1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qemu/datadir.h" 47 #include "qemu/error-report.h" 48 #include "qapi/error.h" 49 #include "qapi/qapi-commands-machine.h" 50 #include "qapi/type-helpers.h" 51 #include "trace.h" 52 #include "hw/hw.h" 53 #include "disas/disas.h" 54 #include "migration/vmstate.h" 55 #include "monitor/monitor.h" 56 #include "system/reset.h" 57 #include "system/system.h" 58 #include "uboot_image.h" 59 #include "hw/loader.h" 60 #include "hw/nvram/fw_cfg.h" 61 #include "exec/memory.h" 62 #include "hw/boards.h" 63 #include "qemu/cutils.h" 64 #include "system/runstate.h" 65 #include "tcg/debuginfo.h" 66 67 #include <zlib.h> 68 69 static int roms_loaded; 70 71 /* return the size or -1 if error */ 72 int64_t get_image_size(const char *filename) 73 { 74 int fd; 75 int64_t size; 76 fd = open(filename, O_RDONLY | O_BINARY); 77 if (fd < 0) 78 return -1; 79 size = lseek(fd, 0, SEEK_END); 80 close(fd); 81 return size; 82 } 83 84 /* return the size or -1 if error */ 85 ssize_t load_image_size(const char *filename, void *addr, size_t size) 86 { 87 int fd; 88 ssize_t actsize, l = 0; 89 90 fd = open(filename, O_RDONLY | O_BINARY); 91 if (fd < 0) { 92 return -1; 93 } 94 95 while ((actsize = read(fd, addr + l, size - l)) > 0) { 96 l += actsize; 97 } 98 99 close(fd); 100 101 return actsize < 0 ? -1 : l; 102 } 103 104 /* read()-like version */ 105 ssize_t read_targphys(const char *name, 106 int fd, hwaddr dst_addr, size_t nbytes) 107 { 108 uint8_t *buf; 109 ssize_t did; 110 111 buf = g_malloc(nbytes); 112 did = read(fd, buf, nbytes); 113 if (did > 0) 114 rom_add_blob_fixed("read", buf, did, dst_addr); 115 g_free(buf); 116 return did; 117 } 118 119 ssize_t load_image_targphys(const char *filename, 120 hwaddr addr, uint64_t max_sz) 121 { 122 return load_image_targphys_as(filename, addr, max_sz, NULL); 123 } 124 125 /* return the size or -1 if error */ 126 ssize_t load_image_targphys_as(const char *filename, 127 hwaddr addr, uint64_t max_sz, AddressSpace *as) 128 { 129 ssize_t size; 130 131 size = get_image_size(filename); 132 if (size < 0 || size > max_sz) { 133 return -1; 134 } 135 if (size > 0) { 136 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 137 return -1; 138 } 139 } 140 return size; 141 } 142 143 ssize_t load_image_mr(const char *filename, MemoryRegion *mr) 144 { 145 ssize_t size; 146 147 if (!memory_access_is_direct(mr, false)) { 148 /* Can only load an image into RAM or ROM */ 149 return -1; 150 } 151 152 size = get_image_size(filename); 153 154 if (size < 0 || size > memory_region_size(mr)) { 155 return -1; 156 } 157 if (size > 0) { 158 if (rom_add_file_mr(filename, mr, -1) < 0) { 159 return -1; 160 } 161 } 162 return size; 163 } 164 165 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 166 const char *source) 167 { 168 const char *nulp; 169 char *ptr; 170 171 if (buf_size <= 0) return; 172 nulp = memchr(source, 0, buf_size); 173 if (nulp) { 174 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 175 } else { 176 rom_add_blob_fixed(name, source, buf_size, dest); 177 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 178 *ptr = 0; 179 } 180 } 181 182 /* A.OUT loader */ 183 184 struct exec 185 { 186 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 187 uint32_t a_text; /* length of text, in bytes */ 188 uint32_t a_data; /* length of data, in bytes */ 189 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 190 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 191 uint32_t a_entry; /* start address */ 192 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 193 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 194 }; 195 196 static void bswap_ahdr(struct exec *e) 197 { 198 bswap32s(&e->a_info); 199 bswap32s(&e->a_text); 200 bswap32s(&e->a_data); 201 bswap32s(&e->a_bss); 202 bswap32s(&e->a_syms); 203 bswap32s(&e->a_entry); 204 bswap32s(&e->a_trsize); 205 bswap32s(&e->a_drsize); 206 } 207 208 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 209 #define OMAGIC 0407 210 #define NMAGIC 0410 211 #define ZMAGIC 0413 212 #define QMAGIC 0314 213 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 214 #define N_TXTOFF(x) \ 215 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 216 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 217 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 218 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 219 220 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 221 222 #define N_DATADDR(x, target_page_size) \ 223 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 224 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 225 226 227 ssize_t load_aout(const char *filename, hwaddr addr, int max_sz, 228 int bswap_needed, hwaddr target_page_size) 229 { 230 int fd; 231 ssize_t size, ret; 232 struct exec e; 233 uint32_t magic; 234 235 fd = open(filename, O_RDONLY | O_BINARY); 236 if (fd < 0) 237 return -1; 238 239 size = read(fd, &e, sizeof(e)); 240 if (size < 0) 241 goto fail; 242 243 if (bswap_needed) { 244 bswap_ahdr(&e); 245 } 246 247 magic = N_MAGIC(e); 248 switch (magic) { 249 case ZMAGIC: 250 case QMAGIC: 251 case OMAGIC: 252 if (e.a_text + e.a_data > max_sz) 253 goto fail; 254 lseek(fd, N_TXTOFF(e), SEEK_SET); 255 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 256 if (size < 0) 257 goto fail; 258 break; 259 case NMAGIC: 260 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 261 goto fail; 262 lseek(fd, N_TXTOFF(e), SEEK_SET); 263 size = read_targphys(filename, fd, addr, e.a_text); 264 if (size < 0) 265 goto fail; 266 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 267 e.a_data); 268 if (ret < 0) 269 goto fail; 270 size += ret; 271 break; 272 default: 273 goto fail; 274 } 275 close(fd); 276 return size; 277 fail: 278 close(fd); 279 return -1; 280 } 281 282 /* ELF loader */ 283 284 static void *load_at(int fd, off_t offset, size_t size) 285 { 286 void *ptr; 287 if (lseek(fd, offset, SEEK_SET) < 0) 288 return NULL; 289 ptr = g_malloc(size); 290 if (read(fd, ptr, size) != size) { 291 g_free(ptr); 292 return NULL; 293 } 294 return ptr; 295 } 296 297 #ifdef ELF_CLASS 298 #undef ELF_CLASS 299 #endif 300 301 #define ELF_CLASS ELFCLASS32 302 #include "elf.h" 303 304 #define