1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qapi/error.h" 47 #include "hw/hw.h" 48 #include "disas/disas.h" 49 #include "monitor/monitor.h" 50 #include "sysemu/sysemu.h" 51 #include "uboot_image.h" 52 #include "hw/loader.h" 53 #include "hw/nvram/fw_cfg.h" 54 #include "exec/memory.h" 55 #include "exec/address-spaces.h" 56 #include "hw/boards.h" 57 #include "qemu/cutils.h" 58 59 #include <zlib.h> 60 61 static int roms_loaded; 62 63 /* return the size or -1 if error */ 64 int get_image_size(const char *filename) 65 { 66 int fd, size; 67 fd = open(filename, O_RDONLY | O_BINARY); 68 if (fd < 0) 69 return -1; 70 size = lseek(fd, 0, SEEK_END); 71 close(fd); 72 return size; 73 } 74 75 /* return the size or -1 if error */ 76 /* deprecated, because caller does not specify buffer size! */ 77 int load_image(const char *filename, uint8_t *addr) 78 { 79 int fd, size; 80 fd = open(filename, O_RDONLY | O_BINARY); 81 if (fd < 0) 82 return -1; 83 size = lseek(fd, 0, SEEK_END); 84 if (size == -1) { 85 fprintf(stderr, "file %-20s: get size error: %s\n", 86 filename, strerror(errno)); 87 close(fd); 88 return -1; 89 } 90 91 lseek(fd, 0, SEEK_SET); 92 if (read(fd, addr, size) != size) { 93 close(fd); 94 return -1; 95 } 96 close(fd); 97 return size; 98 } 99 100 /* return the size or -1 if error */ 101 ssize_t load_image_size(const char *filename, void *addr, size_t size) 102 { 103 int fd; 104 ssize_t actsize; 105 106 fd = open(filename, O_RDONLY | O_BINARY); 107 if (fd < 0) { 108 return -1; 109 } 110 111 actsize = read(fd, addr, size); 112 if (actsize < 0) { 113 close(fd); 114 return -1; 115 } 116 close(fd); 117 118 return actsize; 119 } 120 121 /* read()-like version */ 122 ssize_t read_targphys(const char *name, 123 int fd, hwaddr dst_addr, size_t nbytes) 124 { 125 uint8_t *buf; 126 ssize_t did; 127 128 buf = g_malloc(nbytes); 129 did = read(fd, buf, nbytes); 130 if (did > 0) 131 rom_add_blob_fixed("read", buf, did, dst_addr); 132 g_free(buf); 133 return did; 134 } 135 136 /* return the size or -1 if error */ 137 int load_image_targphys(const char *filename, 138 hwaddr addr, uint64_t max_sz) 139 { 140 int size; 141 142 size = get_image_size(filename); 143 if (size > max_sz) { 144 return -1; 145 } 146 if (size > 0) { 147 rom_add_file_fixed(filename, addr, -1); 148 } 149 return size; 150 } 151 152 int load_image_mr(const char *filename, MemoryRegion *mr) 153 { 154 int size; 155 156 if (!memory_access_is_direct(mr, false)) { 157 /* Can only load an image into RAM or ROM */ 158 return -1; 159 } 160 161 size = get_image_size(filename); 162 163 if (size > memory_region_size(mr)) { 164 return -1; 165 } 166 if (size > 0) { 167 if (rom_add_file_mr(filename, mr, -1) < 0) { 168 return -1; 169 } 170 } 171 return size; 172 } 173 174 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 175 const char *source) 176 { 177 const char *nulp; 178 char *ptr; 179 180 if (buf_size <= 0) return; 181 nulp = memchr(source, 0, buf_size); 182 if (nulp) { 183 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 184 } else { 185 rom_add_blob_fixed(name, source, buf_size, dest); 186 ptr = rom_ptr(dest + buf_size - 1); 187 *ptr = 0; 188 } 189 } 190 191 /* A.OUT loader */ 192 193 struct exec 194 { 195 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 196 uint32_t a_text; /* length of text, in bytes */ 197 uint32_t a_data; /* length of data, in bytes */ 198 