1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qapi/error.h" 47 #include "hw/hw.h" 48 #include "disas/disas.h" 49 #include "monitor/monitor.h" 50 #include "sysemu/sysemu.h" 51 #include "uboot_image.h" 52 #include "hw/loader.h" 53 #include "hw/nvram/fw_cfg.h" 54 #include "exec/memory.h" 55 #include "exec/address-spaces.h" 56 #include "hw/boards.h" 57 #include "qemu/cutils.h" 58 59 #include <zlib.h> 60 61 static int roms_loaded; 62 63 /* return the size or -1 if error */ 64 int64_t get_image_size(const char *filename) 65 { 66 int fd; 67 int64_t size; 68 fd = open(filename, O_RDONLY | O_BINARY); 69 if (fd < 0) 70 return -1; 71 size = lseek(fd, 0, SEEK_END); 72 close(fd); 73 return size; 74 } 75 76 /* return the size or -1 if error */ 77 ssize_t load_image_size(const char *filename, void *addr, size_t size) 78 { 79 int fd; 80 ssize_t actsize; 81 82 fd = open(filename, O_RDONLY | O_BINARY); 83 if (fd < 0) { 84 return -1; 85 } 86 87 actsize = read(fd, addr, size); 88 if (actsize < 0) { 89 close(fd); 90 return -1; 91 } 92 close(fd); 93 94 return actsize; 95 } 96 97 /* read()-like version */ 98 ssize_t read_targphys(const char *name, 99 int fd, hwaddr dst_addr, size_t nbytes) 100 { 101 uint8_t *buf; 102 ssize_t did; 103 104 buf = g_malloc(nbytes); 105 did = read(fd, buf, nbytes); 106 if (did > 0) 107 rom_add_blob_fixed("read", buf, did, dst_addr); 108 g_free(buf); 109 return did; 110 } 111 112 int load_image_targphys(const char *filename, 113 hwaddr addr, uint64_t max_sz) 114 { 115 return load_image_targphys_as(filename, addr, max_sz, NULL); 116 } 117 118 /* return the size or -1 if error */ 119 int load_image_targphys_as(const char *filename, 120 hwaddr addr, uint64_t max_sz, AddressSpace *as) 121 { 122 int size; 123 124 size = get_image_size(filename); 125 if (size < 0 || size > max_sz) { 126 return -1; 127 } 128 if (size > 0) { 129 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 130 return -1; 131 } 132 } 133 return size; 134 } 135 136 int load_image_mr(const char *filename, MemoryRegion *mr) 137 { 138 int size; 139 140 if (!memory_access_is_direct(mr, false)) { 141 /* Can only load an image into RAM or ROM */ 142 return -1; 143 } 144 145 size = get_image_size(filename); 146 147 if (size < 0 || size > memory_region_size(mr)) { 148 return -1; 149 } 150 if (size > 0) { 151 if (rom_add_file_mr(filename, mr, -1) < 0) { 152 return -1; 153 } 154 } 155 return size; 156 } 157 158 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 159 const char *source) 160 { 161 const char *nulp; 162 char *ptr; 163 164 if (buf_size <= 0) return; 165 nulp = memchr(source, 0, buf_size); 166 if (nulp) { 167 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 168 } else { 169 rom_add_blob_fixed(name, source, buf_size, dest); 170 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 171 *ptr = 0; 172 } 173 } 174 175 /* A.OUT loader */ 176 177 struct exec 178 { 179 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 180 uint32_t a_text; /* length of text, in bytes */ 181 uint32_t a_data; /* length of data, in bytes */ 182 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 183 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 184 uint32_t a_entry; /* start address */ 185 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 186 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 187 }; 188 189 static void bswap_ahdr(struct exec *e) 190 { 191 bswap32s(&e->a_info); 192 bswap32s(&e->a_text); 193 bswap32s(&e->a_data); 194 bswap32s(&e->a_bss); 195 bswap32s(&e->a_syms); 196 bswap32s(&e->a_entry); 197 bswap32s(&e->a_trsize); 198 bswap32s(&e->a_drsize); 199 } 200 201 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 202 #define OMAGIC 0407 203 #define NMAGIC 0410 204 #define ZMAGIC 0413 205 #define QMAGIC 0314 206 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 207 #define N_TXTOFF(x) \ 208 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 209 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 210 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 211 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 212 213 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 214 215 #define N_DATADDR(x, target_page_size) \ 216 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 217 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 218 219 220 int load_aout(const char *filename, hwaddr addr, int max_sz, 221 int bswap_needed, hwaddr target_page_size) 222 { 223 int fd; 224 ssize_t size, ret; 225 struct exec e; 226 uint32_t magic; 227 228 fd = open(filename, O_RDONLY | O_BINARY); 229 if (fd < 0) 230 return -1; 231 232 size = read(fd, &e, sizeof(e)); 233 if (size < 0) 234 goto fail; 235 236 if (bswap_needed) { 237 bswap_ahdr(&e); 