr(&e);
240     }
241 
242     magic = N_MAGIC(e);
243     switch (magic) {
244     case ZMAGIC:
245     case QMAGIC:
246     case OMAGIC:
247         if (e.a_text + e.a_data > max_sz)
248             goto fail;
249         lseek(fd, N_TXTOFF(e), SEEK_SET);
250         size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
251         if (size < 0)
252             goto fail;
253         break;
254     case NMAGIC:
255         if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
256             goto fail;
257         lseek(fd, N_TXTOFF(e), SEEK_SET);
258         size = read_targphys(filename, fd, addr, e.a_text);
259         if (size < 0)
260             goto fail;
261         ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
262                             e.a_data);
263         if (ret < 0)
264             goto fail;
265         size += ret;
266         break;
267     default:
268         goto fail;
269     }
270     close(fd);
271     return size;
272  fail:
273     close(fd);
274     return -1;
275 }
276 
277 /* ELF loader */
278 
279 static void *load_at(int fd, off_t offset, size_t size)
280 {
281     void *ptr;
282     if (lseek(fd, offset, SEEK_SET) < 0)
283         return NULL;
284     ptr = g_malloc(size);
285     if (read(fd, ptr, size) != size) {
286         g_free(ptr);
287         return NULL;
288     }
289     return ptr;
290 }
291 
292 #ifdef ELF_CLASS
293 #undef ELF_CLASS
294 #endif
295 
296 #define ELF_CLASS   ELFCLASS32
297 #include "elf.h"
298 
299 #define SZ		32
300 #define elf_word        uint32_t
301 #define elf_sword        int32_t
302 #define bswapSZs	bswap32s
303 #include "hw/elf_ops.h"
304 
305 #undef elfhdr
306 #undef elf_phdr
307 #undef elf_shdr
308 #undef elf_sym
309 #undef elf_rela
310 #undef elf_note
311 #undef elf_word
312 #undef elf_sword
313 #undef bswapSZs
314 #undef SZ
315 #define elfhdr		elf64_hdr
316 #define elf_phdr	elf64_phdr
317 #define elf_note	elf64_note
318 #define elf_shdr	elf64_shdr
319 #define elf_sym		elf64_sym
320 #define elf_rela        elf64_rela
321 #define elf_word        uint64_t
322 #define elf_sword        int64_t
323 #define bswapSZs	bswap64s
324 #define SZ		64
325 #include "hw/elf_ops.h"
326 
327 const char *load_elf_strerror(int error)
328 {
329     switch (error) {
330     case 0:
331         return "No error";
332     case ELF_LOAD_FAILED:
333         return "Failed to load ELF";
334     case ELF_LOAD_NOT_ELF:
335         return "The image is not ELF";
336     case ELF_LOAD_WRONG_ARCH:
337         return "The image is from incompatible architecture";
338     case ELF_LOAD_WRONG_ENDIAN:
339         return "The image has incorrect endianness";
340     default:
341         return "Unknown error";
342     }
343 }
344 
345 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
346 {
347     int fd;
348     uint8_t e_ident_local[EI_NIDENT];
349     uint8_t *e_ident;
350     size_t hdr_size, off;
351     bool is64l;
352 
353     if (!hdr) {
354         hdr = e_ident_local;
355     }
356     e_ident = hdr;
357 
358     fd = open(filename, O_RDONLY | O_BINARY);
359     if (fd < 0) {
360         error_setg_errno(errp, errno, "Failed to open file: %s", filename);
361         return;
362     }
363     if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
364         error_setg_errno(errp, errno, "Failed to read file: %s", filename);
365         goto fail;
366     }
367     if (e_ident[0] != ELFMAG0 ||
368         e_ident[1] != ELFMAG1 ||
369         e_ident[2] != ELFMAG2 ||
370         e_ident[3] != ELFMAG3) {
371         error_setg(errp, "Bad ELF magic");
372         goto fail;
373     }
374 
375     is64l = e_ident[EI_CLASS] == ELFCLASS64;
376     hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
377     if (is64) {
378         *is64 = is64l;
379     }
380 
381     off = EI_NIDENT;
382     while (hdr != e_ident_local && off < hdr_size) {
383         size_t br = read(fd, hdr + off, hdr_size - off);
384         switch (br) {
385         case 0:
386             error_setg(errp, "File too short: %s", filename);
387             goto fail;
388         case -1:
389             error_setg_errno(errp, errno, "Failed to read file: %s",
390                              filename);
391             goto fail;
392         }
393         off += br;
394     }
395 
396 fail:
397     close(fd);
398 }
399 
400 /* return < 0 if error, otherwise the number of bytes loaded in memory */
401 int load_elf(const char *filename,
402              uint64_t (*elf_note_fn)(void *, void *, bool),
403              uint64_t (*translate_fn)(void *, uint64_t),
404              void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
405              uint64_t *highaddr, int big_endian, int elf_machine,
406              int clear_lsb, int data_swab)
407 {
408     return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
409                        pentry, lowaddr, highaddr, big_endian, elf_machine,
410                        clear_lsb, data_swab, NULL);
411 }
412 
413 /* return < 0 if error, otherwise the number of bytes loaded in memory */
414 int load_elf_as(const char *filename,
415                 uint64_t (*elf_note_fn)(void *, void *, bool),