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 199 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 200 uint32_t a_entry; /* start address */ 201 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 202 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 203 }; 204 205 static void bswap_ahdr(struct exec *e) 206 { 207 bswap32s(&e->a_info); 208 bswap32s(&e->a_text); 209 bswap32s(&e->a_data); 210 bswap32s(&e->a_bss); 211 bswap32s(&e->a_syms); 212 bswap32s(&e->a_entry); 213 bswap32s(&e->a_trsize); 214 bswap32s(&e->a_drsize); 215 } 216 217 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 218 #define OMAGIC 0407 219 #define NMAGIC 0410 220 #define ZMAGIC 0413 221 #define QMAGIC 0314 222 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 223 #define N_TXTOFF(x) \ 224 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 225 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 226 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 227 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 228 229 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 230 231 #define N_DATADDR(x, target_page_size) \ 232 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 233 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 234 235 236 int load_aout(const char *filename, hwaddr addr, int max_sz, 237 int bswap_needed, hwaddr target_page_size) 238 { 239 int fd; 240 ssize_t size, ret; 241 struct exec e; 242 uint32_t magic; 243 244 fd = open(filename, O_RDONLY | O_BINARY); 245 if (fd < 0) 246 return -1; 247 248 size = read(fd, &e, sizeof(e)); 249 if (size < 0) 250 goto fail; 251 252 if (bswap_needed) { 253 bswap_ahdr(&e); 254 } 255 256 magic = N_MAGIC(e); 257 switch (magic) { 258 case ZMAGIC: 259 case QMAGIC: 260 case OMAGIC: 261 if (e.a_text + e.a_data > max_sz) 262 goto fail; 263 lseek(fd, N_TXTOFF(e), SEEK_SET); 264 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 265 if (size < 0) 266 goto fail; 267 break; 268 case NMAGIC: 269 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 270 goto fail; 271 lseek(fd, N_TXTOFF(e), SEEK_SET); 272 size = read_targphys(filename, fd, addr, e.a_text); 273 if (size < 0) 274 goto fail; 275 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 276 e.a_data); 277 if (ret < 0) 278 goto fail; 279 size += ret; 280 break; 281 default: 282 goto fail; 283 } 284 close(fd); 285 return size; 286 fail: 287 close(fd); 288 return -1; 289 } 290 291 /* ELF loader */ 292 293 static void *load_at(int fd, off_t offset, size_t size) 294 { 295 void *ptr; 296 if (lseek(fd, offset, SEEK_SET) < 0) 297 return NULL; 298 ptr = g_malloc(size); 299 if (read(fd, ptr, size) != size) { 300 g_free(ptr); 301 return NULL; 302 } 303 return ptr; 304 } 305 306 #ifdef ELF_CLASS 307 #undef ELF_CLASS 308 #endif 309 310 #define ELF_CLASS ELFCLASS32 311 #include "elf.h" 312 313 #define SZ 32 314 #define elf_word uint32_t 315 #define elf_sword int32_t 316 #define bswapSZs bswap32s 317 #include "hw/elf_ops.h" 318 319 #undef elfhdr 320 #undef elf_phdr 321 #undef elf_shdr 322 #undef elf_sym 323 #undef elf_rela 324 #undef elf_note 325 #undef elf_word 326 #undef elf_sword 327 #undef bswapSZs 328 #undef SZ 329 #define elfhdr elf64_hdr 330 #define elf_phdr elf64_phdr 331 #define elf_note elf64_note 332 #define elf_shdr elf64_shdr 333 #define elf_sym elf64_sym 334 #define elf_rela elf64_rela 335 #define elf_word uint64_t 336 #define