xref: /openbmc/qemu/hw/core/loader.c (revision 464e447a)
1 /*
2  * QEMU Executable loader
3  *
4  * Copyright (c) 2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  *
24  * Gunzip functionality in this file is derived from u-boot:
25  *
26  * (C) Copyright 2008 Semihalf
27  *
28  * (C) Copyright 2000-2005
29  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
30  *
31  * This program is free software; you can redistribute it and/or
32  * modify it under the terms of the GNU General Public License as
33  * published by the Free Software Foundation; either version 2 of
34  * the License, or (at your option) any later version.
35  *
36  * This program is distributed in the hope that it will be useful,
37  * but WITHOUT ANY WARRANTY; without even the implied warranty of
38  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
39  * GNU General Public License for more details.
40  *
41  * You should have received a copy of the GNU General Public License along
42  * with this program; if not, see <http://www.gnu.org/licenses/>.
43  */
44 
45 #include "qemu/osdep.h"
46 #include "qapi/error.h"
47 #include "hw/hw.h"
48 #include "disas/disas.h"
49 #include "monitor/monitor.h"
50 #include "sysemu/sysemu.h"
51 #include "uboot_image.h"
52 #include "hw/loader.h"
53 #include "hw/nvram/fw_cfg.h"
54 #include "exec/memory.h"
55 #include "exec/address-spaces.h"
56 #include "hw/boards.h"
57 #include "qemu/cutils.h"
58 
59 #include <zlib.h>
60 
61 static int roms_loaded;
62 
63 /* return the size or -1 if error */
64 int64_t get_image_size(const char *filename)
65 {
66     int fd;
67     int64_t size;
68     fd = open(filename, O_RDONLY | O_BINARY);
69     if (fd < 0)
70         return -1;
71     size = lseek(fd, 0, SEEK_END);
72     close(fd);
73     return size;
74 }
75 
76 /* return the size or -1 if error */
77 ssize_t load_image_size(const char *filename, void *addr, size_t size)
78 {
79     int fd;
80     ssize_t actsize;
81 
82     fd = open(filename, O_RDONLY | O_BINARY);
83     if (fd < 0) {
84         return -1;
85     }
86 
87     actsize = read(fd, addr, size);
88     if (actsize < 0) {
89         close(fd);
90         return -1;
91     }
92     close(fd);
93 
94     return actsize;
95 }
96 
97 /* read()-like version */
98 ssize_t read_targphys(const char *name,
99                       int fd, hwaddr dst_addr, size_t nbytes)
100 {
101     uint8_t *buf;
102     ssize_t did;
103 
104     buf = g_malloc(nbytes);
105     did = read(fd, buf, nbytes);
106     if (did > 0)
107         rom_add_blob_fixed("read", buf, did, dst_addr);
108     g_free(buf);
109     return did;
110 }
111 
112 int load_image_targphys(const char *filename,
113                         hwaddr addr, uint64_t max_sz)
114 {
115     return load_image_targphys_as(filename, addr, max_sz, NULL);
116 }
117 
118 /* return the size or -1 if error */
119 int load_image_targphys_as(const char *filename,
120                            hwaddr addr, uint64_t max_sz, AddressSpace *as)
121 {
122     int size;
123 
124     size = get_image_size(filename);
125     if (size < 0 || size > max_sz) {
126         return -1;
127     }
128     if (size > 0) {
129         if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
130             return -1;
131         }
132     }
133     return size;
134 }
135 
136 int load_image_mr(const char *filename, MemoryRegion *mr)
137 {
138     int size;
139 
140     if (!memory_access_is_direct(mr, false)) {
141         /* Can only load an image into RAM or ROM */
142         return -1;
143     }
144 
145     size = get_image_size(filename);
146 
147     if (size < 0 || size > memory_region_size(mr)) {
148         return -1;
149     }
150     if (size > 0) {
151         if (rom_add_file_mr(filename, mr, -1) < 0) {
152             return -1;
153         }
154     }
155     return size;
156 }
157 
158 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
159                       const char *source)
160 {
161     const char *nulp;
162     char *ptr;
163 
164     if (buf_size <= 0) return;
165     nulp = memchr(source, 0, buf_size);
166     if (nulp) {
167         rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
168     } else {
169         rom_add_blob_fixed(name, source, buf_size, dest);
170         ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
171         *ptr = 0;
172     }
173 }
174 
175 /* A.OUT loader */
176 
177 struct exec
178 {
179   uint32_t a_info;   /* Use macros N_MAGIC, etc for access */
180   uint32_t a_text;   /* length of text, in bytes */
181   uint32_t a_data;   /* length of data, in bytes */
182   uint32_t a_bss;    /* length of uninitialized data area, in bytes */
183   uint32_t a_syms;   /* length of symbol table data in file, in bytes */
184   uint32_t a_entry;  /* start address */
185   uint32_t a_trsize; /* length of relocation info for text, in bytes */
186   uint32_t a_drsize; /* length of relocation info for data, in bytes */
187 };
188 
189 static void bswap_ahdr(struct exec *e)
190 {
191     bswap32s(&e->a_info);
192     bswap32s(&e->a_text);
193     bswap32s(&e->a_data);
194     bswap32s(&e->a_bss);
195     bswap32s(&e->a_syms);
196     bswap32s(&e->a_entry);
