1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qemu-common.h" 47 #include "qapi/error.h" 48 #include "hw/hw.h" 49 #include "disas/disas.h" 50 #include "monitor/monitor.h" 51 #include "sysemu/sysemu.h" 52 #include "uboot_image.h" 53 #include "hw/loader.h" 54 #include "hw/nvram/fw_cfg.h" 55 #include "exec/memory.h" 56 #include "exec/address-spaces.h" 57 #include "hw/boards.h" 58 #include "qemu/cutils.h" 59 60 #include <zlib.h> 61 62 static int roms_loaded; 63 64 /* return the size or -1 if error */ 65 int64_t get_image_size(const char *filename) 66 { 67 int fd; 68 int64_t size; 69 fd = open(filename, O_RDONLY | O_BINARY); 70 if (fd < 0) 71 return -1; 72 size = lseek(fd, 0, SEEK_END); 73 close(fd); 74 return size; 75 } 76 77 /* return the size or -1 if error */ 78 ssize_t load_image_size(const char *filename, void *addr, size_t size) 79 { 80 int fd; 81 ssize_t actsize, l = 0; 82 83 fd = open(filename, O_RDONLY | O_BINARY); 84 if (fd < 0) { 85 return -1; 86 } 87 88 while ((actsize = read(fd, addr + l, size - l)) > 0) { 89 l += actsize; 90 } 91 92 close(fd); 93 94 return actsize < 0 ? -1 : l; 95 } 96 97 /* read()-like version */ 98 ssize_t read_targphys(const char *name, 99 int fd, hwaddr dst_addr, size_t nbytes) 100 { 101 uint8_t *buf; 102 ssize_t did; 103 104 buf = g_malloc(nbytes); 105 did = read(fd, buf, nbytes); 106 if (did > 0) 107 rom_add_blob_fixed("read", buf, did, dst_addr); 108 g_free(buf); 109 return did; 110 } 111 112 int load_image_targphys(const char *filename, 113 hwaddr addr, uint64_t max_sz) 114 { 115 return load_image_targphys_as(filename, addr, max_sz, NULL); 116 } 117 118 /* return the size or -1 if error */ 119 int load_image_targphys_as(const char *filename, 120 hwaddr addr, uint64_t max_sz, AddressSpace *as) 121 { 122 int size; 123 124 size = get_image_size(filename); 125 if (size < 0 || size > max_sz) { 126 return -1; 127 } 128 if (size > 0) { 129 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 130 return -1; 131 } 132 } 133 return size; 134 } 135 136 int load_image_mr(const char *filename, MemoryRegion *mr) 137 { 138 int size; 139 140 if (!memory_access_is_direct(mr, false)) { 141 /* Can only load an image into RAM or ROM */ 142 return -1; 143 } 144 145 size = get_image_size(filename); 146 147 if (size < 0 || size > memory_region_size(mr)) { 148 return -1; 149 } 150 if (size > 0) { 151 if (rom_add_file_mr(filename, mr, -1) < 0) { 152 return -1; 153 } 154 } 155 return size; 156 } 157 158 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 159 const char *source) 160 { 161 const char *nulp; 162 char *ptr; 163 164 if (buf_size <= 0) return; 165 nulp = memchr(source, 0, buf_size); 166 if (nulp) { 167 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 168 } else { 169 rom_add_blob_fixed(name, source, buf_size, dest); 170 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 171 *ptr = 0; 172 } 173 } 174 175 /* A.OUT loader */ 176 177 struct exec 178 { 179 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 180 uint32_t a_text; /* length of text, in bytes */ 181 uint32_t a_data; /* length of data, in bytes */ 182 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 183 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 184 uint32_t a_entry; /* start address */ 185 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 186 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 187 }; 188 189 static void bswap_ahdr(struct exec *e) 190 { 191 bswap32s(&e->a_info); 192 bswap32s(&e->a_text); 193 bswap32s(&e->a_data); 194 bswap32s(&e->a_bss); 195 bswap32s(&e->a_syms); 196 bswap32s(&e->a_entry); 197 bswap32s(&e->a_trsize); 198 bswap32s(&e->a_drsize); 199 } 200 201 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 202 #define OMAGIC 0407 203 #define NMAGIC 0410 204 #define ZMAGIC 0413 205 #define QMAGIC 0314 206 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 207 #define N_TXTOFF(x) \ 208 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 209 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 210 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 211 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 212 213 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 214 215 #define N_DATADDR(x, target_page_size) \ 216 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 217 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 218 219 220 int load_aout(const char *filename, hwaddr addr, int max_sz, 221 int bswap_needed, hwaddr target_page_size) 222 { 223 int fd; 224 ssize_t size, ret; 225 struct exec e; 226 uint32_t magic; 227 228 fd = open(filename, O_RDONLY | O_BINARY); 229 if (fd < 0) 230 return -1; 231 232 size = read(fd, &e, sizeof(e)); 233 if (size < 0) 234 goto fail; 235 236 if (bswap_needed) { 237 bswap_ahdr(&e); 238 } 239 240 magic = N_MAGIC(e); 241 switch (magic) { 