416                 uint64_t (*translate_fn)(void *, uint64_t),
417                 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
418                 uint64_t *highaddr, int big_endian, int elf_machine,
419                 int clear_lsb, int data_swab, AddressSpace *as)
420 {
421     return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
422                         pentry, lowaddr, highaddr, big_endian, elf_machine,
423                         clear_lsb, data_swab, as, true);
424 }
425 
426 /* return < 0 if error, otherwise the number of bytes loaded in memory */
427 int load_elf_ram(const char *filename,
428                  uint64_t (*elf_note_fn)(void *, void *, bool),
429                  uint64_t (*translate_fn)(void *, uint64_t),
430                  void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
431                  uint64_t *highaddr, int big_endian, int elf_machine,
432                  int clear_lsb, int data_swab, AddressSpace *as,
433                  bool load_rom)
434 {
435     return load_elf_ram_sym(filename, elf_note_fn,
436                             translate_fn, translate_opaque,
437                             pentry, lowaddr, highaddr, big_endian,
438                             elf_machine, clear_lsb, data_swab, as,
439                             load_rom, NULL);
440 }
441 
442 /* return < 0 if error, otherwise the number of bytes loaded in memory */
443 int load_elf_ram_sym(const char *filename,
444                      uint64_t (*elf_note_fn)(void *, void *, bool),
445                      uint64_t (*translate_fn)(void *, uint64_t),
446                      void *translate_opaque, uint64_t *pentry,
447                      uint64_t *lowaddr, uint64_t *highaddr, int big_endian,
448                      int elf_machine, int clear_lsb, int data_swab,
449                      AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
450 {
451     int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED;
452     uint8_t e_ident[EI_NIDENT];
453 
454     fd = open(filename, O_RDONLY | O_BINARY);
455     if (fd < 0) {
456         perror(filename);
457         return -1;
458     }
459     if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
460         goto fail;
461     if (e_ident[0] != ELFMAG0 ||
462         e_ident[1] != ELFMAG1 ||
463         e_ident[2] != ELFMAG2 ||
464         e_ident[3] != ELFMAG3) {
465         ret = ELF_LOAD_NOT_ELF;
466         goto fail;
467     }
468 #ifdef HOST_WORDS_BIGENDIAN
469     data_order = ELFDATA2MSB;
470 #else
471     data_order = ELFDATA2LSB;
472 #endif
473     must_swab = data_order != e_ident[EI_DATA];
474     if (big_endian) {
475         target_data_order = ELFDATA2MSB;
476     } else {
477         target_data_order = ELFDATA2LSB;
478     }
479 
480     if (target_data_order != e_ident[EI_DATA]) {
481         ret = ELF_LOAD_WRONG_ENDIAN;
482         goto fail;
483     }
484 
485     lseek(fd, 0, SEEK_SET);
486     if (e_ident[EI_CLASS] == ELFCLASS64) {
487         ret = load_elf64(filename, fd, elf_note_fn,
488                          translate_fn, translate_opaque, must_swab,
489                          pentry, lowaddr, highaddr, elf_machine, clear_lsb,
490                          data_swab, as, load_rom, sym_cb);
491     } else {
492         ret = load_elf32(filename, fd, elf_note_fn,
493                          translate_fn, translate_opaque, must_swab,
494                          pentry, lowaddr, highaddr, elf_machine, clear_lsb,
495                          data_swab, as, load_rom, sym_cb);
496     }
497 
498  fail:
499     close(fd);
500     return ret;
501 }
502 
503 static void bswap_uboot_header(uboot_image_header_t *hdr)
504 {
505 #ifndef HOST_WORDS_BIGENDIAN
506     bswap32s(&hdr->ih_magic);
507     bswap32s(&hdr->ih_hcrc);
508     bswap32s(&hdr->ih_time);
509     bswap32s(&hdr->ih_size);
510     bswap32s(&hdr->ih_load);
511     bswap32s(&hdr->ih_ep);
512     bswap32s(&hdr->ih_dcrc);
513 #endif
514 }
515 
516 
517 #define ZALLOC_ALIGNMENT	16
518 
519 static void *zalloc(void *x, unsigned items, unsigned size)
520 {
521     void *p;
522 
523     size *= items;
524     size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
525 
526     p = g_malloc(size);
527 
528     return (p);
529 }
530 
531 static void zfree(void *x, void *addr)
532 {
533     g_free(addr);
534 }
535 
536 
537 #define HEAD_CRC	2
538 #define EXTRA_FIELD	4
539 #define ORIG_NAME	8
540 #define COMMENT		0x10
541 #define RESERVED	0xe0
542 
543 #define DEFLATED	8
544 
545 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
546 {
547     z_stream s;
548     ssize_t dstbytes;
549     int r, i, flags;
550 
551     /* skip header */
552     i = 10;
553     flags = src[3];
554     if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
555         puts ("Error: Bad gzipped data\n");
556         return -1;
557     }
558     if ((flags & EXTRA_FIELD) != 0)
559         i = 12 + src[10] + (src[11] << 8);
560     if ((flags & ORIG_NAME) != 0)
561         while (src[i++] != 0)
562             ;
563     if ((flags & COMMENT) != 0)
564         while (src[i++] != 0)
565             ;