197     bswap32s(&e->a_trsize);
198     bswap32s(&e->a_drsize);
199 }
200 
201 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
202 #define OMAGIC 0407
203 #define NMAGIC 0410
204 #define ZMAGIC 0413
205 #define QMAGIC 0314
206 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
207 #define N_TXTOFF(x)							\
208     (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) :	\
209      (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
210 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
211 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
212 
213 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
214 
215 #define N_DATADDR(x, target_page_size) \
216     (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
217      : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
218 
219 
220 int load_aout(const char *filename, hwaddr addr, int max_sz,
221               int bswap_needed, hwaddr target_page_size)
222 {
223     int fd;
224     ssize_t size, ret;
225     struct exec e;
226     uint32_t magic;
227 
228     fd = open(filename, O_RDONLY | O_BINARY);
229     if (fd < 0)
230         return -1;
231 
232     size = read(fd, &e, sizeof(e));
233     if (size < 0)
234         goto fail;
235 
236     if (bswap_needed) {
237         bswap_ahdr(&e);
238     }
239 
240     magic = N_MAGIC(e);
241     switch (magic) {
242     case ZMAGIC:
243     case QMAGIC:
244     case OMAGIC:
245         if (e.a_text + e.a_data > max_sz)
246             goto fail;
247 	lseek(fd, N_TXTOFF(e), SEEK_SET);
248 	size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
249 	if (size < 0)
250 	    goto fail;
251 	break;
252     case NMAGIC:
253         if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
254             goto fail;
255 	lseek(fd, N_TXTOFF(e), SEEK_SET);
256 	size = read_targphys(filename, fd, addr, e.a_text);
257 	if (size < 0)
258 	    goto fail;
259         ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
260                             e.a_data);
261 	if (ret < 0)
262 	    goto fail;
263 	size += ret;
264 	break;
265     default:
266 	goto fail;
267     }
268     close(fd);
269     return size;
270  fail:
271     close(fd);
272     return -1;
273 }
274 
275 /* ELF loader */
276 
277 static void *load_at(int fd, off_t offset, size_t size)
278 {
279     void *ptr;
280     if (lseek(fd, offset, SEEK_SET) < 0)
281         return NULL;
282     ptr = g_malloc(size);
283     if (read(fd, ptr, size) != size) {
284         g_free(ptr);
285         return NULL;
286     }
287     return ptr;
288 }
289 
290 #ifdef ELF_CLASS
291 #undef ELF_CLASS
292 #endif
293 
294 #define ELF_CLASS   ELFCLASS32
295 #include "elf.h"
296 
297 #define SZ		32
298 #define elf_word        uint32_t
299 #define elf_sword        int32_t
300 #define bswapSZs	bswap32s
301 #include "hw/elf_ops.h"
302 
303 #undef elfhdr
304 #undef elf_phdr
305 #undef elf_shdr
306 #undef elf_sym
307 #undef elf_rela
308 #undef elf_note
309 #undef elf_word
310 #undef elf_sword
311 #undef bswapSZs
312 #undef SZ
313 #define elfhdr		elf64_hdr
314 #define elf_phdr	elf64_phdr
315 #define elf_note	elf64_note
316 #define elf_shdr	elf64_shdr
317 #define elf_sym		elf64_sym
318 #define elf_rela        elf64_rela
319 #define elf_word        uint64_t
320 #define elf_sword        int64_t
321 #define bswapSZs	bswap64s
322 #define SZ		64
323 #include "hw/elf_ops.h"
324 
325 const char *load_elf_strerror(int error)
326 {
327     switch (error) {
328     case 0:
329         return "No error";
330     case ELF_LOAD_FAILED:
331         return "Failed to load ELF";
332     case ELF_LOAD_NOT_ELF:
333         return "The image is not ELF";
334     case ELF_LOAD_WRONG_ARCH:
335         return "The image is from incompatible architecture";
336     case ELF_LOAD_WRONG_ENDIAN:
337         return "The image has incorrect endianness";
338     default:
339         return "Unknown error";
340     }
341 }
342 
343 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
344 {
345     int fd;
346     uint8_t e_ident_local[EI_NIDENT];
347     uint8_t *e_ident;
348     size_t hdr_size, off;
349     bool is64l;
350 
351     if (!hdr) {
352         hdr = e_ident_local;
353     }
354     e_ident = hdr;
355 
356     fd = open(filename, O_RDONLY | O_BINARY);
357     if (fd < 0) {
358         error_setg_errno(errp, errno, "Failed to open file: %s", filename);
359         return;
360     }
361     if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
362         error_setg_errno(errp, errno, "Failed to read file: %s", filename);
363         goto fail;
364     }
365     if (e_ident[0] != ELFMAG0 ||
366         e_ident[1] != ELFMAG1 ||
367         e_ident[2] != ELFMAG2 ||
368         e_ident[3] != ELFMAG3) {
369         error_setg(errp, "Bad ELF magic");
370         goto fail;
371     }
372 
373     is64l = e_ident[EI_CLASS] == ELFCLASS64;
374     hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
375     if (is64) {
376         *is64 = is64l;
377     }
378 
379     off = EI_NIDENT;
380     while (hdr != e_ident_local && off < hdr_size) {
381         size_t br = read(fd, hdr + off, hdr_size - off);
382         switch (br) {
383         case 0:
384             error_setg(errp, "File too short: %s", filename);
385             goto fail;
386         case -1:
387             error_setg_errno(errp, errno, "Failed to read file: %s",
388                              filename);
389             goto fail;
390         }
391         off += br;
392     }
393 
394 fail:
395     close(fd);
396 }
397 
398 /* return < 0 if error, otherwise the number of bytes loaded in memory */
399 int load_elf(const char *filename, uint64_t (*translate_fn)(void *, uint64_t),
400              void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
401              uint64_t *highaddr, int big_endian, int elf_machine,
402              int clear_lsb, int data_swab)
403 {
404     return load_elf_as(filename, translate_fn, translate_opaque, pentry,
405                        lowaddr, highaddr, big_endian, elf_machine, clear_lsb,
406                        data_swab, NULL);
407 }
408 
409 /* return < 0 if error, otherwise the number of bytes loaded in memory */
410 int load_elf_as(const char *filename,
411                 uint64_t (*translate_fn)(void *, uint64_t),
412                 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
413                 uint64_t *highaddr, int big_endian, int elf_machine,
414                 int clear_lsb, int data_swab, AddressSpace *as)
415 {
416     return load_elf_ram(filename, translate_fn, translate_opaque,
417                         pentry, lowaddr, highaddr, big_endian, elf_machine,
418                         clear_lsb, data_swab, as, true);
419 }
420 
421 /* return < 0 if error, otherwise the number of bytes loaded in memory */
422 int load_elf_ram(const char *filename,
423                  uint64_t (*translate_fn)(void *, uint64_t),
424                  void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
425                  uint64_t *highaddr, int big_endian, int elf_machine,
426                  int clear_lsb, int data_swab, AddressSpace *as,
427                  bool load_rom)
428 {
429     return load_elf_ram_sym(filename, translate_fn, translate_opaque,
430                             pentry, lowaddr, highaddr, big_endian,
431                             elf_machine, clear_lsb, data_swab, as,
432                             load_rom, NULL);
433 }
434 
435 /* return < 0 if error, otherwise the number of bytes loaded in memory */
436 int load_elf_ram_sym(const char *filename,
437                      uint64_t (*translate_fn)(void *, uint64_t),
438                      void *translate_opaque, uint64_t *pentry,
439                      uint64_t *lowaddr, uint64_t *highaddr, int big_endian,
440                      int elf_machine, int clear_lsb, int data_swab,
441                      AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
442 {
443     int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED;
444     uint8_t e_ident[EI_NIDENT];
445 
446     fd = open(filename, O_RDONLY | O_BINARY);
447     if (fd < 0) {
448         perror(filename);
449         return -1;
450     }
451     if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
452         goto fail;
453     if (e_ident[0] != ELFMAG0 ||
454         e_ident[1] != ELFMAG1 ||
455         e_ident[2] != ELFMAG2 ||
456         e_ident[3] != ELFMAG3) {
457         ret = ELF_LOAD_NOT_ELF;
458         goto fail;
459     }
460 #ifdef HOST_WORDS_BIGENDIAN
461     data_order = ELFDATA2MSB;
462 #else
463     data_order = ELFDATA2LSB;
464 #endif
465     must_swab = data_order != e_ident[EI_DATA];
466     if (big_endian) {
467         target_data_order = ELFDATA2MSB;
468     } else {
469         target_data_order = ELFDATA2LSB;
470     }
471 
472     if (target_data_order != e_ident[EI_DATA]) {
473         ret = ELF_LOAD_WRONG_ENDIAN;
474         goto fail;
475     }
476 
477     lseek(fd, 0, SEEK_SET);
478     if (e_ident[EI_CLASS] == ELFCLASS64) {
479         ret = load_elf64(filename, fd, translate_fn, translate_opaque, must_swab,
480                          pentry, lowaddr, highaddr, elf_machine, clear_lsb,
481                          data_swab, as, load_rom, sym_cb);
482     } else {
483         ret = load_elf32(filename, fd, translate_fn, translate_opaque, must_swab,
484                          pentry, lowaddr, highaddr, elf_machine, clear_lsb,
485                          data_swab, as, load_rom, sym_cb);
486     }
487 
488  fail:
489     close(fd);
490     return ret;
491 }
492 
493 static void bswap_uboot_header(uboot_image_header_t *hdr)
494 {
495 #ifndef HOST_WORDS_BIGENDIAN
496     bswap32s(&hdr->ih_magic);
497     bswap32s(&hdr->ih_hcrc);
498     bswap32s(&hdr->ih_time);
499     bswap32s(&hdr->ih_size);
500     bswap32s(&hdr->ih_load);
501     bswap32s(&hdr->ih_ep);
502     bswap32s(&hdr->ih_dcrc);
503 #endif
504 }
505 
506 
507 #define ZALLOC_ALIGNMENT	16
508 
509 static void *zalloc(void *x, unsigned items, unsigned size)
510 {
511     void *p;
512 
513     size *= items;
514     size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
515 
516     p = g_malloc(size);
517 
518     return (p);
519 }
520 
521 static void zfree(void *x, void *addr)
522 {
523     g_free(addr);
524 }
525 
526 
527 #define HEAD_CRC	2
528 #define EXTRA_FIELD	4