SZ 32 305 #define elf_word uint32_t 306 #define elf_sword int32_t 307 #define bswapSZs bswap32s 308 #include "hw/elf_ops.h.inc" 309 310 #undef elfhdr 311 #undef elf_phdr 312 #undef elf_shdr 313 #undef elf_sym 314 #undef elf_rela 315 #undef elf_note 316 #undef elf_word 317 #undef elf_sword 318 #undef bswapSZs 319 #undef SZ 320 #define elfhdr elf64_hdr 321 #define elf_phdr elf64_phdr 322 #define elf_note elf64_note 323 #define elf_shdr elf64_shdr 324 #define elf_sym elf64_sym 325 #define elf_rela elf64_rela 326 #define elf_word uint64_t 327 #define elf_sword int64_t 328 #define bswapSZs bswap64s 329 #define SZ 64 330 #include "hw/elf_ops.h.inc" 331 332 const char *load_elf_strerror(ssize_t error) 333 { 334 switch (error) { 335 case 0: 336 return "No error"; 337 case ELF_LOAD_FAILED: 338 return "Failed to load ELF"; 339 case ELF_LOAD_NOT_ELF: 340 return "The image is not ELF"; 341 case ELF_LOAD_WRONG_ARCH: 342 return "The image is from incompatible architecture"; 343 case ELF_LOAD_WRONG_ENDIAN: 344 return "The image has incorrect endianness"; 345 case ELF_LOAD_TOO_BIG: 346 return "The image segments are too big to load"; 347 default: 348 return "Unknown error"; 349 } 350 } 351 352 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 353 { 354 int fd; 355 uint8_t e_ident_local[EI_NIDENT]; 356 uint8_t *e_ident; 357 size_t hdr_size, off; 358 bool is64l; 359 360 if (!hdr) { 361 hdr = e_ident_local; 362 } 363 e_ident = hdr; 364 365 fd = open(filename, O_RDONLY | O_BINARY); 366 if (fd < 0) { 367 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 368 return; 369 } 370 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 371 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 372 goto fail; 373 } 374 if (e_ident[0] != ELFMAG0 || 375 e_ident[1] != ELFMAG1 || 376 e_ident[2] != ELFMAG2 || 377 e_ident[3] != ELFMAG3) { 378 error_setg(errp, "Bad ELF magic"); 379 goto fail; 380 } 381 382 is64l = e_ident[EI_CLASS] == ELFCLASS64; 383 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 384 if (is64) { 385 *is64 = is64l; 386 } 387 388 off = EI_NIDENT; 389 while (hdr != e_ident_local && off < hdr_size) { 390 size_t br = read(fd, hdr + off, hdr_size - off); 391 switch (br) { 392 case 0: 393 error_setg(errp, "File too short: %s", filename); 394 goto fail; 395 case -1: 396 error_setg_errno(errp, errno, "Failed to read file: %s", 397 filename); 398 goto fail; 399 } 400 off += br; 401 } 402 403 fail: 404 close(fd); 405 } 406 407 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 408 ssize_t load_elf(const char *filename, 409 uint64_t (*elf_note_fn)(void *, void *, bool), 410 uint64_t (*translate_fn)(void *, uint64_t), 411 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 412 uint64_t *highaddr, uint32_t *pflags, int big_endian, 413 int elf_machine, int clear_lsb, int data_swab) 414 { 415 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 416 pentry, lowaddr, highaddr, pflags, big_endian, 417 elf_machine, clear_lsb, data_swab, NULL); 418 } 419 420 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 421 ssize_t load_elf_as(const char *filename, 422 uint64_t (*elf_note_fn)(void *, void *, bool), 423 uint64_t (*translate_fn)(void *, uint64_t), 424 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 425 uint64_t *highaddr, uint32_t *pflags, int big_endian, 426 int elf_machine, int clear_lsb, int data_swab, 427 AddressSpace *as) 428 { 429 return load_elf_ram_sym(filename, elf_note_fn, 430 translate_fn, translate_opaque, 431 pentry, lowaddr, highaddr, pflags, big_endian, 432 elf_machine, clear_lsb, data_swab, as, 433 true, NULL); 434 } 435 436 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 437 ssize_t load_elf_ram_sym(const char *filename, 438 uint64_t (*elf_note_fn)(void *, void *, bool), 439 uint64_t (*translate_fn)(void *, uint64_t), 440 void *translate_opaque, uint64_t *pentry, 441 uint64_t *lowaddr, uint64_t *highaddr, 442 uint32_t *pflags, int big_endian, int elf_machine, 443 int clear_lsb, int data_swab, 444 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 445 { 446 const int host_data_order = HOST_BIG_ENDIAN ? ELFDATA2MSB : ELFDATA2LSB; 447 int fd, target_data_order, must_swab; 448 ssize_t ret = ELF_LOAD_FAILED; 449 uint8_t e_ident[EI_NIDENT]; 450 451 fd = open(filename, O_RDONLY | O_BINARY); 452 if (fd < 0) { 453 perror(filename); 454 return -1; 455 } 456 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 457 goto fail; 458 if (e_ident[0] != ELFMAG0 || 459 e_ident[1] != ELFMAG1 || 460 e_ident[2] != ELFMAG2 || 461 e_ident[3] != ELFMAG3) { 462 ret = ELF_LOAD_NOT_ELF; 463 goto fail; 464 } 465 must_swab = host_data_order != e_ident[EI_DATA]; 466 if (big_endian) { 467 target_data_order = ELFDATA2MSB; 468 } else { 469 target_data_order = ELFDATA2LSB; 470 } 471 472 if (target_data_order != e_ident[EI_DATA]) { 473 ret = ELF_LOAD_WRONG_ENDIAN; 474 goto fail; 475 } 476 477 lseek(fd, 0, SEEK_SET); 478 if (e_ident[EI_CLASS] == ELFCLASS64) { 479 ret = load_elf64(filename, fd, elf_note_fn, 480 translate_fn, translate_opaque, must_swab, 481 pentry, lowaddr, highaddr, pflags, elf_machine, 482 clear_lsb, data_swab, as, load_rom, sym_cb); 483 } else { 484 ret = load_elf32(filename, fd, elf_note_fn, 485 translate_fn, translate_opaque, must_swab, 486 pentry, lowaddr, highaddr, pflags, elf_machine, 487 clear_lsb, data_swab, as, load_rom, sym_cb); 488 } 489 490 if (ret > 0) { 491 debuginfo_report_elf(filename, fd, 0); 492 } 493 494 fail: 495 close(fd); 496 return ret; 497 } 498 499 static void bswap_uboot_header(uboot_image_header_t *hdr) 500 { 501 #if !HOST_BIG_ENDIAN 502 bswap32s(&hdr->ih_magic); 503 bswap32s(&hdr->ih_hcrc); 504 bswap32s(&hdr->ih_time); 505 bswap32s(&hdr->ih_size); 506 bswap32s(&hdr->ih_load); 507 bswap32s(&hdr->ih_ep); 508 bswap32s(&hdr->ih_dcrc); 509 #endif 510 } 511 512 513 #define ZALLOC_ALIGNMENT 16 514 515 static void *zalloc(void *x, unsigned items, unsigned size) 516 { 517 void *p; 518 519 size *= items; 520 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 521 522 p = g_malloc(size); 523 524 return (p); 525 } 526 527 static void zfree(void *x, void *addr) 528 { 529 g_free(addr); 530 } 531 532 533 #define HEAD_CRC 2 534 #define EXTRA_FIELD 4 535 #define