566     if ((flags & HEAD_CRC) != 0)
567         i += 2;
568     if (i >= srclen) {
569         puts ("Error: gunzip out of data in header\n");
570         return -1;
571     }
572 
573     s.zalloc = zalloc;
574     s.zfree = zfree;
575 
576     r = inflateInit2(&s, -MAX_WBITS);
577     if (r != Z_OK) {
578         printf ("Error: inflateInit2() returned %d\n", r);
579         return (-1);
580     }
581     s.next_in = src + i;
582     s.avail_in = srclen - i;
583     s.next_out = dst;
584     s.avail_out = dstlen;
585     r = inflate(&s, Z_FINISH);
586     if (r != Z_OK && r != Z_STREAM_END) {
587         printf ("Error: inflate() returned %d\n", r);
588         return -1;
589     }
590     dstbytes = s.next_out - (unsigned char *) dst;
591     inflateEnd(&s);
592 
593     return dstbytes;
594 }
595 
596 /* Load a U-Boot image.  */
597 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
598                             int *is_linux, uint8_t image_type,
599                             uint64_t (*translate_fn)(void *, uint64_t),
600                             void *translate_opaque, AddressSpace *as)
601 {
602     int fd;
603     int size;
604     hwaddr address;
605     uboot_image_header_t h;
606     uboot_image_header_t *hdr = &h;
607     uint8_t *data = NULL;
608     int ret = -1;
609     int do_uncompress = 0;
610 
611     fd = open(filename, O_RDONLY | O_BINARY);
612     if (fd < 0)
613         return -1;
614 
615     size = read(fd, hdr, sizeof(uboot_image_header_t));
616     if (size < sizeof(uboot_image_header_t)) {
617         goto out;
618     }
619 
620     bswap_uboot_header(hdr);
621 
622     if (hdr->ih_magic != IH_MAGIC)
623         goto out;
624 
625     if (hdr->ih_type != image_type) {
626         if (!(image_type == IH_TYPE_KERNEL &&
627             hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
628             fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
629                     image_type);
630             goto out;
631         }
632     }
633 
634     /* TODO: Implement other image types.  */
635     switch (hdr->ih_type) {
636     case IH_TYPE_KERNEL_NOLOAD:
637         if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
638             fprintf(stderr, "this image format (kernel_noload) cannot be "
639                     "loaded on this machine type");
640             goto out;
641         }
642 
643         hdr->ih_load = *loadaddr + sizeof(*hdr);
644         hdr->ih_ep += hdr->ih_load;
645         /* fall through */
646     case IH_TYPE_KERNEL:
647         address = hdr->ih_load;
648         if (translate_fn) {
649             address = translate_fn(translate_opaque, address);
650         }
651         if (loadaddr) {
652             *loadaddr = hdr->ih_load;
653         }
654 
655         switch (hdr->ih_comp) {
656         case IH_COMP_NONE:
657             break;
658         case IH_COMP_GZIP:
659             do_uncompress = 1;
660             break;
661         default:
662             fprintf(stderr,
663                     "Unable to load u-boot images with compression type %d\n",
664                     hdr->ih_comp);
665             goto out;
666         }
667 
668         if (ep) {
669             *ep = hdr->ih_ep;
670         }
671 
672         /* TODO: Check CPU type.  */
673         if (is_linux) {
674             if (hdr->ih_os == IH_OS_LINUX) {
675                 *is_linux = 1;
676             } else {
677                 *is_linux = 0;
678             }
679         }
680 
681         break;
682     case IH_TYPE_RAMDISK:
683         address = *loadaddr;
684         break;
685     default:
686         fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
687         goto out;
688     }
689 
690     data = g_malloc(hdr->ih_size);
691 
692     if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
693         fprintf(stderr, "Error reading file\n");
694         goto out;
695     }
696 
697     if (do_uncompress) {
698         uint8_t *compressed_data;
699         size_t max_bytes;
700         ssize_t bytes;
701 
702         compressed_data = data;
703         max_bytes = UBOOT_MAX_GUNZIP_BYTES;
704         data = g_malloc(max_bytes);
705 
706         bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
707         g_free(compressed_data);
708         if (bytes < 0) {
709             fprintf(stderr, "Unable to decompress gzipped image!\n");
710             goto out;
711         }
712         hdr->ih_size = bytes;
713     }
714 
715     rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
716 
717     ret = hdr->ih_size;
718 
719 out:
720     g_free(data);
721     close(fd);
722     return ret;
723 }
724 
725 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
726                 int *is_linux,
727                 uint64_t (*translate_fn)(void *, uint64_t),
728                 void *translate_opaque)
729 {
730     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
731                             translate_fn, translate_opaque, NULL);
732 }
733 
734 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
735                    int *is_linux,
736                    uint64_t (*translate_fn)(void *, uint64_t),