elf_sword int64_t 337 #define bswapSZs bswap64s 338 #define SZ 64 339 #include "hw/elf_ops.h" 340 341 const char *load_elf_strerror(int error) 342 { 343 switch (error) { 344 case 0: 345 return "No error"; 346 case ELF_LOAD_FAILED: 347 return "Failed to load ELF"; 348 case ELF_LOAD_NOT_ELF: 349 return "The image is not ELF"; 350 case ELF_LOAD_WRONG_ARCH: 351 return "The image is from incompatible architecture"; 352 case ELF_LOAD_WRONG_ENDIAN: 353 return "The image has incorrect endianness"; 354 default: 355 return "Unknown error"; 356 } 357 } 358 359 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 360 { 361 int fd; 362 uint8_t e_ident_local[EI_NIDENT]; 363 uint8_t *e_ident; 364 size_t hdr_size, off; 365 bool is64l; 366 367 if (!hdr) { 368 hdr = e_ident_local; 369 } 370 e_ident = hdr; 371 372 fd = open(filename, O_RDONLY | O_BINARY); 373 if (fd < 0) { 374 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 375 return; 376 } 377 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 378 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 379 goto fail; 380 } 381 if (e_ident[0] != ELFMAG0 || 382 e_ident[1] != ELFMAG1 || 383 e_ident[2] != ELFMAG2 || 384 e_ident[3] != ELFMAG3) { 385 error_setg(errp, "Bad ELF magic"); 386 goto fail; 387 } 388 389 is64l = e_ident[EI_CLASS] == ELFCLASS64; 390 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 391 if (is64) { 392 *is64 = is64l; 393 } 394 395 off = EI_NIDENT; 396 while (hdr != e_ident_local && off < hdr_size) { 397 size_t br = read(fd, hdr + off, hdr_size - off); 398 switch (br) { 399 case 0: 400 error_setg(errp, "File too short: %s", filename); 401 goto fail; 402 case -1: 403 error_setg_errno(errp, errno, "Failed to read file: %s", 404 filename); 405 goto fail; 406 } 407 off += br; 408 } 409 410 fail: 411 close(fd); 412 } 413 414 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 415 int load_elf(const char *filename, uint64_t (*translate_fn)(void *, uint64_t), 416 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 417 uint64_t *highaddr, int big_endian, int elf_machine, 418 int clear_lsb, int data_swab) 419 { 420 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; 421 uint8_t e_ident[EI_NIDENT]; 422 423 fd = open(filename, O_RDONLY | O_BINARY); 424 if (fd < 0) { 425 perror(filename); 426 return -1; 427 } 428 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 429 goto fail; 430 if (e_ident[0] != ELFMAG0 || 431 e_ident[1] != ELFMAG1 || 432 e_ident[2] != ELFMAG2 || 433 e_ident[3] != ELFMAG3) { 434 ret = ELF_LOAD_NOT_ELF; 435 goto fail; 436 } 437 #ifdef HOST_WORDS_BIGENDIAN 438 data_order = ELFDATA2MSB; 439 #else 440 data_order = ELFDATA2LSB; 441 #endif 442 must_swab = data_order != e_ident[EI_DATA]; 443 if (big_endian) { 444 target_data_order = ELFDATA2MSB; 445 } else { 446 target_data_order = ELFDATA2LSB; 447 } 448 449 if (target_data_order != e_ident[EI_DATA]) { 450 ret = ELF_LOAD_WRONG_ENDIAN; 451 goto fail; 452 } 453 454 lseek(fd, 0, SEEK_SET); 455 if (e_ident[EI_CLASS] == ELFCLASS64) { 456 ret = load_elf64(filename, fd, translate_fn, translate_opaque, must_swab, 457 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 458 data_swab); 459 } else { 460 ret = load_elf32(filename, fd, translate_fn, translate_opaque, must_swab, 461 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 462 data_swab); 463 } 464 465 fail: 466 close(fd); 467 return ret; 468 } 