242 case ZMAGIC: 243 case QMAGIC: 244 case OMAGIC: 245 if (e.a_text + e.a_data > max_sz) 246 goto fail; 247 lseek(fd, N_TXTOFF(e), SEEK_SET); 248 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 249 if (size < 0) 250 goto fail; 251 break; 252 case NMAGIC: 253 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 254 goto fail; 255 lseek(fd, N_TXTOFF(e), SEEK_SET); 256 size = read_targphys(filename, fd, addr, e.a_text); 257 if (size < 0) 258 goto fail; 259 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 260 e.a_data); 261 if (ret < 0) 262 goto fail; 263 size += ret; 264 break; 265 default: 266 goto fail; 267 } 268 close(fd); 269 return size; 270 fail: 271 close(fd); 272 return -1; 273 } 274 275 /* ELF loader */ 276 277 static void *load_at(int fd, off_t offset, size_t size) 278 { 279 void *ptr; 280 if (lseek(fd, offset, SEEK_SET) < 0) 281 return NULL; 282 ptr = g_malloc(size); 283 if (read(fd, ptr, size) != size) { 284 g_free(ptr); 285 return NULL; 286 } 287 return ptr; 288 } 289 290 #ifdef ELF_CLASS 291 #undef ELF_CLASS 292 #endif 293 294 #define ELF_CLASS ELFCLASS32 295 #include "elf.h" 296 297 #define SZ 32 298 #define elf_word uint32_t 299 #define elf_sword int32_t 300 #define bswapSZs bswap32s 301 #include "hw/elf_ops.h" 302 303 #undef elfhdr 304 #undef elf_phdr 305 #undef elf_shdr 306 #undef elf_sym 307 #undef elf_rela 308 #undef elf_note 309 #undef elf_word 310 #undef elf_sword 311 #undef bswapSZs 312 #undef SZ 313 #define elfhdr elf64_hdr 314 #define elf_phdr elf64_phdr 315 #define elf_note elf64_note 316 #define elf_shdr elf64_shdr 317 #define elf_sym elf64_sym 318 #define elf_rela elf64_rela 319 #define elf_word uint64_t 320 #define elf_sword int64_t 321 #define bswapSZs bswap64s 322 #define SZ 64 323 #include "hw/elf_ops.h" 324 325 const char *load_elf_strerror(int error) 326 { 327 switch (error) { 328 case 0: 329 return "No error"; 330 case ELF_LOAD_FAILED: 331 return "Failed to load ELF"; 332 case ELF_LOAD_NOT_ELF: 333 return "The image is not ELF"; 334 case ELF_LOAD_WRONG_ARCH: 335 return "The image is from incompatible architecture"; 336 case ELF_LOAD_WRONG_ENDIAN: 337 return "The image has incorrect endianness"; 338 default: 339 return "Unknown error"; 340 } 341 } 342 343 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 344 { 345 int fd; 346 uint8_t e_ident_local[EI_NIDENT]; 347 uint8_t *e_ident; 348 size_t hdr_size, off; 349 bool is64l; 350 351 if (!hdr) { 352 hdr = e_ident_local; 353 } 354 e_ident = hdr; 355 356 fd = open(filename, O_RDONLY | O_BINARY); 357 if (fd < 0) { 358 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 359 return; 360 } 361 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 362 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 363 goto fail; 364 } 365 if (e_ident[0] != ELFMAG0 || 366 e_ident[1] != ELFMAG1 || 367 e_ident[2] != ELFMAG2 || 368 e_ident[3] != ELFMAG3) { 369 error_setg(errp, "Bad ELF magic"); 370 goto fail; 371 } 372 373 is64l = e_ident[EI_CLASS] == ELFCLASS64; 374 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 375 if (is64) { 376 *is64 = is64l; 377 } 378 379 off = EI_NIDENT; 380 while (hdr != e_ident_local && off < hdr_size) { 381 size_t br = read(fd, hdr + off, hdr_size - off); 382 switch (br) { 383 case 0: 384 error_setg(errp, "File too short: %s", filename); 385 goto fail; 386 case -1: 387 error_setg_errno(errp, errno, "Failed to read file: %s", 388 filename); 389 goto fail; 390 } 391 off += br; 392 } 393 394 fail: 395 close(fd); 396 } 397 398 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 399 int load_elf(const char *filename, 400 uint64_t (*elf_note_fn)(void *, void *, bool), 401 uint64_t (*translate_fn)(void *, uint64_t), 402 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 403 uint64_t *highaddr, int big_endian, int elf_machine, 404 int clear_lsb, int data_swab) 405 { 406 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 407 pentry, lowaddr, highaddr, big_endian, elf_machine, 408 clear_lsb, data_swab, NULL); 409 } 410 411 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 412 int load_elf_as(const char *filename, 413 uint64_t (*elf_note_fn)(void *, void *, bool), 414 uint64_t (*translate_fn)(void *, uint64_t), 415 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 416 uint64_t *highaddr, int big_endian, int elf_machine, 417 int clear_lsb, int data_swab, AddressSpace *as) 418 { 419 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque, 420 pentry, lowaddr, highaddr, big_endian, elf_machine, 421 clear_lsb, data_swab, as, true); 422 } 423 424 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 425 int load_elf_ram(const char *filename, 426 uint64_t (*elf_note_fn)(void *, void *, bool), 427 uint64_t (*translate_fn)(void *, uint64_t), 428 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 429 uint64_t *highaddr, int big_endian, int elf_machine, 430 int clear_lsb, int data_swab, AddressSpace *as, 431 bool load_rom) 432 { 433 return load_elf_ram_sym(filename, elf_note_fn, 434 translate_fn, translate_opaque, 435 pentry, lowaddr, highaddr, big_endian, 436 elf_machine, clear_lsb, data_swab, as, 437 load_rom, NULL); 438 } 439 440 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 441 int load_elf_ram_sym(const char *filename, 442 uint64_t (*elf_note_fn)(void *, void *, bool), 443 uint64_t (*translate_fn)(void *, uint64_t), 444 void *translate_opaque, uint64_t *pentry, 445 uint64_t *lowaddr, uint64_t *highaddr, int big_endian, 446 int elf_machine, int clear_lsb, int data_swab, 447 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 448 { 449 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; 450 uint8_t e_ident[EI_NIDENT]; 451 452 fd = open(filename, O_RDONLY | O_BINARY); 453 if (fd < 0) { 454 perror(filename); 455 return -1; 456 } 457 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 458 goto fail; 459 if (e_ident[0] != ELFMAG0 || 460 e_ident[1] != ELFMAG1 || 461 e_ident[2] != ELFMAG2 || 462 e_ident[3] != ELFMAG3) { 463 ret = ELF_LOAD_NOT_ELF; 464 goto fail; 465 } 466 #ifdef HOST_WORDS_BIGENDIAN 467 data_order = ELFDATA2MSB; 468 #else 469 data_order = ELFDATA2LSB; 470 #endif 471 must_swab = data_order != e_ident[EI_DATA]; 472 if (big_endian) { 473 target_data_order = ELFDATA2MSB; 474 } else { 475 target_data_order = ELFDATA2LSB; 476 } 477 478 if (target_data_order != e_ident[EI_DATA]) { 479 ret = ELF_LOAD_WRONG_ENDIAN; 480 goto fail; 481 } 482 483 lseek(fd, 0, SEEK_SET); 484 if (e_ident[EI_CLASS] == ELFCLASS64) { 485 ret = load_elf64(filename, fd, elf_note_fn, 486 translate_fn, translate_opaque, must_swab, 487 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 488 data_swab, as, load_rom, sym_cb); 489 } else { 490 ret = load_elf32(filename, fd, elf_note_fn, 491 translate_fn, translate_opaque, must_swab, 492 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 493 data_swab, as, load_rom, sym_cb); 494 } 495 496 fail: 497 close(fd); 498 return ret; 499 } 500 501 static void bswap_uboot_header(uboot_image_header_t *hdr) 502 { 503 #ifndef HOST_WORDS_BIGENDIAN 504 bswap32s(&hdr->ih_magic); 505 bswap32s(&hdr->ih_hcrc); 506 bswap32s(&hdr->ih_time); 507 bswap32s(&hdr->ih_size); 508 bswap32s(&hdr->ih_load); 509 bswap32s(&hdr->ih_ep); 510 bswap32s(&hdr->ih_dcrc); 511 #endif 512 } 513 514 515 #define ZALLOC_ALIGNMENT 16 516 517 static void *zalloc(void *x, unsigned items, unsigned size) 518 { 519 void *p; 520 521 size *= items; 522 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 523 524 p = g_malloc(size); 525 526 return (p); 527 } 528 529 static void zfree(void *x, void *addr) 530 { 531 g_free(addr); 532 } 533 534 535 #define HEAD_CRC 2 536 #define EXTRA_FIELD 4 537 #define ORIG_NAME 8 538 #define COMMENT 0x10 539 #define RESERVED 0xe0 540 541 #define DEFLATED 8 542 543 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 544 { 545 z_stream s; 546 ssize_t dstbytes; 547 int r, i, flags; 548 549 /* skip header */ 550 i = 10; 551 flags = src[3]; 552 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 553 puts ("Error: Bad gzipped data\n"); 554 return -1; 555 } 556 if ((flags & EXTRA_FIELD) != 0) 557 i = 12 + src[10] + (src[11] << 8); 558 if ((flags & ORIG_NAME) != 0) 559 while (src[i++] != 0) 560 ; 561 if ((flags & COMMENT) != 0) 562 while (src[i++] != 0) 563 ; 564 if ((flags & HEAD_CRC) != 0) 565 i += 2; 566 if (i >= srclen) { 567 puts ("Error: gunzip out of data in header\n"); 568 return -1; 569 } 570 571 s.zalloc = zalloc; 572 s.zfree = zfree; 573 574 r = inflateInit2(&s, -MAX_WBITS); 575 if (r != Z_OK) { 576 printf ("Error: inflateInit2() returned %d\n", r); 577 return (-1); 578 } 579 s.next_in = src + i; 580 s.avail_in = srclen - i; 581 s.next_out = dst; 582 s.avail_out = dstlen; 583 r = inflate(&s, Z_FINISH); 584 if (r != Z_OK && r != Z_STREAM_END) { 585 printf ("Error: inflate() returned %d\n", r); 586 return -1; 587 } 588 dstbytes = s.next_out - (unsigned char *) dst; 589 inflateEnd(&s); 590 591 return dstbytes; 592 } 593 594 /* Load a U-Boot image. */ 595 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 596 int *is_linux, uint8_t image_type, 597 uint64_t (*translate_fn)(void *, uint64_t), 598 void *translate_opaque, AddressSpace *as) 599 { 600 int fd; 601 int size; 602 hwaddr address; 603 uboot_image_header_t h; 604 uboot_image_header_t *hdr = &h; 605 uint8_t *data = NULL; 606 int ret = -1; 607 int do_uncompress = 0; 608 609 fd = open(filename, O_RDONLY | O_BINARY); 610 if (fd < 0) 611 return -1; 612 613 size = read(fd, hdr, sizeof(uboot_image_header_t)); 614 if (size < sizeof(uboot_image_header_t)) { 615 goto out; 616 } 617 618 bswap_uboot_header(hdr); 619 620 if (hdr->ih_magic != IH_MAGIC) 621 goto out; 622 623 if (hdr->ih_type != image_type) { 624 if (!