737                    void *translate_opaque, AddressSpace *as)
738 {
739     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
740                             translate_fn, translate_opaque, as);
741 }
742 
743 /* Load a ramdisk.  */
744 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
745 {
746     return load_ramdisk_as(filename, addr, max_sz, NULL);
747 }
748 
749 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
750                     AddressSpace *as)
751 {
752     return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
753                             NULL, NULL, as);
754 }
755 
756 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
757 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
758                               uint8_t **buffer)
759 {
760     uint8_t *compressed_data = NULL;
761     uint8_t *data = NULL;
762     gsize len;
763     ssize_t bytes;
764     int ret = -1;
765 
766     if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
767                              NULL)) {
768         goto out;
769     }
770 
771     /* Is it a gzip-compressed file? */
772     if (len < 2 ||
773         compressed_data[0] != 0x1f ||
774         compressed_data[1] != 0x8b) {
775         goto out;
776     }
777 
778     if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
779         max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
780     }
781 
782     data = g_malloc(max_sz);
783     bytes = gunzip(data, max_sz, compressed_data, len);
784     if (bytes < 0) {
785         fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
786                 filename);
787         goto out;
788     }
789 
790     /* trim to actual size and return to caller */
791     *buffer = g_realloc(data, bytes);
792     ret = bytes;
793     /* ownership has been transferred to caller */
794     data = NULL;
795 
796  out:
797     g_free(compressed_data);
798     g_free(data);
799     return ret;
800 }
801 
802 /* Load a gzip-compressed kernel. */
803 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
804 {
805     int bytes;
806     uint8_t *data;
807 
808     bytes = load_image_gzipped_buffer(filename, max_sz, &data);
809     if (bytes != -1) {
810         rom_add_blob_fixed(filename, data, bytes, addr);
811         g_free(data);
812     }
813     return bytes;
814 }
815 
816 /*
817  * Functions for reboot-persistent memory regions.
818  *  - used for vga bios and option roms.
819  *  - also linux kernel (-kernel / -initrd).
820  */
821 
822 typedef struct Rom Rom;
823 
824 struct Rom {
825     char *name;
826     char *path;
827 
828     /* datasize is the amount of memory allocated in "data". If datasize is less
829      * than romsize, it means that the area from datasize to romsize is filled
830      * with zeros.
831      */
832     size_t romsize;
833     size_t datasize;
834 
835     uint8_t *data;
836     MemoryRegion *mr;
837     AddressSpace *as;
838     int isrom;
839     char *fw_dir;
840     char *fw_file;
841 
842     bool committed;
843 
844     hwaddr addr;
845     QTAILQ_ENTRY(Rom) next;
846 };
847 
848 static FWCfgState *fw_cfg;
849 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
850 
851 /* rom->data must be heap-allocated (do not use with rom_add_elf_program()) */
852 static void rom_free(Rom *rom)
853 {
854     g_free(rom->data);
855     g_free(rom->path);
856     g_free(rom->name);
857     g_free(rom->fw_dir);
858     g_free(rom->fw_file);
859     g_free(rom);
860 }
861 
862 static inline bool rom_order_compare(Rom *rom, Rom *item)
863 {
864     return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
865            (rom->as == item->as && rom->addr >= item->addr);
866 }
867 
868 static void rom_insert(Rom *rom)
869 {
870     Rom *item;
871 
872     if (roms_loaded) {
873         hw_error ("ROM images must be loaded at startup\n");
874     }
875 
876     /* The user didn't specify an address space, this is the default */
877     if (!rom->as) {
878         rom->as = &address_space_memory;
879     }
880 
881     rom->committed = false;
882 
883     /* List is ordered by load address in the same address space */
884     QTAILQ_FOREACH(item, &roms, next) {
885         if (rom_order_compare(rom, item)) {
886             continue;
887         }
888         QTAILQ_INSERT_BEFORE(item, rom, next);
889         return;
890     }
891     QTAILQ_INSERT_TAIL(&roms, rom, next);
892 }
893 
894 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
895 {
896     if (fw_cfg) {
897         fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
898     }
899 }
900 
901 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
902 {
903     void *data;
904 
905     rom->mr = g_malloc(sizeof(*rom->mr));
906     memory_region_init_resizeable_ram(rom->mr, owner, name,
907                                       rom->datasize, rom->romsize,
908                                       fw_cfg_resized,
909                                       &error_fatal);
910     memory_region_set_readonly(rom->mr, ro);
911     vmstate_register_ram_global(rom->mr);
912 
913     data = memory_region_get_ram_ptr(rom->mr);