469 470 static void bswap_uboot_header(uboot_image_header_t *hdr) 471 { 472 #ifndef HOST_WORDS_BIGENDIAN 473 bswap32s(&hdr->ih_magic); 474 bswap32s(&hdr->ih_hcrc); 475 bswap32s(&hdr->ih_time); 476 bswap32s(&hdr->ih_size); 477 bswap32s(&hdr->ih_load); 478 bswap32s(&hdr->ih_ep); 479 bswap32s(&hdr->ih_dcrc); 480 #endif 481 } 482 483 484 #define ZALLOC_ALIGNMENT 16 485 486 static void *zalloc(void *x, unsigned items, unsigned size) 487 { 488 void *p; 489 490 size *= items; 491 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 492 493 p = g_malloc(size); 494 495 return (p); 496 } 497 498 static void zfree(void *x, void *addr) 499 { 500 g_free(addr); 501 } 502 503 504 #define HEAD_CRC 2 505 #define EXTRA_FIELD 4 506 #define ORIG_NAME 8 507 #define COMMENT 0x10 508 #define RESERVED 0xe0 509 510 #define DEFLATED 8 511 512 /* This is the usual maximum in uboot, so if a uImage overflows this, it would 513 * overflow on real hardware too. */ 514 #define UBOOT_MAX_GUNZIP_BYTES (64 << 20) 515 516 static ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, 517 size_t srclen) 518 { 519 z_stream s; 520 ssize_t dstbytes; 521 int r, i, flags; 522 523 /* skip header */ 524 i = 10; 525 flags = src[3]; 526 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 527 puts ("Error: Bad gzipped data\n"); 528 return -1; 529 } 530 if ((flags & EXTRA_FIELD) != 0) 531 i = 12 + src[10] + (src[11] << 8); 532 if ((flags & ORIG_NAME) != 0) 533 while (src[i++] != 0) 534 ; 535 if ((flags & COMMENT) != 0) 536 while (src[i++] != 0) 537 ; 538 if ((flags & HEAD_CRC) != 0) 539 i += 2; 540 if (i >= srclen) { 541 puts ("Error: gunzip out of data in header\n"); 542 return -1; 543 } 544 545 s.zalloc = zalloc; 546 s.zfree = zfree; 547 548 r = inflateInit2(&s, -MAX_WBITS); 549 if (r != Z_OK) { 550 printf ("Error: inflateInit2() returned %d\n", r); 551 return (-1); 552 } 553 s.next_in = src + i; 554 s.avail_in = srclen - i; 555 s.next_out = dst; 556 s.avail_out = dstlen; 557 r = inflate(&s, Z_FINISH); 558 if (r != Z_OK && r != Z_STREAM_END) { 559 printf ("Error: inflate() returned %d\n", r); 560 return -1; 561 } 562 dstbytes = s.next_out - (unsigned char *) dst; 563 inflateEnd(&s); 564 565 return dstbytes; 566 } 567 568 /* Load a U-Boot image. */ 569 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 570 int *is_linux, uint8_t image_type, 571 uint64_t (*translate_fn)(void *, uint64_t), 572 void *translate_opaque) 573 { 574 int fd; 575 int size; 576 hwaddr address; 577 uboot_image_header_t h; 578 uboot_image_header_t *hdr = &h; 579 uint8_t *data = NULL; 580 int ret = -1; 581 int do_uncompress = 0; 582 583 fd = open(filename, O_RDONLY | O_BINARY); 584 if (fd < 0) 585 return -1; 586 587 size = read(fd, hdr, sizeof(uboot_image_header_t)); 588 if (size < 0) 589 goto out; 590 591 bswap_uboot_header(hdr); 592 593 if (hdr->ih_magic != IH_MAGIC) 594 goto out; 595 596 if (hdr->ih_type != image_type) { 597 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 598 image_type); 599 goto out; 600 } 601 602 /* TODO: Implement other image types. */ 603 switch (hdr->ih_type) { 604 case IH_TYPE_KERNEL: 605 address = hdr->ih_load; 606 if (translate_fn) { 607 address = translate_fn(translate_opaque, address); 608 } 609 if (loadaddr) { 610 *loadaddr = hdr->ih_load; 611 } 612 613 switch (hdr->ih_comp) { 614 case IH_COMP_NONE: 615 break; 616 case IH_COMP_GZIP: 617 do_uncompress = 1; 