238 } 239 240 magic = N_MAGIC(e); 241 switch (magic) { 242 case ZMAGIC: 243 case QMAGIC: 244 case OMAGIC: 245 if (e.a_text + e.a_data > max_sz) 246 goto fail; 247 lseek(fd, N_TXTOFF(e), SEEK_SET); 248 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 249 if (size < 0) 250 goto fail; 251 break; 252 case NMAGIC: 253 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 254 goto fail; 255 lseek(fd, N_TXTOFF(e), SEEK_SET); 256 size = read_targphys(filename, fd, addr, e.a_text); 257 if (size < 0) 258 goto fail; 259 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 260 e.a_data); 261 if (ret < 0) 262 goto fail; 263 size += ret; 264 break; 265 default: 266 goto fail; 267 } 268 close(fd); 269 return size; 270 fail: 271 close(fd); 272 return -1; 273 } 274 275 /* ELF loader */ 276 277 static void *load_at(int fd, off_t offset, size_t size) 278 { 279 void *ptr; 280 if (lseek(fd, offset, SEEK_SET) < 0) 281 return NULL; 282 ptr = g_malloc(size); 283 if (read(fd, ptr, size) != size) { 284 g_free(ptr); 285 return NULL; 286 } 287 return ptr; 288 } 289 290 #ifdef ELF_CLASS 291 #undef ELF_CLASS 292 #endif 293 294 #define ELF_CLASS ELFCLASS32 295 #include "elf.h" 296 297 #define SZ 32 298 #define elf_word uint32_t 299 #define elf_sword int32_t 300 #define bswapSZs bswap32s 301 #include "hw/elf_ops.h" 302 303 #undef elfhdr 304 #undef elf_phdr 305 #undef elf_shdr 306 #undef elf_sym 307 #undef elf_rela 308 #undef elf_note 309 #undef elf_word 310 #undef elf_sword 311 #undef bswapSZs 312 #undef SZ 313 #define elfhdr elf64_hdr 314 #define elf_phdr elf64_phdr 315 #define elf_note elf64_note 316 #define elf_shdr elf64_shdr 317 #define elf_sym elf64_sym 318 #define elf_rela elf64_rela 319 #define elf_word uint64_t 320 #define elf_sword int64_t 321 #define bswapSZs bswap64s 322 #define SZ 64 323 #include "hw/elf_ops.h" 324 325 const char *load_elf_strerror(int error) 326 { 327 switch (error) { 328 case 0: 329 return "No error"; 330 case ELF_LOAD_FAILED: 331 return "Failed to load ELF"; 332 case ELF_LOAD_NOT_ELF: 333 return "The image is not ELF"; 334 case ELF_LOAD_WRONG_ARCH: 335 return "The image is from incompatible architecture"; 336 case ELF_LOAD_WRONG_ENDIAN: 337 return "The image has incorrect endianness"; 338 default: 339 return "Unknown error"; 340 } 341 } 342 343 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 344 { 345 int fd; 346 uint8_t e_ident_local[EI_NIDENT]; 347 uint8_t *e_ident; 348 size_t hdr_size, off; 349 bool is64l; 350 351 if (!hdr) { 352 hdr = e_ident_local; 353 } 354 e_ident = hdr; 355 356 fd = open(filename, O_RDONLY | O_BINARY); 357 if (fd < 0) { 358 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 359 return; 360 } 361 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 362 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 363 goto fail; 364 } 365 if (e_ident[0] != ELFMAG0 || 366 e_ident[1] != ELFMAG1 || 367 e_ident[2] != ELFMAG2 || 368 e_ident[3] != ELFMAG3) { 369 error_setg(errp, "Bad ELF magic"); 370 goto fail; 371 } 372 373 is64l = e_ident[EI_CLASS] == ELFCLASS64; 374 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 375 if (is64) { 376 *is64 = is64l; 377 } 378 379 off = EI_NIDENT; 380 while (hdr != e_ident_local && off < hdr_size) { 381 size_t br = read(fd, hdr + off, hdr_size - off); 382 switch (br) { 383 case 0: 384 error_setg(errp, "File too short: %s", filename); 385 goto fail; 386 case -1: 387 error_setg_errno(errp, errno, "Failed to read file: %s", 388 filename); 389 goto fail; 390 } 391 off += br; 392 } 393 394 fail: 395 close(fd); 396 } 397 398 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 399 int load_elf(const char *filename, uint64_t (*translate_fn)(void *, uint64_t), 400 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 401 uint64_t *highaddr, int big_endian, int elf_machine, 402 int clear_lsb, int data_swab) 403 { 404 return load_elf_as(filename, translate_fn, translate_opaque, pentry, 405 lowaddr, highaddr, big_endian, elf_machine, clear_lsb, 406 data_swab, NULL); 407 } 408 409 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 410 int load_elf_as(const char *filename, 411 uint64_t (*translate_fn)(void *, uint64_t), 412 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 413 uint64_t *highaddr, int big_endian, int elf_machine, 414 int clear_lsb, int data_swab, AddressSpace *as) 415 { 416 return load_elf_ram(filename, translate_fn, translate_opaque, 417 pentry, lowaddr, highaddr, big_endian, elf_machine, 418 clear_lsb, data_swab, as, true); 419 } 420 421 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 422 int load_elf_ram(const char *filename, 423 uint64_t (*translate_fn)(void *, uint64_t), 424 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 