914     memcpy(data, rom->data, rom->datasize);
915 
916     return data;
917 }
918 
919 int rom_add_file(const char *file, const char *fw_dir,
920                  hwaddr addr, int32_t bootindex,
921                  bool option_rom, MemoryRegion *mr,
922                  AddressSpace *as)
923 {
924     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
925     Rom *rom;
926     int rc, fd = -1;
927     char devpath[100];
928 
929     if (as && mr) {
930         fprintf(stderr, "Specifying an Address Space and Memory Region is " \
931                 "not valid when loading a rom\n");
932         /* We haven't allocated anything so we don't need any cleanup */
933         return -1;
934     }
935 
936     rom = g_malloc0(sizeof(*rom));
937     rom->name = g_strdup(file);
938     rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
939     rom->as = as;
940     if (rom->path == NULL) {
941         rom->path = g_strdup(file);
942     }
943 
944     fd = open(rom->path, O_RDONLY | O_BINARY);
945     if (fd == -1) {
946         fprintf(stderr, "Could not open option rom '%s': %s\n",
947                 rom->path, strerror(errno));
948         goto err;
949     }
950 
951     if (fw_dir) {
952         rom->fw_dir  = g_strdup(fw_dir);
953         rom->fw_file = g_strdup(file);
954     }
955     rom->addr     = addr;
956     rom->romsize  = lseek(fd, 0, SEEK_END);
957     if (rom->romsize == -1) {
958         fprintf(stderr, "rom: file %-20s: get size error: %s\n",
959                 rom->name, strerror(errno));
960         goto err;
961     }
962 
963     rom->datasize = rom->romsize;
964     rom->data     = g_malloc0(rom->datasize);
965     lseek(fd, 0, SEEK_SET);
966     rc = read(fd, rom->data, rom->datasize);
967     if (rc != rom->datasize) {
968         fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
969                 rom->name, rc, rom->datasize);
970         goto err;
971     }
972     close(fd);
973     rom_insert(rom);
974     if (rom->fw_file && fw_cfg) {
975         const char *basename;
976         char fw_file_name[FW_CFG_MAX_FILE_PATH];
977         void *data;
978 
979         basename = strrchr(rom->fw_file, '/');
980         if (basename) {
981             basename++;
982         } else {
983             basename = rom->fw_file;
984         }
985         snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
986                  basename);
987         snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
988 
989         if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
990             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
991         } else {
992             data = rom->data;
993         }
994 
995         fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
996     } else {
997         if (mr) {
998             rom->mr = mr;
999             snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1000         } else {
1001             snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
1002         }
1003     }
1004 
1005     add_boot_device_path(bootindex, NULL, devpath);
1006     return 0;
1007 
1008 err:
1009     if (fd != -1)
1010         close(fd);
1011 
1012     rom_free(rom);
1013     return -1;
1014 }
1015 
1016 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1017                    size_t max_len, hwaddr addr, const char *fw_file_name,
1018                    FWCfgCallback fw_callback, void *callback_opaque,
1019                    AddressSpace *as, bool read_only)
1020 {
1021     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1022     Rom *rom;
1023     MemoryRegion *mr = NULL;
1024 
1025     rom           = g_malloc0(sizeof(*rom));
1026     rom->name     = g_strdup(name);
1027     rom->as       = as;
1028     rom->addr     = addr;
1029     rom->romsize  = max_len ? max_len : len;
1030     rom->datasize = len;
1031     g_assert(rom->romsize >= rom->datasize);
1032     rom->data     = g_malloc0(rom->datasize);
1033     memcpy(rom->data, blob, len);
1034     rom_insert(rom);
1035     if (fw_file_name && fw_cfg) {
1036         char devpath[100];
1037         void *data;
1038 
1039         if (read_only) {
1040             snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1041         } else {
1042             snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1043         }
1044 
1045         if (mc->rom_file_has_mr) {
1046             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1047             mr = rom->mr;
1048         } else {
1049             data = rom->data;
1050         }
1051 
1052         fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1053                                  fw_callback, NULL, callback_opaque,
1054                                  data, rom->datasize, read_only);
1055     }
1056     return mr;
1057 }
1058 
1059 /* This function is specific for elf program because we don't need to allocate
1060  * all the rom. We just allocate the first part and the rest is just zeros. This
1061  * is why romsize and datasize are different. Also, this function seize the
1062  * memory ownership of "data", so we don't have to allocate and copy the buffer.