(image_type == IH_TYPE_KERNEL && 625 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 626 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 627 image_type); 628 goto out; 629 } 630 } 631 632 /* TODO: Implement other image types. */ 633 switch (hdr->ih_type) { 634 case IH_TYPE_KERNEL_NOLOAD: 635 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 636 fprintf(stderr, "this image format (kernel_noload) cannot be " 637 "loaded on this machine type"); 638 goto out; 639 } 640 641 hdr->ih_load = *loadaddr + sizeof(*hdr); 642 hdr->ih_ep += hdr->ih_load; 643 /* fall through */ 644 case IH_TYPE_KERNEL: 645 address = hdr->ih_load; 646 if (translate_fn) { 647 address = translate_fn(translate_opaque, address); 648 } 649 if (loadaddr) { 650 *loadaddr = hdr->ih_load; 651 } 652 653 switch (hdr->ih_comp) { 654 case IH_COMP_NONE: 655 break; 656 case IH_COMP_GZIP: 657 do_uncompress = 1; 658 break; 659 default: 660 fprintf(stderr, 661 "Unable to load u-boot images with compression type %d\n", 662 hdr->ih_comp); 663 goto out; 664 } 665 666 if (ep) { 667 *ep = hdr->ih_ep; 668 } 669 670 /* TODO: Check CPU type. */ 671 if (is_linux) { 672 if (hdr->ih_os == IH_OS_LINUX) { 673 *is_linux = 1; 674 } else { 675 *is_linux = 0; 676 } 677 } 678 679 break; 680 case IH_TYPE_RAMDISK: 681 address = *loadaddr; 682 break; 683 default: 684 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 685 goto out; 686 } 687 688 data = g_malloc(hdr->ih_size); 689 690 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 691 fprintf(stderr, "Error reading file\n"); 692 goto out; 693 } 694 695 if (do_uncompress) { 696 uint8_t *compressed_data; 697 size_t max_bytes; 698 ssize_t bytes; 699 700 compressed_data = data; 701 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 702 data = g_malloc(max_bytes); 703 704 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 705 g_free(compressed_data); 706 if (bytes < 0) { 707 fprintf(stderr, "Unable to decompress gzipped image!\n"); 708 goto out; 709 } 710 hdr->ih_size = bytes; 711 } 712 713 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 714 715 ret = hdr->ih_size; 716 717 out: 718 g_free(data); 719 close(fd); 720 return ret; 721 } 722 723 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 724 int *is_linux, 725 uint64_t (*translate_fn)(void *, uint64_t), 726 void *translate_opaque) 727 { 728 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 729 translate_fn, translate_opaque, NULL); 730 } 731 732 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 733 int *is_linux, 734 uint64_t (*translate_fn)(void *, uint64_t), 735 void *translate_opaque, AddressSpace *as) 736 { 737 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 738 translate_fn, translate_opaque, as); 739 } 740 741 /* Load a ramdisk. */ 742 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 743 { 744 return load_ramdisk_as(filename, addr, max_sz, NULL); 745 } 746 747 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 748 AddressSpace *as) 749 { 750 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 751 NULL, NULL, as); 752 } 753 754 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 755 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 756 uint8_t **buffer) 757 { 758 uint8_t *compressed_data = NULL; 759 uint8_t *data = NULL; 760 gsize len; 761 ssize_t bytes; 762 int ret = -1; 763 764 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 765 NULL)) { 766 goto out; 767 } 768 769 /* Is it a gzip-compressed file? */ 770 if (len < 2 || 771 compressed_data[0] != 0x1f || 772 compressed_data[1] != 0x8b) { 773 goto out; 774 } 775 776 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 777 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 778 } 779 780 data = g_malloc(max_sz); 781 bytes = gunzip(data, max_sz, compressed_data, len); 782 if (bytes < 0) { 783 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 784 filename); 785 goto out; 786 } 787 788 /* trim to actual size and return to caller */ 789 *buffer = g_realloc(data, bytes); 790 ret = bytes; 791 /* ownership has been transferred to caller */ 792 data = NULL; 793 794 out: 795 g_free(compressed_data); 796 g_free(data); 797 return ret; 798 } 799 800 /* Load a gzip-compressed kernel. */ 801 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 802 { 803 int bytes; 804 uint8_t *data; 805 806 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 807 if (bytes != -1) { 808 rom_add_blob_fixed(filename, data, bytes, addr); 809 g_free(data); 810 } 811 return bytes; 812 } 813 814 /* 815 * Functions for reboot-persistent memory regions. 816 * - used for vga bios and option roms. 817 * - also linux kernel (-kernel / -initrd). 