ORIG_NAME 8 536 #define COMMENT 0x10 537 #define RESERVED 0xe0 538 539 #define DEFLATED 8 540 541 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 542 { 543 z_stream s = {}; 544 ssize_t dstbytes; 545 int r, i, flags; 546 547 /* skip header */ 548 i = 10; 549 if (srclen < 4) { 550 goto toosmall; 551 } 552 flags = src[3]; 553 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 554 puts ("Error: Bad gzipped data\n"); 555 return -1; 556 } 557 if ((flags & EXTRA_FIELD) != 0) { 558 if (srclen < 12) { 559 goto toosmall; 560 } 561 i = 12 + src[10] + (src[11] << 8); 562 } 563 if ((flags & ORIG_NAME) != 0) { 564 while (i < srclen && src[i++] != 0) { 565 /* do nothing */ 566 } 567 } 568 if ((flags & COMMENT) != 0) { 569 while (i < srclen && src[i++] != 0) { 570 /* do nothing */ 571 } 572 } 573 if ((flags & HEAD_CRC) != 0) { 574 i += 2; 575 } 576 if (i >= srclen) { 577 goto toosmall; 578 } 579 580 s.zalloc = zalloc; 581 s.zfree = zfree; 582 583 r = inflateInit2(&s, -MAX_WBITS); 584 if (r != Z_OK) { 585 printf ("Error: inflateInit2() returned %d\n", r); 586 return (-1); 587 } 588 s.next_in = src + i; 589 s.avail_in = srclen - i; 590 s.next_out = dst; 591 s.avail_out = dstlen; 592 r = inflate(&s, Z_FINISH); 593 if (r != Z_OK && r != Z_STREAM_END) { 594 printf ("Error: inflate() returned %d\n", r); 595 inflateEnd(&s); 596 return -1; 597 } 598 dstbytes = s.next_out - (unsigned char *) dst; 599 inflateEnd(&s); 600 601 return dstbytes; 602 603 toosmall: 604 puts("Error: gunzip out of data in header\n"); 605 return -1; 606 } 607 608 /* Load a U-Boot image. */ 609 static ssize_t load_uboot_image(const char *filename, hwaddr *ep, 610 hwaddr *loadaddr, int *is_linux, 611 uint8_t image_type, 612 uint64_t (*translate_fn)(void *, uint64_t), 613 void *translate_opaque, AddressSpace *as) 614 { 615 int fd; 616 ssize_t size; 617 hwaddr address; 618 uboot_image_header_t h; 619 uboot_image_header_t *hdr = &h; 620 uint8_t *data = NULL; 621 int ret = -1; 622 int do_uncompress = 0; 623 624 fd = open(filename, O_RDONLY | O_BINARY); 625 if (fd < 0) 626 return -1; 627 628 size = read(fd, hdr, sizeof(uboot_image_header_t)); 629 if (size < sizeof(uboot_image_header_t)) { 630 goto out; 631 } 632 633 bswap_uboot_header(hdr); 634 635 if (hdr->ih_magic != IH_MAGIC) 636 goto out; 637 638 if (hdr->ih_type != image_type) { 639 if (!(image_type == IH_TYPE_KERNEL && 640 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 641 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 642 image_type); 643 goto out; 644 } 645 } 646 647 /* TODO: Implement other image types. */ 648 switch (hdr->ih_type) { 649 case IH_TYPE_KERNEL_NOLOAD: 650 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 651 fprintf(stderr, "this image format (kernel_noload) cannot be " 652 "loaded on this machine type"); 653 goto out; 654 } 655 656 hdr->ih_load = *loadaddr + sizeof(*hdr); 657 hdr->ih_ep += hdr->ih_load; 658 /* fall through */ 659 case IH_TYPE_KERNEL: 660 address = hdr->ih_load; 661 if (translate_fn) { 662 address = translate_fn(translate_opaque, address); 663 } 664 if (loadaddr) { 665 *loadaddr = hdr->ih_load; 666 } 667 668 switch (hdr->ih_comp) { 669 case IH_COMP_NONE: 670 break; 671 case IH_COMP_GZIP: 672 do_uncompress = 1; 673 break; 674 default: 675 fprintf(stderr, 676 "Unable to load u-boot images with compression type %d\n", 677 hdr->ih_comp); 678 goto out; 679 } 680 681 if (ep) { 682 *ep = hdr->ih_ep; 683 } 684 685 /* TODO: Check CPU type. */ 686 if (is_linux) { 687 if (hdr->ih_os == IH_OS_LINUX) { 688 *is_linux = 1; 689 } else if (hdr->ih_os == IH_OS_VXWORKS) { 690 /* 691 * VxWorks 7 uses the same boot interface as the Linux kernel 692 * on Arm (64-bit only), PowerPC and RISC-V architectures. 693 */ 694 switch (hdr->ih_arch) { 695 case IH_ARCH_ARM64: 696 case IH_ARCH_PPC: 697 case IH_ARCH_RISCV: 698 *is_linux = 1; 699 break; 700 default: 701 *is_linux = 0; 702 break; 703 } 704 } else { 705 *is_linux = 0; 706 } 707 } 708 709 break; 710 case IH_TYPE_RAMDISK: 711 address = *loadaddr; 712 break; 713 default: 714 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 715 goto out; 716 } 717 718 data = g_malloc(hdr->ih_size); 719 720 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 721 fprintf(stderr, "Error reading file\n"); 722 goto out; 723 } 724 725 if (do_uncompress) { 726 uint8_t *compressed_data; 727 size_t max_bytes; 728 ssize_t bytes; 729 730 compressed_data = data; 731 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 732 data = g_malloc(max_bytes); 733 734 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 735 g_free(compressed_data); 736 if (bytes < 0) { 737 fprintf(stderr, "Unable to decompress gzipped image!\n"); 738 goto out; 739 } 740 hdr->ih_size = bytes; 741 } 742 743 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 744 745 ret = hdr->ih_size; 746 747 out: 748 g_free(data); 749 close(fd); 750 return ret; 751 } 752 753 ssize_t load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 754 int *is_linux, 755 uint64_t (*translate_fn)(void *, uint64_t), 756 void *translate_opaque) 757 { 758 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 759 translate_fn, translate_opaque, NULL); 760 } 761 762 ssize_t load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 763 int *is_linux, 764 uint64_t (*translate_fn)(void *, uint64_t), 765 void *translate_opaque, AddressSpace *as) 766 { 767 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 768 translate_fn, translate_opaque, as); 769 } 770 771 /* Load a ramdisk. */ 772 ssize_t load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 773 { 774 return load_ramdisk_as(filename, addr, max_sz, NULL); 775 } 776 777 ssize_t load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 778 AddressSpace *as) 779 { 780 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 781 NULL, NULL, as); 782 } 783 784 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 785 ssize_t load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 786 uint8_t **buffer) 787 { 788 uint8_t *compressed_data = NULL; 789 uint8_t *data = NULL; 790 gsize len; 791 ssize_t bytes; 792 int ret = -1; 793 794 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 795 NULL)) { 796 goto out; 797 } 798 799 /* Is