425 uint64_t *highaddr, int big_endian, int elf_machine, 426 int clear_lsb, int data_swab, AddressSpace *as, 427 bool load_rom) 428 { 429 return load_elf_ram_sym(filename, translate_fn, translate_opaque, 430 pentry, lowaddr, highaddr, big_endian, 431 elf_machine, clear_lsb, data_swab, as, 432 load_rom, NULL); 433 } 434 435 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 436 int load_elf_ram_sym(const char *filename, 437 uint64_t (*translate_fn)(void *, uint64_t), 438 void *translate_opaque, uint64_t *pentry, 439 uint64_t *lowaddr, uint64_t *highaddr, int big_endian, 440 int elf_machine, int clear_lsb, int data_swab, 441 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 442 { 443 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; 444 uint8_t e_ident[EI_NIDENT]; 445 446 fd = open(filename, O_RDONLY | O_BINARY); 447 if (fd < 0) { 448 perror(filename); 449 return -1; 450 } 451 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 452 goto fail; 453 if (e_ident[0] != ELFMAG0 || 454 e_ident[1] != ELFMAG1 || 455 e_ident[2] != ELFMAG2 || 456 e_ident[3] != ELFMAG3) { 457 ret = ELF_LOAD_NOT_ELF; 458 goto fail; 459 } 460 #ifdef HOST_WORDS_BIGENDIAN 461 data_order = ELFDATA2MSB; 462 #else 463 data_order = ELFDATA2LSB; 464 #endif 465 must_swab = data_order != e_ident[EI_DATA]; 466 if (big_endian) { 467 target_data_order = ELFDATA2MSB; 468 } else { 469 target_data_order = ELFDATA2LSB; 470 } 471 472 if (target_data_order != e_ident[EI_DATA]) { 473 ret = ELF_LOAD_WRONG_ENDIAN; 474 goto fail; 475 } 476 477 lseek(fd, 0, SEEK_SET); 478 if (e_ident[EI_CLASS] == ELFCLASS64) { 479 ret = load_elf64(filename, fd, translate_fn, translate_opaque, must_swab, 480 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 481 data_swab, as, load_rom, sym_cb); 482 } else { 483 ret = load_elf32(filename, fd, translate_fn, translate_opaque, must_swab, 484 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 485 data_swab, as, load_rom, sym_cb); 486 } 487 488 fail: 489 close(fd); 490 return ret; 491 } 492 493 static void bswap_uboot_header(uboot_image_header_t *hdr) 494 { 495 #ifndef HOST_WORDS_BIGENDIAN 496 bswap32s(&hdr->ih_magic); 497 bswap32s(&hdr->ih_hcrc); 498 bswap32s(&hdr->ih_time); 499 bswap32s(&hdr->ih_size); 500 bswap32s(&hdr->ih_load); 501 bswap32s(&hdr->ih_ep); 502 bswap32s(&hdr->ih_dcrc); 503 #endif 504 } 505 506 507 #define ZALLOC_ALIGNMENT 16 508 509 static void *zalloc(void *x, unsigned items, unsigned size) 510 { 511 void *p; 512 513 size *= items; 514 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 515 516 p = g_malloc(size); 517 518 return (p); 519 } 520 521 static void zfree(void *x, void *addr) 522 { 523 g_free(addr); 524 } 525 526 527 #define HEAD_CRC 2 528 #define EXTRA_FIELD 4 529 #define ORIG_NAME 8 530 #define COMMENT 0x10 531 #define RESERVED 0xe0 532 533 #define DEFLATED 8 534 535 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 536 { 537 z_stream s; 538 ssize_t dstbytes; 539 int r, i, flags; 540 541 /* skip header */ 542 i = 10; 543 flags = src[3]; 544 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 545 puts ("Error: Bad gzipped data\n"); 546 return -1; 547 } 548 if ((flags & EXTRA_FIELD) != 0) 549 i = 12 + src[10] + (src[11] << 8); 550 if ((flags & ORIG_NAME) != 0) 551 while (src[i++] != 0) 552 ; 553 if ((flags & COMMENT) != 0) 554 while (src[i++] != 0) 555 ; 556 if ((flags & HEAD_CRC) != 0) 557 i += 2; 558 if (i >= srclen) { 559 puts ("Error: gunzip out of data in header\n"); 560 return -1; 561 } 562 563 s.zalloc = zalloc; 564 s.zfree = zfree; 565 566 r = inflateInit2(&s, -MAX_WBITS); 567 if (r != Z_OK) { 568 printf ("Error: inflateInit2() returned %d\n", r); 569 return (-1); 570 } 571 s.next_in = src + i; 572 s.avail_in = srclen - i; 573 s.next_out = dst; 574 s.avail_out = dstlen; 575 r = inflate(&s, Z_FINISH); 576 if (r != Z_OK && r != Z_STREAM_END) { 577 printf ("Error: inflate() returned %d\n", r); 578 return -1; 579 } 580 dstbytes = s.next_out - (unsigned char *) dst; 581 inflateEnd(&s); 582 583 return dstbytes; 584 } 585 586 /* Load a U-Boot image. */ 587 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 588 int *is_linux, uint8_t image_type, 589 uint64_t (*translate_fn)(void *, uint64_t), 590 void *translate_opaque, AddressSpace *as) 591 { 592 int fd; 593 int size; 594 hwaddr address; 595 uboot_image_header_t h; 596 uboot_image_header_t *hdr = &h; 597 uint8_t *data = NULL; 598 int ret = -1; 599 int do_uncompress = 0; 600 601 fd = open(filename, O_RDONLY | O_BINARY); 602 if (fd < 0) 603 return -1; 604 605 size = read(fd, hdr, sizeof(uboot_image_header_t)); 606 if (size < sizeof(uboot_image_header_t)) { 607 goto out; 608 } 609 610 bswap_uboot_header(hdr); 611 612 if (hdr->ih_magic != IH_MAGIC) 