529 #define ORIG_NAME	8
530 #define COMMENT		0x10
531 #define RESERVED	0xe0
532 
533 #define DEFLATED	8
534 
535 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
536 {
537     z_stream s;
538     ssize_t dstbytes;
539     int r, i, flags;
540 
541     /* skip header */
542     i = 10;
543     flags = src[3];
544     if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
545         puts ("Error: Bad gzipped data\n");
546         return -1;
547     }
548     if ((flags & EXTRA_FIELD) != 0)
549         i = 12 + src[10] + (src[11] << 8);
550     if ((flags & ORIG_NAME) != 0)
551         while (src[i++] != 0)
552             ;
553     if ((flags & COMMENT) != 0)
554         while (src[i++] != 0)
555             ;
556     if ((flags & HEAD_CRC) != 0)
557         i += 2;
558     if (i >= srclen) {
559         puts ("Error: gunzip out of data in header\n");
560         return -1;
561     }
562 
563     s.zalloc = zalloc;
564     s.zfree = zfree;
565 
566     r = inflateInit2(&s, -MAX_WBITS);
567     if (r != Z_OK) {
568         printf ("Error: inflateInit2() returned %d\n", r);
569         return (-1);
570     }
571     s.next_in = src + i;
572     s.avail_in = srclen - i;
573     s.next_out = dst;
574     s.avail_out = dstlen;
575     r = inflate(&s, Z_FINISH);
576     if (r != Z_OK && r != Z_STREAM_END) {
577         printf ("Error: inflate() returned %d\n", r);
578         return -1;
579     }
580     dstbytes = s.next_out - (unsigned char *) dst;
581     inflateEnd(&s);
582 
583     return dstbytes;
584 }
585 
586 /* Load a U-Boot image.  */
587 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
588                             int *is_linux, uint8_t image_type,
589                             uint64_t (*translate_fn)(void *, uint64_t),
590                             void *translate_opaque, AddressSpace *as)
591 {
592     int fd;
593     int size;
594     hwaddr address;
595     uboot_image_header_t h;
596     uboot_image_header_t *hdr = &h;
597     uint8_t *data = NULL;
598     int ret = -1;
599     int do_uncompress = 0;
600 
601     fd = open(filename, O_RDONLY | O_BINARY);
602     if (fd < 0)
603         return -1;
604 
605     size = read(fd, hdr, sizeof(uboot_image_header_t));
606     if (size < sizeof(uboot_image_header_t)) {
607         goto out;
608     }
609 
610     bswap_uboot_header(hdr);
611 
612     if (hdr->ih_magic != IH_MAGIC)
613         goto out;
614 
615     if (hdr->ih_type != image_type) {
616         fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
617                 image_type);
618         goto out;
619     }
620 
621     /* TODO: Implement other image types.  */
622     switch (hdr->ih_type) {
623     case IH_TYPE_KERNEL:
624         address = hdr->ih_load;
625         if (translate_fn) {
626             address = translate_fn(translate_opaque, address);
627         }
628         if (loadaddr) {
629             *loadaddr = hdr->ih_load;
630         }
631 
632         switch (hdr->ih_comp) {
633         case IH_COMP_NONE:
634             break;
635         case IH_COMP_GZIP:
636             do_uncompress = 1;
637             break;
638         default:
639             fprintf(stderr,
640                     "Unable to load u-boot images with compression type %d\n",
641                     hdr->ih_comp);
642             goto out;
643         }
644 
645         if (ep) {
646             *ep = hdr->ih_ep;
647         }
648 
649         /* TODO: Check CPU type.  */
650         if (is_linux) {
651             if (hdr->ih_os == IH_OS_LINUX) {
652                 *is_linux = 1;
653             } else {
654                 *is_linux = 0;
655             }
656         }
657 
658         break;
659     case IH_TYPE_RAMDISK:
660         address = *loadaddr;
661         break;
662     default:
663         fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
664         goto out;
665     }
666 
667     data = g_malloc(hdr->ih_size);
668 
669     if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
670         fprintf(stderr, "Error reading file\n");
671         goto out;
672     }
673 
674     if (do_uncompress) {
675         uint8_t *compressed_data;
676         size_t max_bytes;
677         ssize_t bytes;
678 
679         compressed_data = data;
680         max_bytes = UBOOT_MAX_GUNZIP_BYTES;
681         data = g_malloc(max_bytes);
682 
683         bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
684         g_free(compressed_data);
685         if (bytes < 0) {
686             fprintf(stderr, "Unable to decompress gzipped image!\n");
687             goto out;
688         }
689         hdr->ih_size = bytes;
690     }
691 
692     rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
693 
694     ret = hdr->ih_size;
695 
696 out:
697     g_free(data);
698     close(fd);
699     return ret;
700 }
701 
702 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
703                 int *is_linux,
704                 uint64_t (*translate_fn)(void *, uint64_t),
705                 void *translate_opaque)
706 {
707     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
708                             translate_fn, translate_opaque, NULL);
709 }
710 