818 */ 819 820 typedef struct Rom Rom; 821 822 struct Rom { 823 char *name; 824 char *path; 825 826 /* datasize is the amount of memory allocated in "data". If datasize is less 827 * than romsize, it means that the area from datasize to romsize is filled 828 * with zeros. 829 */ 830 size_t romsize; 831 size_t datasize; 832 833 uint8_t *data; 834 MemoryRegion *mr; 835 AddressSpace *as; 836 int isrom; 837 char *fw_dir; 838 char *fw_file; 839 840 bool committed; 841 842 hwaddr addr; 843 QTAILQ_ENTRY(Rom) next; 844 }; 845 846 static FWCfgState *fw_cfg; 847 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 848 849 /* rom->data must be heap-allocated (do not use with rom_add_elf_program()) */ 850 static void rom_free(Rom *rom) 851 { 852 g_free(rom->data); 853 g_free(rom->path); 854 g_free(rom->name); 855 g_free(rom->fw_dir); 856 g_free(rom->fw_file); 857 g_free(rom); 858 } 859 860 static inline bool rom_order_compare(Rom *rom, Rom *item) 861 { 862 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 863 (rom->as == item->as && rom->addr >= item->addr); 864 } 865 866 static void rom_insert(Rom *rom) 867 { 868 Rom *item; 869 870 if (roms_loaded) { 871 hw_error ("ROM images must be loaded at startup\n"); 872 } 873 874 /* The user didn't specify an address space, this is the default */ 875 if (!rom->as) { 876 rom->as = &address_space_memory; 877 } 878 879 rom->committed = false; 880 881 /* List is ordered by load address in the same address space */ 882 QTAILQ_FOREACH(item, &roms, next) { 883 if (rom_order_compare(rom, item)) { 884 continue; 885 } 886 QTAILQ_INSERT_BEFORE(item, rom, next); 887 return; 888 } 889 QTAILQ_INSERT_TAIL(&roms, rom, next); 890 } 891 892 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 893 { 894 if (fw_cfg) { 895 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 896 } 897 } 898 899 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 900 { 901 void *data; 902 903 rom->mr = g_malloc(sizeof(*rom->mr)); 904 memory_region_init_resizeable_ram(rom->mr, owner, name, 905 rom->datasize, rom->romsize, 906 fw_cfg_resized, 907 &error_fatal); 908 memory_region_set_readonly(rom->mr, ro); 909 vmstate_register_ram_global(rom->mr); 910 911 data = memory_region_get_ram_ptr(rom->mr); 912 memcpy(data, rom->data, rom->datasize); 913 914 return data; 915 } 916 917 int rom_add_file(const char *file, const char *fw_dir, 918 hwaddr addr, int32_t bootindex, 919 bool option_rom, MemoryRegion *mr, 920 AddressSpace *as) 921 { 922 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 923 Rom *rom; 924 int rc, fd = -1; 925 char devpath[100]; 926 927 if (as && mr) { 928 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 929 "not valid when loading a rom\n"); 930 /* We haven't allocated anything so we don't need any cleanup */ 931 return -1; 932 } 933 934 rom = g_malloc0(sizeof(*rom)); 935 rom->name = g_strdup(file); 936 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 937 rom->as = as; 938 if (rom->path == NULL) { 939 rom->path = g_strdup(file); 940 } 941 942 fd = open(rom->path, O_RDONLY | O_BINARY); 943 if (fd == -1) { 944 fprintf(stderr, "Could not open option rom '%s': %s\n", 945 rom->path, strerror(errno)); 946 goto err; 947 } 948 949 if (fw_dir) { 950 rom->fw_dir = g_strdup(fw_dir); 951 rom->fw_file = g_strdup(file); 952 } 953 rom->addr = addr; 954 rom->romsize = lseek(fd, 0, SEEK_END); 955 if (rom->romsize == -1) { 956 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 957 rom->name, strerror(errno)); 958 goto err; 959 } 960 961 rom->datasize = rom->romsize; 962 rom->data = g_malloc0(rom->datasize); 963 lseek(fd, 0, SEEK_SET); 964 rc = read(fd, rom->data, rom->datasize); 965 if (rc != rom->datasize) { 966 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 967 rom->name, rc, rom->datasize); 968 goto err; 969 } 970 close(fd); 971 rom_insert(rom); 972 if (rom->fw_file && fw_cfg) { 973 const char *basename; 974 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 975 void *data; 976 977 basename = strrchr(rom->fw_file, '/'); 978 if (basename) { 979 basename++; 980 } else { 981 basename = rom->fw_file; 982 } 983 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 984 basename); 985 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 986 987 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 988 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 989 } else { 990 data = rom->data; 991 } 992 993 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 994 } else { 995 if (mr) { 996 rom->mr = mr; 997 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 998 } else { 999 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 1000 } 1001 } 1002 1003 add_boot_device_path(bootindex, NULL, devpath); 1004 return 0; 1005 1006 err: 1007 if (fd != -1) 1008 close(fd); 1009 1010 rom_free(rom); 1011 return -1; 1012 } 1013 1014 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1015 size_t