613 goto out; 614 615 if (hdr->ih_type != image_type) { 616 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 617 image_type); 618 goto out; 619 } 620 621 /* TODO: Implement other image types. */ 622 switch (hdr->ih_type) { 623 case IH_TYPE_KERNEL: 624 address = hdr->ih_load; 625 if (translate_fn) { 626 address = translate_fn(translate_opaque, address); 627 } 628 if (loadaddr) { 629 *loadaddr = hdr->ih_load; 630 } 631 632 switch (hdr->ih_comp) { 633 case IH_COMP_NONE: 634 break; 635 case IH_COMP_GZIP: 636 do_uncompress = 1; 637 break; 638 default: 639 fprintf(stderr, 640 "Unable to load u-boot images with compression type %d\n", 641 hdr->ih_comp); 642 goto out; 643 } 644 645 if (ep) { 646 *ep = hdr->ih_ep; 647 } 648 649 /* TODO: Check CPU type. */ 650 if (is_linux) { 651 if (hdr->ih_os == IH_OS_LINUX) { 652 *is_linux = 1; 653 } else { 654 *is_linux = 0; 655 } 656 } 657 658 break; 659 case IH_TYPE_RAMDISK: 660 address = *loadaddr; 661 break; 662 default: 663 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 664 goto out; 665 } 666 667 data = g_malloc(hdr->ih_size); 668 669 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 670 fprintf(stderr, "Error reading file\n"); 671 goto out; 672 } 673 674 if (do_uncompress) { 675 uint8_t *compressed_data; 676 size_t max_bytes; 677 ssize_t bytes; 678 679 compressed_data = data; 680 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 681 data = g_malloc(max_bytes); 682 683 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 684 g_free(compressed_data); 685 if (bytes < 0) { 686 fprintf(stderr, "Unable to decompress gzipped image!\n"); 687 goto out; 688 } 689 hdr->ih_size = bytes; 690 } 691 692 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 693 694 ret = hdr->ih_size; 695 696 out: 697 g_free(data); 698 close(fd); 699 return ret; 700 } 701 702 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 703 int *is_linux, 704 uint64_t (*translate_fn)(void *, uint64_t), 705 void *translate_opaque) 706 { 707 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 708 translate_fn, translate_opaque, NULL); 709 } 710 711 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 712 int *is_linux, 713 uint64_t (*translate_fn)(void *, uint64_t), 714 void *translate_opaque, AddressSpace *as) 715 { 716 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 717 translate_fn, translate_opaque, as); 718 } 719 720 /* Load a ramdisk. */ 721 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 722 { 723 return load_ramdisk_as(filename, addr, max_sz, NULL); 724 } 725 726 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 727 AddressSpace *as) 728 { 729 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 730 NULL, NULL, as); 731 } 732 733 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 734 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 735 uint8_t **buffer) 736 { 737 uint8_t *compressed_data = NULL; 738 uint8_t *data = NULL; 739 gsize len; 740 ssize_t bytes; 741 int ret = -1; 742 743 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 744 NULL)) { 745 goto out; 746 } 747 748 /* Is it a gzip-compressed file? */ 749 if (len < 2 || 750 compressed_data[0] != 0x1f || 751 compressed_data[1] != 0x8b) { 752 goto out; 753 } 754 755 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 756 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 757 } 758 759 data = g_malloc(max_sz); 760 bytes = gunzip(data, max_sz, compressed_data, len); 761 if (bytes < 0) { 762 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 763 filename); 764 goto out; 765 } 766 767 /* trim to actual size and return to caller */ 768 *buffer = g_realloc(data, bytes); 769 ret = bytes; 770 /* ownership has been transferred to caller */ 771 data = NULL; 772 773 out: 774 g_free(compressed_data); 775 g_free(data); 776 return ret; 777 } 778 779 /* Load a gzip-compressed kernel. */ 780 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 781 { 782 int bytes; 783 uint8_t *data; 784 785 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 786 if (bytes != -1) { 787 rom_add_blob_fixed(filename, data, bytes, addr); 788 g_free(data); 789 } 790 return bytes; 791 } 792 793 /* 794 * Functions for reboot-persistent memory regions. 795 * - used for vga bios and option roms. 796 * - also linux kernel (-kernel / -initrd). 797 */ 798 799 typedef struct Rom Rom; 800 801 struct Rom { 802 char *name; 803 char *path; 804 805 /* datasize is the amount of memory allocated in "data". If datasize is less 806 * than romsize, it means that the area from datasize to romsize is filled 807 * with zeros. 