it a gzip-compressed file? */ 800 if (len < 2 || 801 compressed_data[0] != 0x1f || 802 compressed_data[1] != 0x8b) { 803 goto out; 804 } 805 806 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 807 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 808 } 809 810 data = g_malloc(max_sz); 811 bytes = gunzip(data, max_sz, compressed_data, len); 812 if (bytes < 0) { 813 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 814 filename); 815 goto out; 816 } 817 818 /* trim to actual size and return to caller */ 819 *buffer = g_realloc(data, bytes); 820 ret = bytes; 821 /* ownership has been transferred to caller */ 822 data = NULL; 823 824 out: 825 g_free(compressed_data); 826 g_free(data); 827 return ret; 828 } 829 830 831 /* The PE/COFF MS-DOS stub magic number */ 832 #define EFI_PE_MSDOS_MAGIC "MZ" 833 834 /* 835 * The Linux header magic number for a EFI PE/COFF 836 * image targeting an unspecified architecture. 837 */ 838 #define EFI_PE_LINUX_MAGIC "\xcd\x23\x82\x81" 839 840 /* 841 * Bootable Linux kernel images may be packaged as EFI zboot images, which are 842 * self-decompressing executables when loaded via EFI. The compressed payload 843 * can also be extracted from the image and decompressed by a non-EFI loader. 844 * 845 * The de facto specification for this format is at the following URL: 846 * 847 * https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/firmware/efi/libstub/zboot-header.S 848 * 849 * This definition is based on Linux upstream commit 29636a5ce87beba. 850 */ 851 struct linux_efi_zboot_header { 852 uint8_t msdos_magic[2]; /* PE/COFF 'MZ' magic number */ 853 uint8_t reserved0[2]; 854 uint8_t zimg[4]; /* "zimg" for Linux EFI zboot images */ 855 uint32_t payload_offset; /* LE offset to compressed payload */ 856 uint32_t payload_size; /* LE size of the compressed payload */ 857 uint8_t reserved1[8]; 858 char compression_type[32]; /* Compression type, NUL terminated */ 859 uint8_t linux_magic[4]; /* Linux header magic */ 860 uint32_t pe_header_offset; /* LE offset to the PE header */ 861 }; 862 863 /* 864 * Check whether *buffer points to a Linux EFI zboot image in memory. 865 * 866 * If it does, attempt to decompress it to a new buffer, and free the old one. 867 * If any of this fails, return an error to the caller. 868 * 869 * If the image is not a Linux EFI zboot image, do nothing and return success. 870 */ 871 ssize_t unpack_efi_zboot_image(uint8_t **buffer, ssize_t *size) 872 { 873 const struct linux_efi_zboot_header *header; 874 uint8_t *data = NULL; 875 ssize_t ploff, plsize; 876 ssize_t bytes; 877 878 /* ignore if this is too small to be a EFI zboot image */ 879 if (*size < sizeof(*header)) { 880 return 0; 881 } 882 883 header = (struct linux_efi_zboot_header *)*buffer; 884 885 /* ignore if this is not a Linux EFI zboot image */ 886 if (memcmp(&header->msdos_magic, EFI_PE_MSDOS_MAGIC, 2) != 0 || 887 memcmp(&header->zimg, "zimg", 4) != 0 || 888 memcmp(&header->linux_magic, EFI_PE_LINUX_MAGIC, 4) != 0) { 889 return 0; 890 } 891 892 if (strcmp(header->compression_type, "gzip") != 0) { 893 fprintf(stderr, 894 "unable to handle EFI zboot image with \"%.*s\" compression\n", 895 (int)sizeof(header->compression_type) - 1, 896 header->compression_type); 897 return -1; 898 } 899 900 ploff = ldl_le_p(&header->payload_offset); 901 plsize = ldl_le_p(&header->payload_size); 902 903 if (ploff < 0 || plsize < 0 || ploff + plsize > *size) { 904 fprintf(stderr, "unable to handle corrupt EFI zboot image\n"); 905 return -1; 906 } 907 908 data = g_malloc(LOAD_IMAGE_MAX_GUNZIP_BYTES); 909 bytes = gunzip(data, LOAD_IMAGE_MAX_GUNZIP_BYTES, *buffer + ploff, plsize); 910 if (bytes < 0) { 911 fprintf(stderr, "failed to decompress EFI zboot image\n"); 912 g_free(data); 913 return -1; 914 } 915 916 g_free(*buffer); 917 *buffer = g_realloc(data, bytes); 918 *size = bytes; 919 return bytes; 920 } 921 922 /* 923 * Functions for reboot-persistent memory regions. 924 * - used for vga bios and option roms. 925 * - also linux kernel (-kernel / -initrd). 926 */ 927 928 typedef struct Rom Rom; 929 930 struct Rom { 931 char *name; 932 char *path; 933 934 /* datasize is the amount of memory allocated in "data". If datasize is less 935 * than romsize, it means that the area from datasize to romsize is filled 936 * with zeros. 937 */ 938 size_t romsize; 939 size_t datasize; 940 941 uint8_t *data; 942 MemoryRegion *mr; 943 AddressSpace *as; 944 int isrom; 945 char *fw_dir; 946 char *fw_file; 947 GMappedFile *mapped_file; 948 949 bool committed; 950 951 hwaddr addr; 952 QTAILQ_ENTRY(Rom) next; 953 }; 954 955 static FWCfgState *fw_cfg; 956 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 957 958 /* 959 * rom->data can be heap-allocated or memory-mapped (e.g. when added with 960 * rom_add_elf_program()) 961 */ 962 static void rom_free_data(Rom *rom) 963 { 964 if (rom->mapped_file) { 965 g_mapped_file_unref(rom->mapped_file); 966 rom->mapped_file = NULL; 967 } else { 968 g_free(rom->data); 969 } 970 971 rom->data = NULL; 972 } 973 974 static void rom_free(Rom *rom) 975 { 976 rom_free_data(rom); 977 g_free(rom->path); 978 g_free(rom->name); 979 g_free(rom->fw_dir); 980 g_free(rom->fw_file); 981 g_free(rom); 982 } 983 984 static inline bool rom_order_compare(Rom *rom, Rom *item) 985 { 986 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 987 (rom->as == item->as && rom->addr >= item->addr); 988 } 989 990 static void rom_insert(Rom *rom) 991 { 992 Rom *item; 993 994 if (roms_loaded) { 995 hw_error ("ROM images must be loaded at startup\n"); 996 } 997 998 /* The user didn't specify an address space, this is the default */ 999 if (!rom->as) { 1000 rom->as = &address_space_memory; 1001 } 1002 1003 rom->committed = false; 1004 1005 /* List is ordered by load address in the same address space */ 1006 QTAILQ_FOREACH(item, &roms, next) { 1007 if (rom_order_compare(rom, item)) { 1008 continue; 1009 } 1010 QTAILQ_INSERT_BEFORE(item, rom, next); 1011 return; 1012 } 1013 QTAILQ_INSERT_TAIL(&roms, rom, next); 1014 } 1015 1016 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 1017 { 1018 if (fw_cfg) { 1019 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 1020 } 1021 } 1022 1023 