618 break; 619 default: 620 fprintf(stderr, 621 "Unable to load u-boot images with compression type %d\n", 622 hdr->ih_comp); 623 goto out; 624 } 625 626 if (ep) { 627 *ep = hdr->ih_ep; 628 } 629 630 /* TODO: Check CPU type. */ 631 if (is_linux) { 632 if (hdr->ih_os == IH_OS_LINUX) { 633 *is_linux = 1; 634 } else { 635 *is_linux = 0; 636 } 637 } 638 639 break; 640 case IH_TYPE_RAMDISK: 641 address = *loadaddr; 642 break; 643 default: 644 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 645 goto out; 646 } 647 648 data = g_malloc(hdr->ih_size); 649 650 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 651 fprintf(stderr, "Error reading file\n"); 652 goto out; 653 } 654 655 if (do_uncompress) { 656 uint8_t *compressed_data; 657 size_t max_bytes; 658 ssize_t bytes; 659 660 compressed_data = data; 661 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 662 data = g_malloc(max_bytes); 663 664 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 665 g_free(compressed_data); 666 if (bytes < 0) { 667 fprintf(stderr, "Unable to decompress gzipped image!\n"); 668 goto out; 669 } 670 hdr->ih_size = bytes; 671 } 672 673 rom_add_blob_fixed(filename, data, hdr->ih_size, address); 674 675 ret = hdr->ih_size; 676 677 out: 678 g_free(data); 679 close(fd); 680 return ret; 681 } 682 683 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 684 int *is_linux, 685 uint64_t (*translate_fn)(void *, uint64_t), 686 void *translate_opaque) 687 { 688 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 689 translate_fn, translate_opaque); 690 } 691 692 /* Load a ramdisk. */ 693 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 694 { 695 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 696 NULL, NULL); 697 } 698 699 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 700 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 701 uint8_t **buffer) 702 { 703 uint8_t *compressed_data = NULL; 704 uint8_t *data = NULL; 705 gsize len; 706 ssize_t bytes; 707 int ret = -1; 708 709 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 710 NULL)) { 711 goto out; 712 } 713 714 /* Is it a gzip-compressed file? */ 715 if (len < 2 || 716 compressed_data[0] != 0x1f || 717 compressed_data[1] != 0x8b) { 718 goto out; 719 } 720 721 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 722 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 723 } 724 725 data = g_malloc(max_sz); 726 bytes = gunzip(data, max_sz, compressed_data, len); 727 if (bytes < 0) { 728 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 729 filename); 730 goto out; 731 } 732 733 /* trim to actual size and return to caller */ 734 *buffer = g_realloc(data, bytes); 735 ret = bytes; 736 /* ownership has been transferred to caller */ 737 data = NULL; 738 739 out: 740 g_free(compressed_data); 741 g_free(data); 742 return ret; 743 } 744 745 /* Load a gzip-compressed kernel. */ 746 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 747 { 748 int bytes; 749 uint8_t *data; 750 751 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 752 if (bytes != -1) { 753 rom_add_blob_fixed(filename, data, bytes, addr); 754 g_free(data); 755 } 756 return bytes; 757 } 758 759 /* 760 * Functions for reboot-persistent memory regions. 761 * - used for vga bios and option roms. 762 * - also linux kernel (-kernel / -initrd). 