808 */ 809 size_t romsize; 810 size_t datasize; 811 812 uint8_t *data; 813 MemoryRegion *mr; 814 AddressSpace *as; 815 int isrom; 816 char *fw_dir; 817 char *fw_file; 818 819 bool committed; 820 821 hwaddr addr; 822 QTAILQ_ENTRY(Rom) next; 823 }; 824 825 static FWCfgState *fw_cfg; 826 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 827 828 /* rom->data must be heap-allocated (do not use with rom_add_elf_program()) */ 829 static void rom_free(Rom *rom) 830 { 831 g_free(rom->data); 832 g_free(rom->path); 833 g_free(rom->name); 834 g_free(rom->fw_dir); 835 g_free(rom->fw_file); 836 g_free(rom); 837 } 838 839 static inline bool rom_order_compare(Rom *rom, Rom *item) 840 { 841 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 842 (rom->as == item->as && rom->addr >= item->addr); 843 } 844 845 static void rom_insert(Rom *rom) 846 { 847 Rom *item; 848 849 if (roms_loaded) { 850 hw_error ("ROM images must be loaded at startup\n"); 851 } 852 853 /* The user didn't specify an address space, this is the default */ 854 if (!rom->as) { 855 rom->as = &address_space_memory; 856 } 857 858 rom->committed = false; 859 860 /* List is ordered by load address in the same address space */ 861 QTAILQ_FOREACH(item, &roms, next) { 862 if (rom_order_compare(rom, item)) { 863 continue; 864 } 865 QTAILQ_INSERT_BEFORE(item, rom, next); 866 return; 867 } 868 QTAILQ_INSERT_TAIL(&roms, rom, next); 869 } 870 871 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 872 { 873 if (fw_cfg) { 874 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 875 } 876 } 877 878 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 879 { 880 void *data; 881 882 rom->mr = g_malloc(sizeof(*rom->mr)); 883 memory_region_init_resizeable_ram(rom->mr, owner, name, 884 rom->datasize, rom->romsize, 885 fw_cfg_resized, 886 &error_fatal); 887 memory_region_set_readonly(rom->mr, ro); 888 vmstate_register_ram_global(rom->mr); 889 890 data = memory_region_get_ram_ptr(rom->mr); 891 memcpy(data, rom->data, rom->datasize); 892 893 return data; 894 } 895 896 int rom_add_file(const char *file, const char *fw_dir, 897 hwaddr addr, int32_t bootindex, 898 bool option_rom, MemoryRegion *mr, 899 AddressSpace *as) 900 { 901 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 902 Rom *rom; 903 int rc, fd = -1; 904 char devpath[100]; 905 906 if (as && mr) { 907 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 908 "not valid when loading a rom\n"); 909 /* We haven't allocated anything so we don't need any cleanup */ 910 return -1; 911 } 912 913 rom = g_malloc0(sizeof(*rom)); 914 rom->name = g_strdup(file); 915 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 916 rom->as = as; 917 if (rom->path == NULL) { 918 rom->path = g_strdup(file); 919 } 920 921 fd = open(rom->path, O_RDONLY | O_BINARY); 922 if (fd == -1) { 923 fprintf(stderr, "Could not open option rom '%s': %s\n", 924 rom->path, strerror(errno)); 925 goto err; 926 } 927 928 if (fw_dir) { 929 rom->fw_dir = g_strdup(fw_dir); 930 rom->fw_file = g_strdup(file); 931 } 932 rom->addr = addr; 933 rom->romsize = lseek(fd, 0, SEEK_END); 934 if (rom->romsize == -1) { 935 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 936 rom->name, strerror(errno)); 937 goto err; 938 } 939 940 rom->datasize = rom->romsize; 941 rom->data = g_malloc0(rom->datasize); 942 lseek(fd, 0, SEEK_SET); 943 rc = read(fd, rom->data, rom->datasize); 944 if (rc != rom->datasize) { 945 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 946 rom->name, rc, rom->datasize); 947 goto err; 948 } 949 close(fd); 950 rom_insert(rom); 951 if (rom->fw_file && fw_cfg) { 952 const char *basename; 953 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 954 void *data; 955 956 basename = strrchr(rom->fw_file, '/'); 957 if (basename) { 958 basename++; 959 } else { 960 basename = rom->fw_file; 961 } 962 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 963 basename); 964 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 965 966 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 967 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 968 } else { 969 data = rom->data; 970 } 971 972 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 973 } else { 974 if (mr) { 975 rom->mr = mr; 976 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 977 } else { 978 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 979 } 980 } 981 982 add_boot_device_path(bootindex, NULL, devpath); 983 return 0; 984 985 err: 986 if (fd != -1) 987 close(fd); 988 989 rom_free(rom); 990 return -1; 991 } 992 993 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 994 size_t max_len, hwaddr addr, const char *fw_file_name, 995 FWCfgCallback fw_callback, void *callback_opaque, 996 AddressSpace *as, bool read_only) 997 { 998 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 999 Rom *rom; 1000 MemoryRegion *mr = NULL; 