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 1024 { 1025 void *data; 1026 1027 rom->mr = g_malloc(sizeof(*rom->mr)); 1028 memory_region_init_resizeable_ram(rom->mr, owner, name, 1029 rom->datasize, rom->romsize, 1030 fw_cfg_resized, 1031 &error_fatal); 1032 memory_region_set_readonly(rom->mr, ro); 1033 vmstate_register_ram_global(rom->mr); 1034 1035 data = memory_region_get_ram_ptr(rom->mr); 1036 memcpy(data, rom->data, rom->datasize); 1037 1038 return data; 1039 } 1040 1041 ssize_t rom_add_file(const char *file, const char *fw_dir, 1042 hwaddr addr, int32_t bootindex, 1043 bool has_option_rom, MemoryRegion *mr, 1044 AddressSpace *as) 1045 { 1046 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1047 Rom *rom; 1048 gsize size; 1049 g_autoptr(GError) gerr = NULL; 1050 char devpath[100]; 1051 1052 if (as && mr) { 1053 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 1054 "not valid when loading a rom\n"); 1055 /* We haven't allocated anything so we don't need any cleanup */ 1056 return -1; 1057 } 1058 1059 rom = g_malloc0(sizeof(*rom)); 1060 rom->name = g_strdup(file); 1061 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 1062 rom->as = as; 1063 if (rom->path == NULL) { 1064 rom->path = g_strdup(file); 1065 } 1066 1067 if (!g_file_get_contents(rom->path, (gchar **) &rom->data, 1068 &size, &gerr)) { 1069 fprintf(stderr, "rom: file %-20s: error %s\n", 1070 rom->name, gerr->message); 1071 goto err; 1072 } 1073 1074 if (fw_dir) { 1075 rom->fw_dir = g_strdup(fw_dir); 1076 rom->fw_file = g_strdup(file); 1077 } 1078 rom->addr = addr; 1079 rom->romsize = size; 1080 rom->datasize = rom->romsize; 1081 rom_insert(rom); 1082 if (rom->fw_file && fw_cfg) { 1083 const char *basename; 1084 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 1085 void *data; 1086 1087 basename = strrchr(rom->fw_file, '/'); 1088 if (basename) { 1089 basename++; 1090 } else { 1091 basename = rom->fw_file; 1092 } 1093 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 1094 basename); 1095 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1096 1097 if ((!has_option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 1098 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 1099 } else { 1100 data = rom->data; 1101 } 1102 1103 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 1104 } else { 1105 if (mr) { 1106 rom->mr = mr; 1107 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 1108 } else { 1109 snprintf(devpath, sizeof(devpath), "/rom@" HWADDR_FMT_plx, addr); 1110 } 1111 } 1112 1113 add_boot_device_path(bootindex, NULL, devpath); 1114 return 0; 1115 1116 err: 1117 rom_free(rom); 1118 return -1; 1119 } 1120 1121 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1122 size_t max_len, hwaddr addr, const char *fw_file_name, 1123 FWCfgCallback fw_callback, void *callback_opaque, 1124 AddressSpace *as, bool read_only) 1125 { 1126 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1127 Rom *rom; 1128 MemoryRegion *mr = NULL; 1129 1130 rom = g_malloc0(sizeof(*rom)); 1131 rom->name = g_strdup(name); 1132 rom->as = as; 1133 rom->addr = addr; 1134 rom->romsize = max_len ? max_len : len; 1135 rom->datasize = len; 1136 g_assert(rom->romsize >= rom->datasize); 1137 rom->data = g_malloc0(rom->datasize); 1138 memcpy(rom->data, blob, len); 1139 rom_insert(rom); 1140 if (fw_file_name && fw_cfg) { 1141 char devpath[100]; 1142 void *data; 1143 1144 if (read_only) { 1145 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1146 } else { 1147 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1148 } 1149 1150 if (mc->rom_file_has_mr) { 1151 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1152 mr = rom->mr; 1153 } else { 1154 data = rom->data; 1155 } 1156 1157 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1158 fw_callback, NULL, callback_opaque, 1159 data, rom->datasize, read_only); 1160 } 1161 return mr; 1162 } 1163 1164 /* This function is specific for elf program because we don't need to allocate 1165 * all the rom. We just allocate the first part and the rest is just zeros. This 1166 * is why romsize and datasize are different. Also, this function takes its own 1167 * reference to "mapped_file", so we don't have to allocate and copy the buffer. 1168 */ 1169 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, 1170 size_t datasize, size_t romsize, hwaddr addr, 1171 AddressSpace *as) 1172 { 1173 Rom *rom; 1174 1175 rom = g_malloc0(sizeof(*rom)); 1176 rom->name = g_strdup(name); 1177 rom->addr = addr; 1178 rom->datasize = datasize; 1179 rom->romsize = romsize; 1180 rom->data = data; 1181 rom->as = as; 1182 1183 if (mapped_file && data) { 1184 g_mapped_file_ref(mapped_file); 1185 rom->mapped_file = mapped_file; 1186 } 1187 1188 rom_insert(rom); 1189 return 0; 1190 } 1191 1192 ssize_t rom_add_vga(const char *file) 1193 { 1194 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1195 } 1196 1197 ssize_t rom_add_option(const char *file, int32_t bootindex) 1198 { 1199 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1200 } 1201 1202 static void rom_reset(void *unused) 1203 { 1204 Rom *rom; 1205 1206 QTAILQ_FOREACH(rom, &roms, next) { 1207 if (rom->fw_file) { 1208 continue; 1209 } 1210 /* 1211 * We don't need to fill in the RAM with ROM data because we'll fill 1212 * the data in during the next incoming migration in all cases. Note 1213 * that some of those RAMs can actually be modified by the guest. 1214 */ 1215 if (runstate_check(RUN_STATE_INMIGRATE)) { 1216 if (rom->data && rom->isrom) { 1217 /* 1218 * Free it so that a rom_reset after migration doesn't 1219 * overwrite a potentially modified 'rom'. 