711 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
712                    int *is_linux,
713                    uint64_t (*translate_fn)(void *, uint64_t),
714                    void *translate_opaque, AddressSpace *as)
715 {
716     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
717                             translate_fn, translate_opaque, as);
718 }
719 
720 /* Load a ramdisk.  */
721 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
722 {
723     return load_ramdisk_as(filename, addr, max_sz, NULL);
724 }
725 
726 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
727                     AddressSpace *as)
728 {
729     return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
730                             NULL, NULL, as);
731 }
732 
733 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
734 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
735                               uint8_t **buffer)
736 {
737     uint8_t *compressed_data = NULL;
738     uint8_t *data = NULL;
739     gsize len;
740     ssize_t bytes;
741     int ret = -1;
742 
743     if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
744                              NULL)) {
745         goto out;
746     }
747 
748     /* Is it a gzip-compressed file? */
749     if (len < 2 ||
750         compressed_data[0] != 0x1f ||
751         compressed_data[1] != 0x8b) {
752         goto out;
753     }
754 
755     if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
756         max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
757     }
758 
759     data = g_malloc(max_sz);
760     bytes = gunzip(data, max_sz, compressed_data, len);
761     if (bytes < 0) {
762         fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
763                 filename);
764         goto out;
765     }
766 
767     /* trim to actual size and return to caller */
768     *buffer = g_realloc(data, bytes);
769     ret = bytes;
770     /* ownership has been transferred to caller */
771     data = NULL;
772 
773  out:
774     g_free(compressed_data);
775     g_free(data);
776     return ret;
777 }
778 
779 /* Load a gzip-compressed kernel. */
780 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
781 {
782     int bytes;
783     uint8_t *data;
784 
785     bytes = load_image_gzipped_buffer(filename, max_sz, &data);
786     if (bytes != -1) {
787         rom_add_blob_fixed(filename, data, bytes, addr);
788         g_free(data);
789     }
790     return bytes;
791 }
792 
793 /*
794  * Functions for reboot-persistent memory regions.
795  *  - used for vga bios and option roms.
796  *  - also linux kernel (-kernel / -initrd).
797  */
798 
799 typedef struct Rom Rom;
800 
801 struct Rom {
802     char *name;
803     char *path;
804 
805     /* datasize is the amount of memory allocated in "data". If datasize is less
806      * than romsize, it means that the area from datasize to romsize is filled
807      * with zeros.
808      */
809     size_t romsize;
810     size_t datasize;
811 
812     uint8_t *data;
813     MemoryRegion *mr;
814     AddressSpace *as;
815     int isrom;
816     char *fw_dir;
817     char *fw_file;
818 
819     bool committed;
820 
821     hwaddr addr;
822     QTAILQ_ENTRY(Rom) next;
823 };
824 
825 static FWCfgState *fw_cfg;
826 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
827 
828 /* rom->data must be heap-allocated (do not use with rom_add_elf_program()) */
829 static void rom_free(Rom *rom)
830 {
831     g_free(rom->data);
832     g_free(rom->path);
833     g_free(rom->name);
834     g_free(rom->fw_dir);
835     g_free(rom->fw_file);
836     g_free(rom);
837 }
838 
839 static inline bool rom_order_compare(Rom *rom, Rom *item)
840 {
841     return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
842            (rom->as == item->as && rom->addr >= item->addr);
843 }
844 
845 static void rom_insert(Rom *rom)
846 {
847     Rom *item;
848 
849     if (roms_loaded) {
850         hw_error ("ROM images must be loaded at startup\n");
851     }
852 
853     /* The user didn't specify an address space, this is the default */
854     if (!rom->as) {
855         rom->as = &address_space_memory;
856     }
857 
858     rom->committed = false;
859 
860     /* List is ordered by load address in the same address space */
861     QTAILQ_FOREACH(item, &roms, next) {
862         if (rom_order_compare(rom, item)) {
863             continue;
864         }
865         QTAILQ_INSERT_BEFORE(item, rom, next);
866         return;
867     }
868     QTAILQ_INSERT_TAIL(&roms, rom, next);
869 }
870 
871 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
872 {
873     if (fw_cfg) {
874         fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
875     }
876 }
877 
878 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
879 {
880     void *data;
881 
882     rom->mr = g_malloc(sizeof(*rom->mr));
883     memory_region_init_resizeable_ram(rom->mr, owner, name,
884                                       rom->datasize, rom->romsize,
885                                       fw_cfg_resized,
886                                       &error_fatal);
887     memory_region_set_readonly(rom->mr, ro);