1063  */
1064 int rom_add_elf_program(const char *name, void *data, size_t datasize,
1065                         size_t romsize, hwaddr addr, AddressSpace *as)
1066 {
1067     Rom *rom;
1068 
1069     rom           = g_malloc0(sizeof(*rom));
1070     rom->name     = g_strdup(name);
1071     rom->addr     = addr;
1072     rom->datasize = datasize;
1073     rom->romsize  = romsize;
1074     rom->data     = data;
1075     rom->as       = as;
1076     rom_insert(rom);
1077     return 0;
1078 }
1079 
1080 int rom_add_vga(const char *file)
1081 {
1082     return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1083 }
1084 
1085 int rom_add_option(const char *file, int32_t bootindex)
1086 {
1087     return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1088 }
1089 
1090 static void rom_reset(void *unused)
1091 {
1092     Rom *rom;
1093 
1094     QTAILQ_FOREACH(rom, &roms, next) {
1095         if (rom->fw_file) {
1096             continue;
1097         }
1098         if (rom->data == NULL) {
1099             continue;
1100         }
1101         if (rom->mr) {
1102             void *host = memory_region_get_ram_ptr(rom->mr);
1103             memcpy(host, rom->data, rom->datasize);
1104         } else {
1105             address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1106                                     rom->data, rom->datasize);
1107         }
1108         if (rom->isrom) {
1109             /* rom needs to be written only once */
1110             g_free(rom->data);
1111             rom->data = NULL;
1112         }
1113         /*
1114          * The rom loader is really on the same level as firmware in the guest
1115          * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1116          * that the instruction cache for that new region is clear, so that the
1117          * CPU definitely fetches its instructions from the just written data.
1118          */
1119         cpu_flush_icache_range(rom->addr, rom->datasize);
1120     }
1121 }
1122 
1123 int rom_check_and_register_reset(void)
1124 {
1125     hwaddr addr = 0;
1126     MemoryRegionSection section;
1127     Rom *rom;
1128     AddressSpace *as = NULL;
1129 
1130     QTAILQ_FOREACH(rom, &roms, next) {
1131         if (rom->fw_file) {
1132             continue;
1133         }
1134         if (!rom->mr) {
1135             if ((addr > rom->addr) && (as == rom->as)) {
1136                 fprintf(stderr, "rom: requested regions overlap "
1137                         "(rom %s. free=0x" TARGET_FMT_plx
1138                         ", addr=0x" TARGET_FMT_plx ")\n",
1139                         rom->name, addr, rom->addr);
1140                 return -1;
1141             }
1142             addr  = rom->addr;
1143             addr += rom->romsize;
1144             as = rom->as;
1145         }
1146         section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1147                                      rom->addr, 1);
1148         rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1149         memory_region_unref(section.mr);
1150     }
1151     qemu_register_reset(rom_reset, NULL);
1152     roms_loaded = 1;
1153     return 0;
1154 }
1155 
1156 void rom_set_fw(FWCfgState *f)
1157 {
1158     fw_cfg = f;
1159 }
1160 
1161 void rom_set_order_override(int order)
1162 {
1163     if (!fw_cfg)
1164         return;
1165     fw_cfg_set_order_override(fw_cfg, order);
1166 }
1167 
1168 void rom_reset_order_override(void)
1169 {
1170     if (!fw_cfg)
1171         return;
1172     fw_cfg_reset_order_override(fw_cfg);
1173 }
1174 
1175 void rom_transaction_begin(void)
1176 {
1177     Rom *rom;
1178 
1179     /* Ignore ROMs added without the transaction API */
1180     QTAILQ_FOREACH(rom, &roms, next) {
1181         rom->committed = true;
1182     }
1183 }
1184 
1185 void rom_transaction_end(bool commit)
1186 {
1187     Rom *rom;
1188     Rom *tmp;
1189 
1190     QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1191         if (rom->committed) {
1192             continue;
1193         }
1194         if (commit) {
1195             rom->committed = true;
1196         } else {
1197             QTAILQ_REMOVE(&roms, rom, next);
1198             rom_free(rom);
1199         }
1200     }
1201 }
1202 
1203 static Rom *find_rom(hwaddr addr, size_t size)
1204 {
1205     Rom *rom;
1206 
1207     QTAILQ_FOREACH(rom, &roms, next) {
1208         if (rom->fw_file) {
1209             continue;
1210         }
1211         if (rom->mr) {
1212             continue;
1213         }
1214         if (rom->addr > addr) {
1215             continue;
1216         }
1217         if (rom->addr + rom->romsize < addr + size) {
1218             continue;
1219         }
1220         return rom;
1221     }
1222     return NULL;
1223 }
1224 
1225 /*
1226  * Copies memory from registered ROMs to dest. Any memory that is contained in
1227  * a ROM between addr and addr + size is copied. Note that this can involve
1228  * multiple ROMs, which need not start at addr and need not end at addr + size.
1229  */
1230 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1231 {
1232     hwaddr end = addr + size;
1233     uint8_t *s, *d = dest;
1234     size_t l = 0;
1235     Rom *rom;
1236 
1237     QTAILQ_FOREACH(rom, &roms, next) {
1238         if (rom->fw_file) {
1239             continue;
1240         }
1241         if (rom->mr) {
1242             continue;
1243         }
1244         if (rom->addr + rom->romsize < addr) {
1245             continue;
1246         }
1247         if (rom->addr > end) {
1248             break;
1249         }
1250 
1251         d = dest + (rom->addr - addr);
1252         s = rom->data;
1253         l = rom->datasize;
1254 
1255         if ((d + l) > (dest + size)) {
1256             l = dest - d;
1257         }
1258 
1259         if (l > 0) {
1260             memcpy(d, s, l);
1261         }
1262 
1263         if (rom->romsize > rom->datasize) {
1264             /* If datasize is less than romsize, it means that we didn't
1265              * allocate all the ROM because the trailing data are only zeros.