763 */ 764 765 typedef struct Rom Rom; 766 767 struct Rom { 768 char *name; 769 char *path; 770 771 /* datasize is the amount of memory allocated in "data". If datasize is less 772 * than romsize, it means that the area from datasize to romsize is filled 773 * with zeros. 774 */ 775 size_t romsize; 776 size_t datasize; 777 778 uint8_t *data; 779 MemoryRegion *mr; 780 int isrom; 781 char *fw_dir; 782 char *fw_file; 783 784 hwaddr addr; 785 QTAILQ_ENTRY(Rom) next; 786 }; 787 788 static FWCfgState *fw_cfg; 789 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 790 791 static void rom_insert(Rom *rom) 792 { 793 Rom *item; 794 795 if (roms_loaded) { 796 hw_error ("ROM images must be loaded at startup\n"); 797 } 798 799 /* list is ordered by load address */ 800 QTAILQ_FOREACH(item, &roms, next) { 801 if (rom->addr >= item->addr) 802 continue; 803 QTAILQ_INSERT_BEFORE(item, rom, next); 804 return; 805 } 806 QTAILQ_INSERT_TAIL(&roms, rom, next); 807 } 808 809 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 810 { 811 if (fw_cfg) { 812 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 813 } 814 } 815 816 static void *rom_set_mr(Rom *rom, Object *owner, const char *name) 817 { 818 void *data; 819 820 rom->mr = g_malloc(sizeof(*rom->mr)); 821 memory_region_init_resizeable_ram(rom->mr, owner, name, 822 rom->datasize, rom->romsize, 823 fw_cfg_resized, 824 &error_fatal); 825 memory_region_set_readonly(rom->mr, true); 826 vmstate_register_ram_global(rom->mr); 827 828 data = memory_region_get_ram_ptr(rom->mr); 829 memcpy(data, rom->data, rom->datasize); 830 831 return data; 832 } 833 834 int rom_add_file(const char *file, const char *fw_dir, 835 hwaddr addr, int32_t bootindex, 836 bool option_rom, MemoryRegion *mr) 837 { 838 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 839 Rom *rom; 840 int rc, fd = -1; 841 char devpath[100]; 842 843 rom = g_malloc0(sizeof(*rom)); 844 rom->name = g_strdup(file); 845 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 846 if (rom->path == NULL) { 847 rom->path = g_strdup(file); 848 } 849 850 fd = open(rom->path, O_RDONLY | O_BINARY); 851 if (fd == -1) { 852 fprintf(stderr, "Could not open option rom '%s': %s\n", 853 rom->path, strerror(errno)); 854 goto err; 855 } 856 857 if (fw_dir) { 858 rom->fw_dir = g_strdup(fw_dir); 859 rom->fw_file = g_strdup(file); 860 } 861 rom->addr = addr; 862 rom->romsize = lseek(fd, 0, SEEK_END); 863 if (rom->romsize == -1) { 864 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 865 rom->name, strerror(errno)); 866 goto err; 867 } 868 869 rom->datasize = rom->romsize; 870 rom->data = g_malloc0(rom->datasize); 871 lseek(fd, 0, SEEK_SET); 872 rc = read(fd, rom->data, rom->datasize); 873 if (rc != rom->datasize) { 874 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 875 rom->name, rc, rom->datasize); 876 goto err; 877 } 878 close(fd); 879 rom_insert(rom); 880 if (rom->fw_file && fw_cfg) { 881 const char *basename; 882 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 883 void *data; 884 885 basename = strrchr(rom->fw_file, '/'); 886 if (basename) { 887 basename++; 888 } else { 889 basename = rom->fw_file; 890 } 891 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 892 basename); 893 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 894 895 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 896 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath); 897 } else { 898 data = rom->data; 899 } 900 901 