888     vmstate_register_ram_global(rom->mr);
889 
890     data = memory_region_get_ram_ptr(rom->mr);
891     memcpy(data, rom->data, rom->datasize);
892 
893     return data;
894 }
895 
896 int rom_add_file(const char *file, const char *fw_dir,
897                  hwaddr addr, int32_t bootindex,
898                  bool option_rom, MemoryRegion *mr,
899                  AddressSpace *as)
900 {
901     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
902     Rom *rom;
903     int rc, fd = -1;
904     char devpath[100];
905 
906     if (as && mr) {
907         fprintf(stderr, "Specifying an Address Space and Memory Region is " \
908                 "not valid when loading a rom\n");
909         /* We haven't allocated anything so we don't need any cleanup */
910         return -1;
911     }
912 
913     rom = g_malloc0(sizeof(*rom));
914     rom->name = g_strdup(file);
915     rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
916     rom->as = as;
917     if (rom->path == NULL) {
918         rom->path = g_strdup(file);
919     }
920 
921     fd = open(rom->path, O_RDONLY | O_BINARY);
922     if (fd == -1) {
923         fprintf(stderr, "Could not open option rom '%s': %s\n",
924                 rom->path, strerror(errno));
925         goto err;
926     }
927 
928     if (fw_dir) {
929         rom->fw_dir  = g_strdup(fw_dir);
930         rom->fw_file = g_strdup(file);
931     }
932     rom->addr     = addr;
933     rom->romsize  = lseek(fd, 0, SEEK_END);
934     if (rom->romsize == -1) {
935         fprintf(stderr, "rom: file %-20s: get size error: %s\n",
936                 rom->name, strerror(errno));
937         goto err;
938     }
939 
940     rom->datasize = rom->romsize;
941     rom->data     = g_malloc0(rom->datasize);
942     lseek(fd, 0, SEEK_SET);
943     rc = read(fd, rom->data, rom->datasize);
944     if (rc != rom->datasize) {
945         fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
946                 rom->name, rc, rom->datasize);
947         goto err;
948     }
949     close(fd);
950     rom_insert(rom);
951     if (rom->fw_file && fw_cfg) {
952         const char *basename;
953         char fw_file_name[FW_CFG_MAX_FILE_PATH];
954         void *data;
955 
956         basename = strrchr(rom->fw_file, '/');
957         if (basename) {
958             basename++;
959         } else {
960             basename = rom->fw_file;
961         }
962         snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
963                  basename);
964         snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
965 
966         if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
967             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
968         } else {
969             data = rom->data;
970         }
971 
972         fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
973     } else {
974         if (mr) {
975             rom->mr = mr;
976             snprintf(devpath, sizeof(devpath), "/rom@%s", file);
977         } else {
978             snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
979         }
980     }
981 
982     add_boot_device_path(bootindex, NULL, devpath);
983     return 0;
984 
985 err:
986     if (fd != -1)
987         close(fd);
988 
989     rom_free(rom);
990     return -1;
991 }
992 
993 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
994                    size_t max_len, hwaddr addr, const char *fw_file_name,
995                    FWCfgCallback fw_callback, void *callback_opaque,
996                    AddressSpace *as, bool read_only)
997 {
998     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
999     Rom *rom;
1000     MemoryRegion *mr = NULL;
1001 
1002     rom           = g_malloc0(sizeof(*rom));
1003     rom->name     = g_strdup(name);
1004     rom->as       = as;
1005     rom->addr     = addr;
1006     rom->romsize  = max_len ? max_len : len;
1007     rom->datasize = len;
1008     rom->data     = g_malloc0(rom->datasize);
1009     memcpy(rom->data, blob, len);
1010     rom_insert(rom);
1011     if (fw_file_name && fw_cfg) {
1012         char devpath[100];
1013         void *data;
1014 
1015         if (read_only) {
1016             snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1017         } else {
1018             snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1019         }
1020 
1021         if (mc->rom_file_has_mr) {
1022             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1023             mr = rom->mr;
1024         } else {
1025             data = rom->data;
1026         }
1027 
1028         fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1029                                  fw_callback, NULL, callback_opaque,
1030                                  data, rom->datasize, read_only);
1031     }
1032     return mr;
1033 }
1034 
1035 /* This function is specific for elf program because we don't need to allocate
1036  * all the rom. We just allocate the first part and the rest is just zeros. This
1037  * is why romsize and datasize are different. Also, this function seize the
1038  * memory ownership of "data", so we don't have to allocate and copy the buffer.