1001 1002 rom = g_malloc0(sizeof(*rom)); 1003 rom->name = g_strdup(name); 1004 rom->as = as; 1005 rom->addr = addr; 1006 rom->romsize = max_len ? max_len : len; 1007 rom->datasize = len; 1008 rom->data = g_malloc0(rom->datasize); 1009 memcpy(rom->data, blob, len); 1010 rom_insert(rom); 1011 if (fw_file_name && fw_cfg) { 1012 char devpath[100]; 1013 void *data; 1014 1015 if (read_only) { 1016 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1017 } else { 1018 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1019 } 1020 1021 if (mc->rom_file_has_mr) { 1022 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1023 mr = rom->mr; 1024 } else { 1025 data = rom->data; 1026 } 1027 1028 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1029 fw_callback, NULL, callback_opaque, 1030 data, rom->datasize, read_only); 1031 } 1032 return mr; 1033 } 1034 1035 /* This function is specific for elf program because we don't need to allocate 1036 * all the rom. We just allocate the first part and the rest is just zeros. This 1037 * is why romsize and datasize are different. Also, this function seize the 1038 * memory ownership of "data", so we don't have to allocate and copy the buffer. 1039 */ 1040 int rom_add_elf_program(const char *name, void *data, size_t datasize, 1041 size_t romsize, hwaddr addr, AddressSpace *as) 1042 { 1043 Rom *rom; 1044 1045 rom = g_malloc0(sizeof(*rom)); 1046 rom->name = g_strdup(name); 1047 rom->addr = addr; 1048 rom->datasize = datasize; 1049 rom->romsize = romsize; 1050 rom->data = data; 1051 rom->as = as; 1052 rom_insert(rom); 1053 return 0; 1054 } 1055 1056 int rom_add_vga(const char *file) 1057 { 1058 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1059 } 1060 1061 int rom_add_option(const char *file, int32_t bootindex) 1062 { 1063 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1064 } 1065 1066 static void rom_reset(void *unused) 1067 { 1068 Rom *rom; 1069 1070 QTAILQ_FOREACH(rom, &roms, next) { 1071 if (rom->fw_file) { 1072 continue; 1073 } 1074 if (rom->data == NULL) { 1075 continue; 1076 } 1077 if (rom->mr) { 1078 void *host = memory_region_get_ram_ptr(rom->mr); 1079 memcpy(host, rom->data, rom->datasize); 1080 } else { 1081 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1082 rom->data, rom->datasize); 1083 } 1084 if (rom->isrom) { 1085 /* rom needs to be written only once */ 1086 g_free(rom->data); 1087 rom->data = NULL; 1088 } 1089 /* 1090 * The rom loader is really on the same level as firmware in the guest 1091 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1092 * that the instruction cache for that new region is clear, so that the 1093 * CPU definitely fetches its instructions from the just written data. 1094 */ 1095 cpu_flush_icache_range(rom->addr, rom->datasize); 1096 } 1097 } 1098 1099 int rom_check_and_register_reset(void) 1100 { 1101 hwaddr addr = 0; 1102 MemoryRegionSection section; 1103 Rom *rom; 1104 AddressSpace *as = NULL; 1105 1106 QTAILQ_FOREACH(rom, &roms, next) { 1107 if (rom->fw_file) { 1108 continue; 1109 } 1110 if (!rom->mr) { 1111 if ((addr > rom->addr) && (as == rom->as)) { 1112 fprintf(stderr, "rom: requested regions overlap " 1113 "(rom %s. free=0x" TARGET_FMT_plx 1114 ", addr=0x" TARGET_FMT_plx ")\n", 1115 rom->name, addr, rom->addr); 1116 return -1; 1117 } 1118 addr = rom->addr; 1119 addr += rom->romsize; 1120 as = rom->as; 1121 } 1122 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1123 rom->addr, 1); 1124 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1125 memory_region_unref(section.mr); 1126 } 1127 qemu_register_reset(rom_reset, NULL); 1128 roms_loaded = 1; 1129 return 0; 1130 } 1131 1132 void rom_set_fw(FWCfgState *f) 1133 { 1134 fw_cfg = f; 1135 } 1136 1137 void rom_set_order_override(int order) 1138 { 1139 if (!fw_cfg) 1140 return; 1141 fw_cfg_set_order_override(fw_cfg, order); 1142 } 1143 1144 void rom_reset_order_override(void) 1145 { 1146 if (!fw_cfg) 1147 return; 1148 fw_cfg_reset_order_override(fw_cfg); 1149 } 1150 1151 void rom_transaction_begin(void) 1152 { 1153 Rom *rom; 1154 1155 /* Ignore ROMs added without the transaction API */ 1156 QTAILQ_FOREACH(rom, &roms, next) { 1157 rom->committed = true; 1158 } 1159 } 1160 1161 void rom_transaction_end(bool commit) 1162 { 1163 Rom *rom; 1164 Rom *tmp; 1165 1166 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1167 if (rom->committed) { 1168 continue; 1169 } 1170 if (commit) { 1171 rom->committed = true; 1172 } else { 1173 QTAILQ_REMOVE(&roms, rom, next); 1174 rom_free(rom); 1175 } 1176 } 1177 } 1178 1179 static Rom *find_rom(hwaddr addr, size_t size) 1180 { 1181 Rom *rom; 1182 1183 QTAILQ_FOREACH(rom, &roms, next) { 1184 if (rom->fw_file) { 1185 continue; 1186 } 1187 if (rom->mr) { 1188 continue; 1189 } 1190 if (rom->addr > addr) { 1191 continue; 1192 } 1193 if (rom->addr + rom->romsize < addr + size) { 1194 continue; 1195 } 1196 return rom; 1197 } 1198 return NULL; 1199 } 1200 1201 /* 1202 * Copies memory from registered ROMs to dest. Any memory that is contained in 1203 * a ROM between addr and addr + size is copied. Note that this can involve 1204 * multiple ROMs, which need not start at addr and need not end at addr + size. 1205 */ 1206 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1207 { 1208 hwaddr end = addr + size; 1209 uint8_t *s, *d = dest; 1210 size_t l = 0; 1211 Rom *rom; 1212 1213 QTAILQ_FOREACH(rom, &roms, next) { 1214 if (rom->fw_file) { 1215 continue; 1216 } 1217 if (rom->mr) { 1218 continue; 1219 } 1220 if (rom->addr + rom->romsize < addr) { 1221 continue; 1222 } 1223 if (rom->addr > end) { 1224 break; 1225 } 1226 1227 d = dest + (rom->addr - addr); 1228 s = rom->data; 1229 l = rom->datasize; 1230 1231 if ((d + l) > (dest + size)) { 1232 l = dest - d; 1233 } 1234 1235 if (l > 0) { 1236 memcpy(d, s, l); 1237 } 1238 1239 if (rom->romsize > rom->datasize) { 1240 /* If datasize is less than romsize, it means that we didn't 1241 * allocate all the ROM because the trailing data are only zeros. 1242 */ 1243 1244 d += l; 1245 l = rom->romsize - rom->datasize; 1246 1247 if ((d + l) > (dest + size)) { 1248 /* Rom size doesn't fit in the destination area. Adjust to avoid 1249 * overflow. 1250 */ 1251 l = dest - d; 1252 } 1253 1254 if (l > 0) { 1255 memset(d, 0x0, l); 1256 } 1257 } 1258 } 1259 1260 return (d + l) - dest; 1261 } 1262 1263 void *rom_ptr(hwaddr addr, size_t size) 1264 { 1265 Rom *rom; 1266 1267 rom = find_rom(addr, size); 1268 if (!rom || !rom->data) 1269 return NULL; 1270 return rom->data + (addr - rom->addr); 1271 } 1272 1273 void hmp_info_roms(Monitor *mon, const QDict *qdict) 1274 { 1275 Rom *rom; 1276 1277 QTAILQ_FOREACH(rom, &roms, next) { 1278 if (rom->mr) { 1279 monitor_printf(mon, "%s" 1280 " size=0x%06zx name=\"%s\"\n", 1281 memory_region_name(rom->mr), 1282 rom->romsize, 1283 rom->name); 1284 } else if (!rom->fw_file) { 1285 monitor_printf(mon, "addr=" TARGET_FMT_plx 1286 " size=0x%06zx mem=%s name=\"%s\"\n", 1287 rom->addr, rom->romsize, 1288 rom->isrom ? "rom" : "ram", 1289 rom->name); 1290 } else { 1291 monitor_printf(mon, "fw=%s/%s" 1292 " size=0x%06zx name=\"%s\"\n", 1293 rom->fw_dir, 1294 rom->fw_file, 1295 rom->romsize, 1296 rom->name); 1297 } 1298 } 1299 } 1300 1301 typedef enum HexRecord HexRecord; 1302 enum HexRecord { 1303 DATA_RECORD = 0, 1304 EOF_RECORD, 1305 EXT_SEG_ADDR_RECORD, 1306 START_SEG_ADDR_RECORD, 1307 EXT_LINEAR_ADDR_RECORD, 1308 START_LINEAR_ADDR_RECORD, 1309 }; 1310 1311 /* Each record contains a 16-bit address which is combined with the upper 16 1312 * bits of the implicit "next address" to form a 32-bit address. 1313 */ 1314 #define NEXT_ADDR_MASK 0xffff0000 1315 1316 #define DATA_FIELD_MAX_LEN 0xff 1317 #define LEN_EXCEPT_DATA 0x5 1318 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1319 * sizeof(checksum) */ 1320 typedef struct { 1321 uint8_t byte_count; 1322 uint16_t address; 1323 uint8_t record_type; 1324 uint8_t data[DATA_FIELD_MAX_LEN]; 1325 uint8_t checksum; 1326 } HexLine; 1327 1328 /* return 0 or -1 if error */ 1329 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1330 uint32_t *index, const bool in_process) 1331 { 1332 /* +-------+---------------+-------+---------------------+--------+ 1333 * | byte | |record | | | 1334 * | count | address | type | data |checksum| 1335 * +-------+---------------+-------+---------------------+--------+ 1336 * ^ ^ ^ ^ ^ ^ 1337 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1338 */ 1339 uint8_t value = 0; 1340 uint32_t idx = *index; 1341 /* ignore space */ 1342 if (g_ascii_isspace(c)) { 1343 return true; 1344 } 1345 if (!g_ascii_isxdigit(c) || !in_process) { 1346 return false; 1347 } 1348 value = g_ascii_xdigit_value(c); 1349 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1350 if (idx < 2) { 1351 line->byte_count |= value; 1352 } else if (2 <= idx && idx < 6) { 1353 line->address <<= 4; 1354 line->address += g_ascii_xdigit_value(c); 1355 } else if (6 <= idx && idx < 8) { 1356 line->record_type |= value; 1357 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1358 line->data[(idx - 8) >> 1] |= value; 1359 } else if (8 + 2 * line->byte_count <= idx && 1360 idx < 10 + 2 * line->byte_count) { 1361 line->checksum |= value; 1362 } else { 1363 return false; 1364 } 1365 *our_checksum += value; 1366 ++(*index); 1367 return true; 1368 } 1369 1370 typedef struct { 1371 const char *filename; 1372 HexLine line; 1373 uint8_t *bin_buf; 1374 hwaddr *start_addr; 1375 int