max_len, hwaddr addr, const char *fw_file_name, 1016 FWCfgCallback fw_callback, void *callback_opaque, 1017 AddressSpace *as, bool read_only) 1018 { 1019 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1020 Rom *rom; 1021 MemoryRegion *mr = NULL; 1022 1023 rom = g_malloc0(sizeof(*rom)); 1024 rom->name = g_strdup(name); 1025 rom->as = as; 1026 rom->addr = addr; 1027 rom->romsize = max_len ? max_len : len; 1028 rom->datasize = len; 1029 g_assert(rom->romsize >= rom->datasize); 1030 rom->data = g_malloc0(rom->datasize); 1031 memcpy(rom->data, blob, len); 1032 rom_insert(rom); 1033 if (fw_file_name && fw_cfg) { 1034 char devpath[100]; 1035 void *data; 1036 1037 if (read_only) { 1038 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1039 } else { 1040 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1041 } 1042 1043 if (mc->rom_file_has_mr) { 1044 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1045 mr = rom->mr; 1046 } else { 1047 data = rom->data; 1048 } 1049 1050 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1051 fw_callback, NULL, callback_opaque, 1052 data, rom->datasize, read_only); 1053 } 1054 return mr; 1055 } 1056 1057 /* This function is specific for elf program because we don't need to allocate 1058 * all the rom. We just allocate the first part and the rest is just zeros. This 1059 * is why romsize and datasize are different. Also, this function seize the 1060 * memory ownership of "data", so we don't have to allocate and copy the buffer. 1061 */ 1062 int rom_add_elf_program(const char *name, void *data, size_t datasize, 1063 size_t romsize, hwaddr addr, AddressSpace *as) 1064 { 1065 Rom *rom; 1066 1067 rom = g_malloc0(sizeof(*rom)); 1068 rom->name = g_strdup(name); 1069 rom->addr = addr; 1070 rom->datasize = datasize; 1071 rom->romsize = romsize; 1072 rom->data = data; 1073 rom->as = as; 1074 rom_insert(rom); 1075 return 0; 1076 } 1077 1078 int rom_add_vga(const char *file) 1079 { 1080 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1081 } 1082 1083 int rom_add_option(const char *file, int32_t bootindex) 1084 { 1085 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1086 } 1087 1088 static void rom_reset(void *unused) 1089 { 1090 Rom *rom; 1091 1092 QTAILQ_FOREACH(rom, &roms, next) { 1093 if (rom->fw_file) { 1094 continue; 1095 } 1096 if (rom->data == NULL) { 1097 continue; 1098 } 1099 if (rom->mr) { 1100 void *host = memory_region_get_ram_ptr(rom->mr); 1101 memcpy(host, rom->data, rom->datasize); 1102 } else { 1103 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1104 rom->data, rom->datasize); 1105 } 1106 if (rom->isrom) { 1107 /* rom needs to be written only once */ 1108 g_free(rom->data); 1109 rom->data = NULL; 1110 } 1111 /* 1112 * The rom loader is really on the same level as firmware in the guest 1113 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1114 * that the instruction cache for that new region is clear, so that the 1115 * CPU definitely fetches its instructions from the just written data. 1116 */ 1117 cpu_flush_icache_range(rom->addr, rom->datasize); 1118 } 1119 } 1120 1121 int rom_check_and_register_reset(void) 1122 { 1123 hwaddr addr = 0; 1124 MemoryRegionSection section; 1125 Rom *rom; 1126 AddressSpace *as = NULL; 1127 1128 QTAILQ_FOREACH(rom, &roms, next) { 1129 if (rom->fw_file) { 1130 continue; 1131 } 1132 if (!rom->mr) { 1133 if ((addr > rom->addr) && (as == rom->as)) { 1134 fprintf(stderr, "rom: requested regions overlap " 1135 "(rom %s. free=0x" TARGET_FMT_plx 1136 ", addr=0x" TARGET_FMT_plx ")\n", 1137 rom->name, addr, rom->addr); 1138 return -1; 1139 } 1140 addr = rom->addr; 1141 addr += rom->romsize; 1142 as = rom->as; 1143 } 1144 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1145 rom->addr, 1); 1146 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1147 memory_region_unref(section.mr); 1148 } 1149 qemu_register_reset(rom_reset, NULL); 1150 roms_loaded = 1; 1151 return 0; 1152 } 1153 1154 void rom_set_fw(FWCfgState *f) 1155 { 1156 fw_cfg = f; 1157 } 1158 1159 void rom_set_order_override(int order) 1160 { 1161 if (!fw_cfg) 1162 return; 1163 fw_cfg_set_order_override(fw_cfg, order); 1164 } 1165 1166 void rom_reset_order_override(void) 1167 { 1168 if (!fw_cfg) 1169 return; 1170 fw_cfg_reset_order_override(fw_cfg); 1171 } 1172 1173 void rom_transaction_begin(void) 1174 { 1175 Rom *rom; 1176 1177 /* Ignore ROMs added without the transaction API */ 1178 QTAILQ_FOREACH(rom, &roms, next) { 1179 rom->committed = true; 1180 } 1181 } 1182 1183 void rom_transaction_end(bool commit) 1184 { 1185 Rom *rom; 1186 Rom *tmp; 1187 1188 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1189 if (rom->committed) { 1190 continue; 1191 } 1192 if (commit) { 1193 rom->committed = true; 1194 } else { 1195 QTAILQ_REMOVE(&roms, rom, next); 1196 rom_free(rom); 1197 } 1198 } 1199 } 1200 1201 static Rom *find_rom(hwaddr addr, size_t size) 1202 { 1203 Rom *rom; 1204 1205 QTAILQ_FOREACH(rom, &roms, next) { 1206 if (rom->fw_file) { 1207 continue; 1208 } 1209 if (rom->mr) { 1210 continue; 1211 } 1212 if (rom->addr > addr) { 1213 continue; 1214 } 1215 if (rom->addr + rom->romsize < addr + size) { 1216 continue; 1217 } 1218 return rom; 1219 } 1220 return NULL; 1221 } 1222 1223 /* 1224 * Copies memory from registered ROMs to dest. Any memory that is contained in 1225 * a ROM between addr and addr + size is copied. Note that this can involve 1226 * multiple ROMs, which need not start at addr and need not end at addr + size. 1227 */ 1228 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1229 { 1230 hwaddr end = addr + size; 1231 uint8_t *s, *d = dest; 1232 size_t l = 0; 1233 Rom *rom; 1234 1235 QTAILQ_FOREACH(rom, &roms, next) { 1236 if (rom->fw_file) { 1237 continue; 1238 } 1239 if (rom->mr) { 1240 continue; 1241 } 1242 if (rom->addr + rom->romsize < addr) { 1243 continue; 1244 } 1245 if (rom->addr > end) { 1246 break; 1247 } 1248 1249 d = dest + (rom->addr - addr); 1250 s = rom->data; 1251 l = rom->datasize; 1252 1253 if ((d + l) > (dest + size)) { 1254 l = dest - d; 1255 } 1256 1257 if (l > 0) { 1258 memcpy(d, s, l); 1259 } 1260 1261 if (rom->romsize > rom->datasize) { 1262 /* If datasize is less than romsize, it means that we didn't 1263 * allocate all the ROM because the trailing data are only zeros. 1264 */ 1265 1266 d += l; 1267 l = rom->romsize - rom->datasize; 1268 1269 if ((d + l) > (dest + size)) { 1270 /* Rom size doesn't fit in the destination area. Adjust to avoid 1271 * overflow. 1272 */ 1273 l = dest - d; 1274 } 1275 1276 if (l > 0) { 1277 memset(d, 0x0, l); 1278 } 1279 } 1280 } 1281 1282 return (d + l) - dest; 1283 } 1284 1285 void *rom_ptr(hwaddr addr, size_t size) 1286 { 1287 Rom *rom; 1288 1289 rom = find_rom(addr, size); 1290 if (!rom || !rom->data) 1291 return NULL; 1292 return rom->data + (addr - rom->addr); 1293 } 1294 1295 void hmp_info_roms(Monitor *mon, const QDict *qdict) 1296 { 1297 Rom *rom; 1298 1299 QTAILQ_FOREACH(rom, &roms, next) { 1300 if (rom->mr) { 1301 monitor_printf(mon, "%s" 1302 " size=0x%06zx name=\"%s\"\n", 1303 memory_region_name(rom->mr), 1304 rom->romsize, 1305 rom->name); 1306 } else if (!rom->fw_file) { 1307 monitor_printf(mon, "addr=" TARGET_FMT_plx 1308 " size=0x%06zx mem=%s name=\"%s\"\n", 1309 rom->addr, rom->romsize, 1310 rom->isrom ? "rom" : "ram", 1311 rom->name); 1312 } else { 1313 monitor_printf(mon, "fw=%s/%s" 1314 " size=0x%06zx name=\"%s\"\n", 1315 rom->fw_dir, 1316 rom->fw_file, 1317 rom->romsize, 1318 rom->name); 1319 } 1320 } 1321 } 1322 1323 typedef enum HexRecord HexRecord; 1324 enum HexRecord { 1325 DATA_RECORD = 0, 1326 EOF_RECORD, 1327 EXT_SEG_ADDR_RECORD, 1328 START_SEG_ADDR_RECORD, 1329 EXT_LINEAR_ADDR_RECORD, 1330 START_LINEAR_ADDR_RECORD, 1331 }; 1332 1333 /* Each record contains a 16-bit address which is combined with the upper 16 1334 * bits of the implicit "next address" to form a 32-bit address. 1335 */ 1336 #define NEXT_ADDR_MASK 0xffff0000 1337 1338 #define DATA_FIELD_MAX_LEN 0xff 1339 #define LEN_EXCEPT_DATA 0x5 1340 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1341 * sizeof(checksum) */ 1342 typedef struct { 1343 uint8_t byte_count; 1344 uint16_t address; 1345 uint8_t record_type; 1346 uint8_t data[DATA_FIELD_MAX_LEN]; 1347 uint8_t checksum; 1348 } HexLine; 1349 1350 /* return 0 or -1 if error */ 1351 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1352 uint32_t *index, const bool in_process) 1353 { 1354 /* +-------+---------------+-------+---------------------+--------+ 1355 * | byte | |record | | | 1356 * | count | address | type | data |checksum| 1357 * +-------+---------------+-------+---------------------+--------+ 1358 * ^ ^ ^ ^ ^ ^ 1359 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1360 */ 1361 uint8_t value = 0; 1362 uint32_t idx = *index; 1363 /* ignore space */ 1364 if (g_ascii_isspace(c)) { 1365 return true; 1366 } 1367 if (!g_ascii_isxdigit(c) || !in_process) { 1368 return false; 1369 } 1370 value = g_ascii_xdigit_value(c); 1371 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1372 if (idx < 2) { 1373 line->byte_count |= value; 1374 } else if (2 <= idx && idx < 6) { 1375 line->address <<= 4; 1376 line->address += g_ascii_xdigit_value(c); 1377 } else if (6 <= idx && idx < 8) { 1378 line->record_type |= value; 1379 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1380 line->data[(idx - 8) >> 1] |= value; 1381 } else if (8 + 2 * line->byte_count <= idx && 1382 idx < 10 + 2 * line->byte_count) { 1383 line->checksum |= value; 1384 } else { 1385 return false; 1386 } 1387 *our_checksum += value; 1388 ++(*index); 1389 return true; 1390 } 1391 1392 typedef struct { 1393 const