1039  */
1040 int rom_add_elf_program(const char *name, void *data, size_t datasize,
1041                         size_t romsize, hwaddr addr, AddressSpace *as)
1042 {
1043     Rom *rom;
1044 
1045     rom           = g_malloc0(sizeof(*rom));
1046     rom->name     = g_strdup(name);
1047     rom->addr     = addr;
1048     rom->datasize = datasize;
1049     rom->romsize  = romsize;
1050     rom->data     = data;
1051     rom->as       = as;
1052     rom_insert(rom);
1053     return 0;
1054 }
1055 
1056 int rom_add_vga(const char *file)
1057 {
1058     return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1059 }
1060 
1061 int rom_add_option(const char *file, int32_t bootindex)
1062 {
1063     return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1064 }
1065 
1066 static void rom_reset(void *unused)
1067 {
1068     Rom *rom;
1069 
1070     QTAILQ_FOREACH(rom, &roms, next) {
1071         if (rom->fw_file) {
1072             continue;
1073         }
1074         if (rom->data == NULL) {
1075             continue;
1076         }
1077         if (rom->mr) {
1078             void *host = memory_region_get_ram_ptr(rom->mr);
1079             memcpy(host, rom->data, rom->datasize);
1080         } else {
1081             address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1082                                     rom->data, rom->datasize);
1083         }
1084         if (rom->isrom) {
1085             /* rom needs to be written only once */
1086             g_free(rom->data);
1087             rom->data = NULL;
1088         }
1089         /*
1090          * The rom loader is really on the same level as firmware in the guest
1091          * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1092          * that the instruction cache for that new region is clear, so that the
1093          * CPU definitely fetches its instructions from the just written data.
1094          */
1095         cpu_flush_icache_range(rom->addr, rom->datasize);
1096     }
1097 }
1098 
1099 int rom_check_and_register_reset(void)
1100 {
1101     hwaddr addr = 0;
1102     MemoryRegionSection section;
1103     Rom *rom;
1104     AddressSpace *as = NULL;
1105 
1106     QTAILQ_FOREACH(rom, &roms, next) {
1107         if (rom->fw_file) {
1108             continue;
1109         }
1110         if (!rom->mr) {
1111             if ((addr > rom->addr) && (as == rom->as)) {
1112                 fprintf(stderr, "rom: requested regions overlap "
1113                         "(rom %s. free=0x" TARGET_FMT_plx
1114                         ", addr=0x" TARGET_FMT_plx ")\n",
1115                         rom->name, addr, rom->addr);
1116                 return -1;
1117             }
1118             addr  = rom->addr;
1119             addr += rom->romsize;
1120             as = rom->as;
1121         }
1122         section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1123                                      rom->addr, 1);
1124         rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1125         memory_region_unref(section.mr);
1126     }
1127     qemu_register_reset(rom_reset, NULL);
1128     roms_loaded = 1;
1129     return 0;
1130 }
1131 
1132 void rom_set_fw(FWCfgState *f)
1133 {
1134     fw_cfg = f;
1135 }
1136 
1137 void rom_set_order_override(int order)
1138 {
1139     if (!fw_cfg)
1140         return;
1141     fw_cfg_set_order_override(fw_cfg, order);
1142 }
1143 
1144 void rom_reset_order_override(void)
1145 {
1146     if (!fw_cfg)
1147         return;
1148     fw_cfg_reset_order_override(fw_cfg);
1149 }
1150 
1151 void rom_transaction_begin(void)
1152 {
1153     Rom *rom;
1154 
1155     /* Ignore ROMs added without the transaction API */
1156     QTAILQ_FOREACH(rom, &roms, next) {
1157         rom->committed = true;
1158     }
1159 }
1160 
1161 void rom_transaction_end(bool commit)
1162 {
1163     Rom *rom;
1164     Rom *tmp;
1165 
1166     QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1167         if (rom->committed) {
1168             continue;
1169         }
1170         if (commit) {
1171             rom->committed = true;
1172         } else {
1173             QTAILQ_REMOVE(&roms, rom, next);
1174             rom_free(rom);
1175         }
1176     }
1177 }
1178 
1179 static Rom *find_rom(hwaddr addr, size_t size)
1180 {
1181     Rom *rom;
1182 
1183     QTAILQ_FOREACH(rom, &roms, next) {
1184         if (rom->fw_file) {
1185             continue;
1186         }
1187         if (rom->mr) {
1188             continue;
1189         }
1190         if (rom->addr > addr) {
1191             continue;
1192         }
1193         if (rom->addr + rom->romsize < addr + size) {
1194             continue;
1195         }
1196         return rom;
1197     }
1198     return NULL;
1199 }
1200 
1201 /*
1202  * Copies memory from registered ROMs to dest. Any memory that is contained in
1203  * a ROM between addr and addr + size is copied. Note that this can involve
1204  * multiple ROMs, which need not start at addr and need not end at addr + size.