1220 */ 1221 rom_free_data(rom); 1222 } 1223 continue; 1224 } 1225 1226 if (rom->data == NULL) { 1227 continue; 1228 } 1229 if (rom->mr) { 1230 void *host = memory_region_get_ram_ptr(rom->mr); 1231 memcpy(host, rom->data, rom->datasize); 1232 memset(host + rom->datasize, 0, rom->romsize - rom->datasize); 1233 } else { 1234 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1235 rom->data, rom->datasize); 1236 address_space_set(rom->as, rom->addr + rom->datasize, 0, 1237 rom->romsize - rom->datasize, 1238 MEMTXATTRS_UNSPECIFIED); 1239 } 1240 if (rom->isrom) { 1241 /* rom needs to be written only once */ 1242 rom_free_data(rom); 1243 } 1244 /* 1245 * The rom loader is really on the same level as firmware in the guest 1246 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1247 * that the instruction cache for that new region is clear, so that the 1248 * CPU definitely fetches its instructions from the just written data. 1249 */ 1250 cpu_flush_icache_range(rom->addr, rom->datasize); 1251 1252 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom); 1253 } 1254 } 1255 1256 /* Return true if two consecutive ROMs in the ROM list overlap */ 1257 static bool roms_overlap(Rom *last_rom, Rom *this_rom) 1258 { 1259 if (!last_rom) { 1260 return false; 1261 } 1262 return last_rom->as == this_rom->as && 1263 last_rom->addr + last_rom->romsize > this_rom->addr; 1264 } 1265 1266 static const char *rom_as_name(Rom *rom) 1267 { 1268 const char *name = rom->as ? rom->as->name : NULL; 1269 return name ?: "anonymous"; 1270 } 1271 1272 static void rom_print_overlap_error_header(void) 1273 { 1274 error_report("Some ROM regions are overlapping"); 1275 error_printf( 1276 "These ROM regions might have been loaded by " 1277 "direct user request or by default.\n" 1278 "They could be BIOS/firmware images, a guest kernel, " 1279 "initrd or some other file loaded into guest memory.\n" 1280 "Check whether you intended to load all this guest code, and " 1281 "whether it has been built to load to the correct addresses.\n"); 1282 } 1283 1284 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom) 1285 { 1286 error_printf( 1287 "\nThe following two regions overlap (in the %s address space):\n", 1288 rom_as_name(rom)); 1289 error_printf( 1290 " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n", 1291 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize); 1292 error_printf( 1293 " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n", 1294 rom->name, rom->addr, rom->addr + rom->romsize); 1295 } 1296 1297 int rom_check_and_register_reset(void) 1298 { 1299 MemoryRegionSection section; 1300 Rom *rom, *last_rom = NULL; 1301 bool found_overlap = false; 1302 1303 QTAILQ_FOREACH(rom, &roms, next) { 1304 if (rom->fw_file) { 1305 continue; 1306 } 1307 if (!rom->mr) { 1308 if (roms_overlap(last_rom, rom)) { 1309 if (!found_overlap) { 1310 found_overlap = true; 1311 rom_print_overlap_error_header(); 1312 } 1313 rom_print_one_overlap_error(last_rom, rom); 1314 /* Keep going through the list so we report all overlaps */ 1315 } 1316 last_rom = rom; 1317 } 1318 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1319 rom->addr, 1); 1320 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1321 memory_region_unref(section.mr); 1322 } 1323 if (found_overlap) { 1324 return -1; 1325 } 1326 1327 qemu_register_reset(rom_reset, NULL); 1328 roms_loaded = 1; 1329 return 0; 1330 } 1331 1332 void rom_set_fw(FWCfgState *f) 1333 { 1334 fw_cfg = f; 1335 } 1336 1337 void rom_set_order_override(int order) 1338 { 1339 if (!fw_cfg) 1340 return; 1341 fw_cfg_set_order_override(fw_cfg, order); 1342 } 1343 1344 void rom_reset_order_override(void) 1345 { 1346 if (!fw_cfg) 1347 return; 1348 fw_cfg_reset_order_override(fw_cfg); 1349 } 1350 1351 void rom_transaction_begin(void) 1352 { 1353 Rom *rom; 1354 1355 /* Ignore ROMs added without the transaction API */ 1356 QTAILQ_FOREACH(rom, &roms, next) { 1357 rom->committed = true; 1358 } 1359 } 1360 1361 void rom_transaction_end(bool commit) 1362 { 1363 Rom *rom; 1364 Rom *tmp; 1365 1366 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1367 if (rom->committed) { 1368 continue; 1369 } 1370 if (commit) { 1371 rom->committed = true; 1372 } else { 1373 QTAILQ_REMOVE(&roms, rom, next); 1374 rom_free(rom); 1375 } 1376 } 1377 } 1378 1379 static Rom *find_rom(hwaddr addr, size_t size) 1380 { 1381 Rom *rom; 1382 1383 QTAILQ_FOREACH(rom, &roms, next) { 1384 if (rom->fw_file) { 1385 continue; 1386 } 1387 if (rom->mr) { 1388 continue; 1389 } 1390 if (rom->addr > addr) { 1391 continue; 1392 } 1393 if (rom->addr + rom->romsize < addr + size) { 1394 continue; 1395 } 1396 return rom; 1397 } 1398 return NULL; 1399 } 1400 1401 typedef struct RomSec { 1402 hwaddr base; 1403 int se; /* start/end flag */ 1404 } RomSec; 1405 1406 1407 /* 1408 * Sort into address order. We break ties between rom-startpoints 1409 * and rom-endpoints in favour of the startpoint, by sorting the 0->1 1410 * transition before the 1->0 transition. Either way round would 1411 * work, but this way saves a little work later by avoiding 1412 * dealing with "gaps" of 0 length. 1413 */ 1414 static gint sort_secs(gconstpointer a, gconstpointer b) 1415 { 1416 RomSec *ra = (RomSec *) a; 1417 RomSec *rb = (RomSec *) b; 1418 1419 if (ra->base == rb->base) { 1420 return ra->se - rb->se; 1421 } 1422 return ra->base > rb->base ? 1 : -1; 1423 } 1424 1425 static GList *add_romsec_to_list(GList *secs, hwaddr base, int se) 1426 { 1427 RomSec *cand = g_new(RomSec, 1); 1428 cand->base = base; 1429 cand->se = se; 1430 return g_list_prepend(secs, cand); 1431 } 1432 1433 RomGap rom_find_largest_gap_between(hwaddr base, size_t size) 1434 { 1435 Rom *rom; 1436 RomSec *cand; 1437 RomGap res = {0, 0}; 1438 hwaddr gapstart = base; 1439 GList *it, *secs = NULL; 1440 int count = 0; 1441 1442 QTAILQ_FOREACH(rom, &roms, next) { 1443 /* Ignore blobs being loaded to special places */ 1444 if (rom->mr || rom->fw_file) { 1445 continue; 1446 } 1447 /* ignore anything finishing below base */ 1448 if (rom->addr + rom->romsize <= base) { 1449 continue; 1450 } 1451 /* ignore anything starting above the region */ 1452 if (rom->addr >= base + size) { 1453 continue; 1454 } 1455 1456 /* Save the start and end of each relevant ROM */ 1457 secs = add_romsec_to_list(secs, rom->addr, 1); 1458 1459 if (rom->addr + rom->romsize < base + size) { 1460 secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1); 1461 } 1462 } 1463 1464 /* sentinel */ 1465 secs = add_romsec_to_list(secs, base + size, 1); 1466 1467 secs = g_list_sort(secs, sort_secs); 1468 1469 for (it = g_list_first(secs); it; it = g_list_next(it)) { 1470 cand = (RomSec *) it->data; 1471 if (count == 0 && count + cand->se == 1) { 1472 size_t gap = cand->base - gapstart; 1473 if (gap > res.size) { 1474 res.base = gapstart; 1475 res.size = gap; 1476 } 1477 } else if (count == 1 && count + cand->se == 0) { 1478 gapstart = cand->base; 1479 } 1480 count += cand->se; 1481 } 1482 1483 g_list_free_full(secs, g_free); 1484 return res; 1485 } 1486 1487 /* 1488 * Copies memory from registered ROMs to dest. Any memory that is contained in 1489 * a ROM between addr and addr + size is copied. Note that this can involve 1490 * multiple ROMs, which need not start at addr and need not end at addr + size. 1491 */ 1492 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1493 { 1494 hwaddr end = addr + size; 1495 uint8_t *s, *d = dest; 1496 size_t l = 0; 1497 Rom *rom; 1498 1499 QTAILQ_FOREACH(rom, &roms, next) { 1500 if (rom->fw_file) { 1501 continue; 1502 } 1503 if (rom->mr) { 1504 continue; 1505 } 1506 if (rom->addr + rom->romsize < addr) { 1507 continue; 1508 } 1509 if (rom->addr > end || rom->addr < addr) { 1510 break; 1511 } 1512 1513 d = dest + (rom->addr - addr); 1514 s = rom->data; 1515 l = rom->datasize; 1516 1517 if ((d + l) > (dest + size)) { 1518 l = dest - d; 1519 } 1520 1521 if (l > 0) { 1522 memcpy(d, s, l); 1523 } 1524 1525 if (rom->romsize > rom->datasize) { 1526 /* If datasize is less than romsize, it means that we didn't 1527 * allocate all the ROM because the trailing data are only zeros. 1528 */ 1529 1530 d += l; 1531 l = rom->romsize - rom->datasize; 1532 1533 if ((d + l) > (dest + size)) { 1534 /* Rom size doesn't fit in the destination area. Adjust to avoid 1535 * overflow. 1536 */ 1537 l = dest - d; 1538 } 1539 1540 if (l > 0) { 1541 memset(d, 0x0, l); 1542 } 1543 } 1544 } 1545 1546 return (d + l) - dest; 1547 } 1548 1549 void *rom_ptr(hwaddr addr, size_t size) 1550 { 1551 Rom *rom; 1552 1553 rom = find_rom(addr, size); 1554 if (!rom || !rom->data) 1555 return NULL; 1556 return rom->data + (addr - rom->addr); 1557 } 1558 1559 typedef struct FindRomCBData { 1560 size_t size; /* Amount of data we want from ROM, in bytes */ 1561 MemoryRegion *mr; /* MR at the unaliased guest addr */ 1562 hwaddr xlat; /* Offset of addr within mr */ 1563 void *rom; /* Output: rom data pointer, if found */ 1564 } FindRomCBData; 1565 1566 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr, 1567 hwaddr offset_in_region, void *opaque) 1568 { 1569 FindRomCBData *cbdata = opaque; 1570 hwaddr alias_addr; 1571 1572 if (mr != cbdata->mr) { 1573 return false; 1574 } 1575 1576 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region; 1577 cbdata->rom = rom_ptr(alias_addr, cbdata->size); 1578 if (!cbdata->rom) { 1579 return false; 1580 } 1581 /* Found a match, stop iterating */ 1582 return true; 1583 } 1584 1585 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size) 1586 { 1587 /* 1588 * Find any ROM data for the given guest address range. If there 1589 * is a ROM blob then return a pointer to the host memory 1590 * corresponding to 'addr'; otherwise return NULL. 1591 * 1592 * We look not only for ROM blobs that were loaded directly to 1593 * addr, but also for ROM blobs that were loaded to aliases of 1594 * that memory at other addresses within the AddressSpace. 1595 * 1596 * Note that we do not check @as against the 'as' member in the 1597 * 'struct Rom' returned by rom_ptr(). The Rom::as is the 1598 * AddressSpace which the rom blob should be written to, whereas 1599 * our @as argument is the AddressSpace which we are (effectively) 1600 * reading from, and the same underlying RAM will often be visible 1601 * in multiple AddressSpaces. (A common example is a ROM blob 1602 * written to the 'system' address space but then read back via a 1603 * CPU's cpu->as pointer.) This does mean we might potentially 1604 * return a false-positive match if a ROM blob was loaded into an 1605 * AS which is entirely separate and distinct from the one we're 1606 * querying, but this issue exists also for rom_ptr() and hasn't 1607 * caused any problems in practice. 1608 */ 1609 FlatView *fv; 1610 void *rom; 1611 hwaddr len_unused; 1612 FindRomCBData cbdata = {}; 1613 1614 /* Easy case: there's data at the actual address */ 1615 rom = rom_ptr(addr, size); 1616 if (rom) { 1617 return rom; 1618 } 1619 1620 RCU_READ_LOCK_GUARD(); 1621 1622 fv = address_space_to_flatview(as); 1623 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused, 1624 false, MEMTXATTRS_UNSPECIFIED); 1625 if (!cbdata.mr) { 1626 /* Nothing at this address, so there can't be any aliasing */ 1627 return NULL; 1628 } 1629 cbdata.size = size; 1630 flatview_for_each_range(fv, find_rom_cb, &cbdata); 1631 return cbdata.rom; 1632 } 1633 1634 HumanReadableText *qmp_x_query_roms(Error **errp) 1635 { 1636 Rom *rom; 1637 g_autoptr(GString) buf = g_string_new(""); 1638 1639 QTAILQ_FOREACH(rom, &roms, next) { 1640 if (rom->mr) { 1641 g_string_append_printf(buf, "%s" 1642 " size=0x%06zx name=\"%s\"\n", 1643 memory_region_name(rom->mr), 1644 rom->romsize, 1645 rom->name); 1646 } else if (!rom->fw_file) { 1647 g_string_append_printf(buf, "addr=" HWADDR_FMT_plx 1648 " size=0x%06zx mem=%s name=\"%s\"\n", 1649 rom->addr, rom->romsize, 1650 rom->isrom ? "rom" : "ram", 1651 rom->name); 1652 } else { 1653 g_string_append_printf(buf, "fw=%s/%s" 1654 " size=0x%06zx name=\"%s\"\n", 1655 rom->fw_dir, 1656 rom->fw_file, 1657 rom->romsize, 1658 rom->name); 1659 } 1660 } 1661 1662 return human_readable_text_from_str(buf); 1663 } 1664 1665 typedef enum HexRecord HexRecord; 1666 enum HexRecord { 1667 DATA_RECORD = 0, 1668 EOF_RECORD, 1669 EXT_SEG_ADDR_RECORD, 1670 START_SEG_ADDR_RECORD, 1671 EXT_LINEAR_ADDR_RECORD, 1672 START_LINEAR_ADDR_RECORD, 1673 }; 1674 1675 /* Each record contains a 16-bit address which is combined with the upper 16 1676 * bits of the implicit "next address" to form a 32-bit address. 