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 902 } else { 903 if (mr) { 904 rom->mr = mr; 905 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 906 } else { 907 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 908 } 909 } 910 911 add_boot_device_path(bootindex, NULL, devpath); 912 return 0; 913 914 err: 915 if (fd != -1) 916 close(fd); 917 g_free(rom->data); 918 g_free(rom->path); 919 g_free(rom->name); 920 g_free(rom); 921 return -1; 922 } 923 924 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 925 size_t max_len, hwaddr addr, const char *fw_file_name, 926 FWCfgReadCallback fw_callback, void *callback_opaque) 927 { 928 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 929 Rom *rom; 930 MemoryRegion *mr = NULL; 931 932 rom = g_malloc0(sizeof(*rom)); 933 rom->name = g_strdup(name); 934 rom->addr = addr; 935 rom->romsize = max_len ? max_len : len; 936 rom->datasize = len; 937 rom->data = g_malloc0(rom->datasize); 938 memcpy(rom->data, blob, len); 939 rom_insert(rom); 940 if (fw_file_name && fw_cfg) { 941 char devpath[100]; 942 void *data; 943 944 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 945 946 if (mc->rom_file_has_mr) { 947 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath); 948 mr = rom->mr; 949 } else { 950 data = rom->data; 951 } 952 953 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 954 fw_callback, callback_opaque, 955 data, rom->datasize); 956 } 957 return mr; 958 } 959 960 /* This function is specific for elf program because we don't need to allocate 961 * all the rom. We just allocate the first part and the rest is just zeros. This 962 * is why romsize and datasize are different. Also, this function seize the 963 * memory ownership of "data", so we don't have to allocate and copy the buffer. 964 */ 965 int rom_add_elf_program(const char *name, void *data, size_t datasize, 966 size_t romsize, hwaddr addr) 967 { 968 Rom *rom; 969 970 rom = g_malloc0(sizeof(*rom)); 971 rom->name = g_strdup(name); 972 rom->addr = addr; 973 rom->datasize = datasize; 974 rom->romsize = romsize; 975 rom->data = data; 976 rom_insert(rom); 977 return 0; 978 } 979 980 int rom_add_vga(const char *file) 981 { 982 return rom_add_file(file, "vgaroms", 0, -1, true, NULL); 983 } 984 985 int rom_add_option(const char *file, int32_t bootindex) 986 { 987 return rom_add_file(file, "genroms", 0, bootindex, true, NULL); 988 } 989 990 static void rom_reset(void *unused) 991 { 992 Rom *rom; 993 994 QTAILQ_FOREACH(rom, &roms, next) { 995 if (rom->fw_file) { 996 continue; 997 } 998 if (rom->data == NULL) { 999 continue; 1000 } 1001 if (rom->mr) { 1002 void *host = memory_region_get_ram_ptr(rom->mr); 1003 memcpy(host, rom->data, rom->datasize); 1004 } else { 1005 cpu_physical_memory_write_rom(&address_space_memory, 1006 rom->addr, rom->data, rom->datasize); 1007 } 1008 if (rom->isrom) { 1009 /* rom needs to be written only once */ 1010 g_free(rom->data); 1011 rom->data = NULL; 1012 } 1013 /* 1014 * The rom loader is really on the same level as firmware in the guest 1015 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1016 * that the instruction cache for that new region is clear, so that the 1017 * CPU definitely fetches its instructions from the just written data. 1018 */ 1019 cpu_flush_icache_range(rom->addr, rom->datasize); 1020 } 1021 } 1022 1023 int rom_check_and_register_reset(void) 1024 { 1025 