1266              */
1267 
1268             d += l;
1269             l = rom->romsize - rom->datasize;
1270 
1271             if ((d + l) > (dest + size)) {
1272                 /* Rom size doesn't fit in the destination area. Adjust to avoid
1273                  * overflow.
1274                  */
1275                 l = dest - d;
1276             }
1277 
1278             if (l > 0) {
1279                 memset(d, 0x0, l);
1280             }
1281         }
1282     }
1283 
1284     return (d + l) - dest;
1285 }
1286 
1287 void *rom_ptr(hwaddr addr, size_t size)
1288 {
1289     Rom *rom;
1290 
1291     rom = find_rom(addr, size);
1292     if (!rom || !rom->data)
1293         return NULL;
1294     return rom->data + (addr - rom->addr);
1295 }
1296 
1297 void hmp_info_roms(Monitor *mon, const QDict *qdict)
1298 {
1299     Rom *rom;
1300 
1301     QTAILQ_FOREACH(rom, &roms, next) {
1302         if (rom->mr) {
1303             monitor_printf(mon, "%s"
1304                            " size=0x%06zx name=\"%s\"\n",
1305                            memory_region_name(rom->mr),
1306                            rom->romsize,
1307                            rom->name);
1308         } else if (!rom->fw_file) {
1309             monitor_printf(mon, "addr=" TARGET_FMT_plx
1310                            " size=0x%06zx mem=%s name=\"%s\"\n",
1311                            rom->addr, rom->romsize,
1312                            rom->isrom ? "rom" : "ram",
1313                            rom->name);
1314         } else {
1315             monitor_printf(mon, "fw=%s/%s"
1316                            " size=0x%06zx name=\"%s\"\n",
1317                            rom->fw_dir,
1318                            rom->fw_file,
1319                            rom->romsize,
1320                            rom->name);
1321         }
1322     }
1323 }
1324 
1325 typedef enum HexRecord HexRecord;
1326 enum HexRecord {
1327     DATA_RECORD = 0,
1328     EOF_RECORD,
1329     EXT_SEG_ADDR_RECORD,
1330     START_SEG_ADDR_RECORD,
1331     EXT_LINEAR_ADDR_RECORD,
1332     START_LINEAR_ADDR_RECORD,
1333 };
1334 
1335 /* Each record contains a 16-bit address which is combined with the upper 16
1336  * bits of the implicit "next address" to form a 32-bit address.
1337  */
1338 #define NEXT_ADDR_MASK 0xffff0000
1339 
1340 #define DATA_FIELD_MAX_LEN 0xff
1341 #define LEN_EXCEPT_DATA 0x5
1342 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1343  *       sizeof(checksum) */
1344 typedef struct {
1345     uint8_t byte_count;
1346     uint16_t address;
1347     uint8_t record_type;
1348     uint8_t data[DATA_FIELD_MAX_LEN];
1349     uint8_t checksum;
1350 } HexLine;
1351 
1352 /* return 0 or -1 if error */
1353 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1354                          uint32_t *index, const bool in_process)
1355 {
1356     /* +-------+---------------+-------+---------------------+--------+
1357      * | byte  |               |record |                     |        |
1358      * | count |    address    | type  |        data         |checksum|
1359      * +-------+---------------+-------+---------------------+--------+
1360      * ^       ^               ^       ^                     ^        ^
1361      * |1 byte |    2 bytes    |1 byte |     0-255 bytes     | 1 byte |
1362      */
1363     uint8_t value = 0;
1364     uint32_t idx = *index;
1365     /* ignore space */
1366     if (g_ascii_isspace(c)) {
1367         return true;
1368     }
1369     if (!g_ascii_isxdigit(c) || !in_process) {
1370         return false;
1371     }
1372     value = g_ascii_xdigit_value(c);
1373     value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1374     if (idx < 2) {
1375         line->byte_count |= value;
1376     } else if (2 <= idx && idx < 6) {
1377         line->address <<= 4;
1378         line->address += g_ascii_xdigit_value(c);
1379     } else if (6 <= idx && idx < 8) {
1380         line->record_type |= value;
1381     } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1382         line->data[(idx - 8) >> 1] |= value;
1383     } else if (8 + 2 * line->byte_count <= idx &&
1384                idx < 10 + 2 * line->byte_count) {
1385         line->checksum |= value;
1386     } else {
1387         return false;
1388     }
1389     *our_checksum += value;
1390     ++(*index);
1391     return true;
1392 }
1393 
1394 typedef struct {
1395     const char *filename;
1396     HexLine line;
1397     uint8_t *bin_buf;
1398     hwaddr *start_addr;
1399     int total_size;
1400     uint32_t next_address_to_write;
1401     uint32_t current_address;
1402     uint32_t current_rom_index;
1403     uint32_t rom_start_address;
1404     AddressSpace *as;
1405 } HexParser;
1406 
1407 /* return size or -1 if error */
1408 static int handle_record_type(HexParser *parser)
1409 {
1410     HexLine *line = &(parser->line);
1411     switch (line->record_type) {
1412     case DATA_RECORD:
1413         parser->current_address =
1414             (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1415         /* verify this is a contiguous block of memory */
1416         if (parser->current_address != parser->next_address_to_write) {
1417             if (parser->current_rom_index != 0) {
1418                 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1419                                       parser->current_rom_index,