total_size; 1376 uint32_t next_address_to_write; 1377 uint32_t current_address; 1378 uint32_t current_rom_index; 1379 uint32_t rom_start_address; 1380 AddressSpace *as; 1381 } HexParser; 1382 1383 /* return size or -1 if error */ 1384 static int handle_record_type(HexParser *parser) 1385 { 1386 HexLine *line = &(parser->line); 1387 switch (line->record_type) { 1388 case DATA_RECORD: 1389 parser->current_address = 1390 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1391 /* verify this is a contiguous block of memory */ 1392 if (parser->current_address != parser->next_address_to_write) { 1393 if (parser->current_rom_index != 0) { 1394 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1395 parser->current_rom_index, 1396 parser->rom_start_address, parser->as); 1397 } 1398 parser->rom_start_address = parser->current_address; 1399 parser->current_rom_index = 0; 1400 } 1401 1402 /* copy from line buffer to output bin_buf */ 1403 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1404 line->byte_count); 1405 parser->current_rom_index += line->byte_count; 1406 parser->total_size += line->byte_count; 1407 /* save next address to write */ 1408 parser->next_address_to_write = 1409 parser->current_address + line->byte_count; 1410 break; 1411 1412 case EOF_RECORD: 1413 if (parser->current_rom_index != 0) { 1414 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1415 parser->current_rom_index, 1416 parser->rom_start_address, parser->as); 1417 } 1418 return parser->total_size; 1419 case EXT_SEG_ADDR_RECORD: 1420 case EXT_LINEAR_ADDR_RECORD: 1421 if (line->byte_count != 2 && line->address != 0) { 1422 return -1; 1423 } 1424 1425 if (parser->current_rom_index != 0) { 1426 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1427 parser->current_rom_index, 1428 parser->rom_start_address, parser->as); 1429 } 1430 1431 /* save next address to write, 1432 * in case of non-contiguous block of memory */ 1433 parser->next_address_to_write = (line->data[0] << 12) | 1434 (line->data[1] << 4); 1435 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1436 parser->next_address_to_write <<= 12; 1437 } 1438 1439 parser->rom_start_address = parser->next_address_to_write; 1440 parser->current_rom_index = 0; 1441 break; 1442 1443 case START_SEG_ADDR_RECORD: 1444 if (line->byte_count != 4 && line->address != 0) { 1445 return -1; 1446 } 1447 1448 /* x86 16-bit CS:IP segmented addressing */ 1449 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1450 ((line->data[2] << 8) | line->data[3]); 1451 break; 1452 1453 case START_LINEAR_ADDR_RECORD: 1454 if (line->byte_count != 4 && line->address != 0) { 1455 return -1; 1456 } 1457 1458 *(parser->start_addr) = ldl_be_p(line->data); 1459 break; 1460 1461 default: 1462 return -1; 1463 } 1464 1465 return parser->total_size; 1466 } 1467 1468 /* return size or -1 if error */ 1469 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1470 size_t hex_blob_size, AddressSpace *as) 1471 { 1472 bool in_process = false; /* avoid re-enter and 1473 * check whether record begin with ':' */ 1474 uint8_t *end = hex_blob + hex_blob_size; 1475 uint8_t our_checksum = 0; 1476 uint32_t record_index = 0; 1477 HexParser parser = { 1478 .filename = filename, 1479 .bin_buf = g_malloc(hex_blob_size), 1480 .start_addr = addr, 1481 .as = as, 1482 }; 1483 1484 rom_transaction_begin(); 1485 1486 for (; hex_blob < end; ++hex_blob) { 1487 switch (*hex_blob) { 1488 case '\r': 1489 case '\n': 1490 if (!in_process) { 1491 break; 1492 } 1493 1494 in_process = false; 1495 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1496 record_index || 1497 our_checksum != 0) { 1498 parser.total_size = -1; 1499 goto out; 1500 } 1501 1502 if (handle_record_type(&parser) == -1) { 1503 parser.total_size = -1; 1504 goto out; 1505 } 1506 break; 1507 1508 /* start of a new record. */ 1509 case ':': 1510 memset(&parser.line, 0, sizeof(HexLine)); 1511 in_process = true; 1512 record_index = 0; 1513 break; 1514 1515 /* decoding lines */ 1516 default: 1517 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1518 &record_index, in_process)) { 1519 parser.total_size = -1; 1520 goto out; 1521 } 1522 break; 1523 } 1524 } 1525 1526 out: 1527 g_free(parser.bin_buf); 1528 rom_transaction_end(parser.total_size != -1); 1529 return parser.total_size; 1530 } 1531 1532 /* return size or -1 if error */ 1533 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as) 1534 { 1535 gsize hex_blob_size; 1536 gchar *hex_blob; 1537 int total_size = 0; 1538 1539 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1540 return -1; 1541 } 1542 1543 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1544 hex_blob_size, as); 1545 1546 g_free(hex_blob); 1547 return total_size; 1548 } 1549