hwaddr addr = 0; 1026 MemoryRegionSection section; 1027 Rom *rom; 1028 1029 QTAILQ_FOREACH(rom, &roms, next) { 1030 if (rom->fw_file) { 1031 continue; 1032 } 1033 if (addr > rom->addr) { 1034 fprintf(stderr, "rom: requested regions overlap " 1035 "(rom %s. free=0x" TARGET_FMT_plx 1036 ", addr=0x" TARGET_FMT_plx ")\n", 1037 rom->name, addr, rom->addr); 1038 return -1; 1039 } 1040 addr = rom->addr; 1041 addr += rom->romsize; 1042 section = memory_region_find(get_system_memory(), rom->addr, 1); 1043 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1044 memory_region_unref(section.mr); 1045 } 1046 qemu_register_reset(rom_reset, NULL); 1047 roms_loaded = 1; 1048 return 0; 1049 } 1050 1051 void rom_set_fw(FWCfgState *f) 1052 { 1053 fw_cfg = f; 1054 } 1055 1056 static Rom *find_rom(hwaddr addr) 1057 { 1058 Rom *rom; 1059 1060 QTAILQ_FOREACH(rom, &roms, next) { 1061 if (rom->fw_file) { 1062 continue; 1063 } 1064 if (rom->mr) { 1065 continue; 1066 } 1067 if (rom->addr > addr) { 1068 continue; 1069 } 1070 if (rom->addr + rom->romsize < addr) { 1071 continue; 1072 } 1073 return rom; 1074 } 1075 return NULL; 1076 } 1077 1078 /* 1079 * Copies memory from registered ROMs to dest. Any memory that is contained in 1080 * a ROM between addr and addr + size is copied. Note that this can involve 1081 * multiple ROMs, which need not start at addr and need not end at addr + size. 1082 */ 1083 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1084 { 1085 hwaddr end = addr + size; 1086 uint8_t *s, *d = dest; 1087 size_t l = 0; 1088 Rom *rom; 1089 1090 QTAILQ_FOREACH(rom, &roms, next) { 1091 if (rom->fw_file) { 1092 continue; 1093 } 1094 if (rom->mr) { 1095 continue; 1096 } 1097 if (rom->addr + rom->romsize < addr) { 1098 continue; 1099 } 1100 if (rom->addr > end) { 1101 break; 1102 } 1103 1104 d = dest + (rom->addr - addr); 1105 s = rom->data; 1106 l = rom->datasize; 1107 1108 if ((d + l) > (dest + size)) { 1109 l = dest - d; 1110 } 1111 1112 if (l > 0) { 1113 memcpy(d, s, l); 1114 } 1115 1116 if (rom->romsize > rom->datasize) { 1117 /* If datasize is less than romsize, it means that we didn't 1118 * allocate all the ROM because the trailing data are only zeros. 1119 */ 1120 1121 d += l; 1122 l = rom->romsize - rom->datasize; 1123 1124 if ((d + l) > (dest + size)) { 1125 /* Rom size doesn't fit in the destination area. Adjust to avoid 1126 * overflow. 1127 */ 1128 l = dest - d; 1129 } 1130 1131 if (l > 0) { 1132 memset(d, 0x0, l); 1133 } 1134 } 1135 } 1136 1137 return (d + l) - dest; 1138 } 1139 1140 void *rom_ptr(hwaddr addr) 1141 { 1142 Rom *rom; 1143 1144 rom = find_rom(addr); 1145 if (!rom || !rom->data) 1146 return NULL; 1147 return rom->data + (addr - rom->addr); 1148 } 1149 1150 void hmp_info_roms(Monitor *mon, const QDict *qdict) 1151 { 1152 Rom *rom; 1153 1154 QTAILQ_FOREACH(rom, &roms, next) { 1155 if (rom->mr) { 1156 monitor_printf(mon, "%s" 1157 " size=0x%06zx name=\"%s\"\n", 1158 memory_region_name(rom->mr), 1159 rom->romsize, 1160 rom->name); 1161 } else if (!rom->fw_file) { 1162 monitor_printf(mon, "addr=" TARGET_FMT_plx 1163 " size=0x%06zx mem=%s name=\"%s\"\n", 1164 rom->addr, rom->romsize, 1165 rom->isrom ? "rom" : "ram", 1166 rom->name); 1167 } else { 1168 monitor_printf(mon, "fw=%s/%s" 1169 " size=0x%06zx name=\"%s\"\n", 1170 rom->fw_dir, 1171 rom->fw_file, 1172 rom->romsize, 1173 rom->name); 1174 } 1175 } 1176 } 1177