1677 */ 1678 #define NEXT_ADDR_MASK 0xffff0000 1679 1680 #define DATA_FIELD_MAX_LEN 0xff 1681 #define LEN_EXCEPT_DATA 0x5 1682 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1683 * sizeof(checksum) */ 1684 typedef struct { 1685 uint8_t byte_count; 1686 uint16_t address; 1687 uint8_t record_type; 1688 uint8_t data[DATA_FIELD_MAX_LEN]; 1689 uint8_t checksum; 1690 } HexLine; 1691 1692 /* return 0 or -1 if error */ 1693 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1694 uint32_t *index, const bool in_process) 1695 { 1696 /* +-------+---------------+-------+---------------------+--------+ 1697 * | byte | |record | | | 1698 * | count | address | type | data |checksum| 1699 * +-------+---------------+-------+---------------------+--------+ 1700 * ^ ^ ^ ^ ^ ^ 1701 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1702 */ 1703 uint8_t value = 0; 1704 uint32_t idx = *index; 1705 /* ignore space */ 1706 if (g_ascii_isspace(c)) { 1707 return true; 1708 } 1709 if (!g_ascii_isxdigit(c) || !in_process) { 1710 return false; 1711 } 1712 value = g_ascii_xdigit_value(c); 1713 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1714 if (idx < 2) { 1715 line->byte_count |= value; 1716 } else if (2 <= idx && idx < 6) { 1717 line->address <<= 4; 1718 line->address += g_ascii_xdigit_value(c); 1719 } else if (6 <= idx && idx < 8) { 1720 line->record_type |= value; 1721 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1722 line->data[(idx - 8) >> 1] |= value; 1723 } else if (8 + 2 * line->byte_count <= idx && 1724 idx < 10 + 2 * line->byte_count) { 1725 line->checksum |= value; 1726 } else { 1727 return false; 1728 } 1729 *our_checksum += value; 1730 ++(*index); 1731 return true; 1732 } 1733 1734 typedef struct { 1735 const char *filename; 1736 HexLine line; 1737 uint8_t *bin_buf; 1738 hwaddr *start_addr; 1739 int total_size; 1740 uint32_t next_address_to_write; 1741 uint32_t current_address; 1742 uint32_t current_rom_index; 1743 uint32_t rom_start_address; 1744 AddressSpace *as; 1745 bool complete; 1746 } HexParser; 1747 1748 /* return size or -1 if error */ 1749 static int handle_record_type(HexParser *parser) 1750 { 1751 HexLine *line = &(parser->line); 1752 switch (line->record_type) { 1753 case DATA_RECORD: 1754 parser->current_address = 1755 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1756 /* verify this is a contiguous block of memory */ 1757 if (parser->current_address != parser->next_address_to_write) { 1758 if (parser->current_rom_index != 0) { 1759 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1760 parser->current_rom_index, 1761 parser->rom_start_address, parser->as); 1762 } 1763 parser->rom_start_address = parser->current_address; 1764 parser->current_rom_index = 0; 1765 } 1766 1767 /* copy from line buffer to output bin_buf */ 1768 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1769 line->byte_count); 1770 parser->current_rom_index += line->byte_count; 1771 parser->total_size += line->byte_count; 1772 /* save next address to write */ 1773 parser->next_address_to_write = 1774 parser->current_address + line->byte_count; 1775 break; 1776 1777 case EOF_RECORD: 1778 if (parser->current_rom_index != 0) { 1779 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1780 parser->current_rom_index, 1781 parser->rom_start_address, parser->as); 1782 } 1783 parser->complete = true; 1784 return parser->total_size; 1785 case EXT_SEG_ADDR_RECORD: 1786 case EXT_LINEAR_ADDR_RECORD: 1787 if (line->byte_count != 2 && line->address != 0) { 1788 return -1; 1789 } 1790 1791 if (parser->current_rom_index != 0) { 1792 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1793 parser->current_rom_index, 1794 parser->rom_start_address, parser->as); 1795 } 1796 1797 /* save next address to write, 1798 * in case of non-contiguous block of memory */ 1799 parser->next_address_to_write = (line->data[0] << 12) | 1800 (line->data[1] << 4); 1801 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1802 parser->next_address_to_write <<= 12; 1803 } 1804 1805 parser->rom_start_address = parser->next_address_to_write; 1806 parser->current_rom_index = 0; 1807 break; 1808 1809 case START_SEG_ADDR_RECORD: 1810 if (line->byte_count != 4 && line->address != 0) { 1811 return -1; 1812 } 1813 1814 /* x86 16-bit CS:IP segmented addressing */ 1815 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1816 ((line->data[2] << 8) | line->data[3]); 1817 break; 1818 1819 case START_LINEAR_ADDR_RECORD: 1820 if (line->byte_count != 4 && line->address != 0) { 1821 return -1; 1822 } 1823 1824 *(parser->start_addr) = ldl_be_p(line->data); 1825 break; 1826 1827 default: 1828 return -1; 1829 } 1830 1831 return parser->total_size; 1832 } 1833 1834 /* return size or -1 if error */ 1835 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1836 size_t hex_blob_size, AddressSpace *as) 1837 { 1838 bool in_process = false; /* avoid re-enter and 1839 * check whether record begin with ':' */ 1840 uint8_t *end = hex_blob + hex_blob_size; 1841 uint8_t our_checksum = 0; 1842 uint32_t record_index = 0; 1843 HexParser parser = { 1844 .filename = filename, 1845 .bin_buf = g_malloc(hex_blob_size), 1846 .start_addr = addr, 1847 .as = as, 1848 .complete = false 1849 }; 1850 1851 rom_transaction_begin(); 1852 1853 for (; hex_blob < end && !parser.complete; ++hex_blob) { 1854 switch (*hex_blob) { 1855 case '\r': 1856 case '\n': 1857 if (!in_process) { 1858 break; 1859 } 1860 1861 in_process = false; 1862 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1863 record_index || 1864 our_checksum != 0) { 1865 parser.total_size = -1; 1866 goto out; 1867 } 1868 1869 if (handle_record_type(&parser) == -1) { 1870 parser.total_size = -1; 1871 goto out; 1872 } 1873 break; 1874 1875 /* start of a new record. */ 1876 case ':': 1877 memset(&parser.line, 0, sizeof(HexLine)); 1878 in_process = true; 1879 record_index = 0; 1880 break; 1881 1882 /* decoding lines */ 1883 default: 1884 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1885 &record_index, in_process)) { 1886 parser.total_size = -1; 1887 goto out; 1888 } 1889 break; 1890 } 1891 } 1892 1893 out: 1894 g_free(parser.bin_buf); 1895 rom_transaction_end(parser.total_size != -1); 1896 return parser.total_size; 1897 } 1898 1899 /* return size or -1 if error */ 1900 ssize_t load_targphys_hex_as(const char *filename, hwaddr *entry, 1901 AddressSpace *as) 1902 { 1903 gsize hex_blob_size; 1904 gchar *hex_blob; 1905 ssize_t total_size = 0; 1906 1907 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1908 return -1; 1909 } 1910 1911 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1912 hex_blob_size, as); 1913 1914 g_free(hex_blob); 1915 return total_size; 1916 } 1917