1420                                       parser->rom_start_address, parser->as);
1421             }
1422             parser->rom_start_address = parser->current_address;
1423             parser->current_rom_index = 0;
1424         }
1425 
1426         /* copy from line buffer to output bin_buf */
1427         memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1428                line->byte_count);
1429         parser->current_rom_index += line->byte_count;
1430         parser->total_size += line->byte_count;
1431         /* save next address to write */
1432         parser->next_address_to_write =
1433             parser->current_address + line->byte_count;
1434         break;
1435 
1436     case EOF_RECORD:
1437         if (parser->current_rom_index != 0) {
1438             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1439                                   parser->current_rom_index,
1440                                   parser->rom_start_address, parser->as);
1441         }
1442         return parser->total_size;
1443     case EXT_SEG_ADDR_RECORD:
1444     case EXT_LINEAR_ADDR_RECORD:
1445         if (line->byte_count != 2 && line->address != 0) {
1446             return -1;
1447         }
1448 
1449         if (parser->current_rom_index != 0) {
1450             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1451                                   parser->current_rom_index,
1452                                   parser->rom_start_address, parser->as);
1453         }
1454 
1455         /* save next address to write,
1456          * in case of non-contiguous block of memory */
1457         parser->next_address_to_write = (line->data[0] << 12) |
1458                                         (line->data[1] << 4);
1459         if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1460             parser->next_address_to_write <<= 12;
1461         }
1462 
1463         parser->rom_start_address = parser->next_address_to_write;
1464         parser->current_rom_index = 0;
1465         break;
1466 
1467     case START_SEG_ADDR_RECORD:
1468         if (line->byte_count != 4 && line->address != 0) {
1469             return -1;
1470         }
1471 
1472         /* x86 16-bit CS:IP segmented addressing */
1473         *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1474                                 ((line->data[2] << 8) | line->data[3]);
1475         break;
1476 
1477     case START_LINEAR_ADDR_RECORD:
1478         if (line->byte_count != 4 && line->address != 0) {
1479             return -1;
1480         }
1481 
1482         *(parser->start_addr) = ldl_be_p(line->data);
1483         break;
1484 
1485     default:
1486         return -1;
1487     }
1488 
1489     return parser->total_size;
1490 }
1491 
1492 /* return size or -1 if error */
1493 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1494                           size_t hex_blob_size, AddressSpace *as)
1495 {
1496     bool in_process = false; /* avoid re-enter and
1497                               * check whether record begin with ':' */
1498     uint8_t *end = hex_blob + hex_blob_size;
1499     uint8_t our_checksum = 0;
1500     uint32_t record_index = 0;
1501     HexParser parser = {
1502         .filename = filename,
1503         .bin_buf = g_malloc(hex_blob_size),
1504         .start_addr = addr,
1505         .as = as,
1506     };
1507 
1508     rom_transaction_begin();
1509 
1510     for (; hex_blob < end; ++hex_blob) {
1511         switch (*hex_blob) {
1512         case '\r':
1513         case '\n':
1514             if (!in_process) {
1515                 break;
1516             }
1517 
1518             in_process = false;
1519             if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1520                     record_index ||
1521                 our_checksum != 0) {
1522                 parser.total_size = -1;
1523                 goto out;
1524             }
1525 
1526             if (handle_record_type(&parser) == -1) {
1527                 parser.total_size = -1;
1528                 goto out;
1529             }
1530             break;
1531 
1532         /* start of a new record. */
1533         case ':':
1534             memset(&parser.line, 0, sizeof(HexLine));
1535             in_process = true;
1536             record_index = 0;
1537             break;
1538 
1539         /* decoding lines */
1540         default:
1541             if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1542                               &record_index, in_process)) {
1543                 parser.total_size = -1;
1544                 goto out;
1545             }
1546             break;
1547         }
1548     }
1549 
1550 out:
1551     g_free(parser.bin_buf);
1552     rom_transaction_end(parser.total_size != -1);
1553     return parser.total_size;
1554 }
1555 
1556 /* return size or -1 if error */
1557 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as)
1558 {
1559     gsize hex_blob_size;
1560     gchar *hex_blob;
1561     int total_size = 0;
1562 
1563     if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1564         return -1;
1565     }
1566 
1567     total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1568                                 hex_blob_size, as);
1569 
1570     g_free(hex_blob);
1571     return total_size;
1572 }
1573