char *filename; 1394 HexLine line; 1395 uint8_t *bin_buf; 1396 hwaddr *start_addr; 1397 int total_size; 1398 uint32_t next_address_to_write; 1399 uint32_t current_address; 1400 uint32_t current_rom_index; 1401 uint32_t rom_start_address; 1402 AddressSpace *as; 1403 } HexParser; 1404 1405 /* return size or -1 if error */ 1406 static int handle_record_type(HexParser *parser) 1407 { 1408 HexLine *line = &(parser->line); 1409 switch (line->record_type) { 1410 case DATA_RECORD: 1411 parser->current_address = 1412 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1413 /* verify this is a contiguous block of memory */ 1414 if (parser->current_address != parser->next_address_to_write) { 1415 if (parser->current_rom_index != 0) { 1416 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1417 parser->current_rom_index, 1418 parser->rom_start_address, parser->as); 1419 } 1420 parser->rom_start_address = parser->current_address; 1421 parser->current_rom_index = 0; 1422 } 1423 1424 /* copy from line buffer to output bin_buf */ 1425 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1426 line->byte_count); 1427 parser->current_rom_index += line->byte_count; 1428 parser->total_size += line->byte_count; 1429 /* save next address to write */ 1430 parser->next_address_to_write = 1431 parser->current_address + line->byte_count; 1432 break; 1433 1434 case EOF_RECORD: 1435 if (parser->current_rom_index != 0) { 1436 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1437 parser->current_rom_index, 1438 parser->rom_start_address, parser->as); 1439 } 1440 return parser->total_size; 1441 case EXT_SEG_ADDR_RECORD: 1442 case EXT_LINEAR_ADDR_RECORD: 1443 if (line->byte_count != 2 && line->address != 0) { 1444 return -1; 1445 } 1446 1447 if (parser->current_rom_index != 0) { 1448 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1449 parser->current_rom_index, 1450 parser->rom_start_address, parser->as); 1451 } 1452 1453 /* save next address to write, 1454 * in case of non-contiguous block of memory */ 1455 parser->next_address_to_write = (line->data[0] << 12) | 1456 (line->data[1] << 4); 1457 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1458 parser->next_address_to_write <<= 12; 1459 } 1460 1461 parser->rom_start_address = parser->next_address_to_write; 1462 parser->current_rom_index = 0; 1463 break; 1464 1465 case START_SEG_ADDR_RECORD: 1466 if (line->byte_count != 4 && line->address != 0) { 1467 return -1; 1468 } 1469 1470 /* x86 16-bit CS:IP segmented addressing */ 1471 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1472 ((line->data[2] << 8) | line->data[3]); 1473 break; 1474 1475 case START_LINEAR_ADDR_RECORD: 1476 if (line->byte_count != 4 && line->address != 0) { 1477 return -1; 1478 } 1479 1480 *(parser->start_addr) = ldl_be_p(line->data); 1481 break; 1482 1483 default: 1484 return -1; 1485 } 1486 1487 return parser->total_size; 1488 } 1489 1490 /* return size or -1 if error */ 1491 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1492 size_t hex_blob_size, AddressSpace *as) 1493 { 1494 bool in_process = false; /* avoid re-enter and 1495 * check whether record begin with ':' */ 1496 uint8_t *end = hex_blob + hex_blob_size; 1497 uint8_t our_checksum = 0; 1498 uint32_t record_index = 0; 1499 HexParser parser = { 1500 .filename = filename, 1501 .bin_buf = g_malloc(hex_blob_size), 1502 .start_addr = addr, 1503 .as = as, 1504 }; 1505 1506 rom_transaction_begin(); 1507 1508 for (; hex_blob < end; ++hex_blob) { 1509 switch (*hex_blob) { 1510 case '\r': 1511 case '\n': 1512 if (!in_process) { 1513 break; 1514 } 1515 1516 in_process = false; 1517 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1518 record_index || 1519 our_checksum != 0) { 1520 parser.total_size = -1; 1521 goto out; 1522 } 1523 1524 if (handle_record_type(&parser) == -1) { 1525 parser.total_size = -1; 1526 goto out; 1527 } 1528 break; 1529 1530 /* start of a new record. */ 1531 case ':': 1532 memset(&parser.line, 0, sizeof(HexLine)); 1533 in_process = true; 1534 record_index = 0; 1535 break; 1536 1537 /* decoding lines */ 1538 default: 1539 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1540 &record_index, in_process)) { 1541 parser.total_size = -1; 1542 goto out; 1543 } 1544 break; 1545 } 1546 } 1547 1548 out: 1549 g_free(parser.bin_buf); 1550 rom_transaction_end(parser.total_size != -1); 1551 return parser.total_size; 1552 } 1553 1554 /* return size or -1 if error */ 1555 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as) 1556 { 1557 gsize hex_blob_size; 1558 gchar *hex_blob; 1559 int total_size = 0; 1560 1561 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1562 return -1; 1563 } 1564 1565 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1566 hex_blob_size, as); 1567 1568 g_free(hex_blob); 1569 return total_size; 1570 } 1571