1205  */
1206 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1207 {
1208     hwaddr end = addr + size;
1209     uint8_t *s, *d = dest;
1210     size_t l = 0;
1211     Rom *rom;
1212 
1213     QTAILQ_FOREACH(rom, &roms, next) {
1214         if (rom->fw_file) {
1215             continue;
1216         }
1217         if (rom->mr) {
1218             continue;
1219         }
1220         if (rom->addr + rom->romsize < addr) {
1221             continue;
1222         }
1223         if (rom->addr > end) {
1224             break;
1225         }
1226 
1227         d = dest + (rom->addr - addr);
1228         s = rom->data;
1229         l = rom->datasize;
1230 
1231         if ((d + l) > (dest + size)) {
1232             l = dest - d;
1233         }
1234 
1235         if (l > 0) {
1236             memcpy(d, s, l);
1237         }
1238 
1239         if (rom->romsize > rom->datasize) {
1240             /* If datasize is less than romsize, it means that we didn't
1241              * allocate all the ROM because the trailing data are only zeros.
1242              */
1243 
1244             d += l;
1245             l = rom->romsize - rom->datasize;
1246 
1247             if ((d + l) > (dest + size)) {
1248                 /* Rom size doesn't fit in the destination area. Adjust to avoid
1249                  * overflow.
1250                  */
1251                 l = dest - d;
1252             }
1253 
1254             if (l > 0) {
1255                 memset(d, 0x0, l);
1256             }
1257         }
1258     }
1259 
1260     return (d + l) - dest;
1261 }
1262 
1263 void *rom_ptr(hwaddr addr, size_t size)
1264 {
1265     Rom *rom;
1266 
1267     rom = find_rom(addr, size);
1268     if (!rom || !rom->data)
1269         return NULL;
1270     return rom->data + (addr - rom->addr);
1271 }
1272 
1273 void hmp_info_roms(Monitor *mon, const QDict *qdict)
1274 {
1275     Rom *rom;
1276 
1277     QTAILQ_FOREACH(rom, &roms, next) {
1278         if (rom->mr) {
1279             monitor_printf(mon, "%s"
1280                            " size=0x%06zx name=\"%s\"\n",
1281                            memory_region_name(rom->mr),
1282                            rom->romsize,
1283                            rom->name);
1284         } else if (!rom->fw_file) {
1285             monitor_printf(mon, "addr=" TARGET_FMT_plx
1286                            " size=0x%06zx mem=%s name=\"%s\"\n",
1287                            rom->addr, rom->romsize,
1288                            rom->isrom ? "rom" : "ram",
1289                            rom->name);
1290         } else {
1291             monitor_printf(mon, "fw=%s/%s"
1292                            " size=0x%06zx name=\"%s\"\n",
1293                            rom->fw_dir,
1294                            rom->fw_file,
1295                            rom->romsize,
1296                            rom->name);
1297         }
1298     }
1299 }
1300 
1301 typedef enum HexRecord HexRecord;
1302 enum HexRecord {
1303     DATA_RECORD = 0,
1304     EOF_RECORD,
1305     EXT_SEG_ADDR_RECORD,
1306     START_SEG_ADDR_RECORD,
1307     EXT_LINEAR_ADDR_RECORD,
1308     START_LINEAR_ADDR_RECORD,
1309 };
1310 
1311 /* Each record contains a 16-bit address which is combined with the upper 16
1312  * bits of the implicit "next address" to form a 32-bit address.
1313  */
1314 #define NEXT_ADDR_MASK 0xffff0000
1315 
1316 #define DATA_FIELD_MAX_LEN 0xff
1317 #define LEN_EXCEPT_DATA 0x5
1318 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1319  *       sizeof(checksum) */
1320 typedef struct {
1321     uint8_t byte_count;
1322     uint16_t address;
1323     uint8_t record_type;
1324     uint8_t data[DATA_FIELD_MAX_LEN];
1325     uint8_t checksum;
1326 } HexLine;
1327 
1328 /* return 0 or -1 if error */
1329 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1330                          uint32_t *index, const bool in_process)
1331 {
1332     /* +-------+---------------+-------+---------------------+--------+
1333      * | byte  |               |record |                     |        |
1334      * | count |    address    | type  |        data         |checksum|
1335      * +-------+---------------+-------+---------------------+--------+
1336      * ^       ^               ^       ^                     ^        ^
1337      * |1 byte |    2 bytes    |1 byte |     0-255 bytes     | 1 byte |
1338      */
1339     uint8_t value = 0;
1340     uint32_t idx = *index;
1341     /* ignore space */
1342     if (g_ascii_isspace(c)) {
1343         return true;
1344     }
1345     if (!g_ascii_isxdigit(c) || !in_process) {
1346         return false;
1347     }
1348     value = g_ascii_xdigit_value(c);
1349     value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1350     if (idx < 2) {
1351         line->byte_count |= value;
1352     } else if (2 <= idx && idx < 6) {
1353         line->address <<= 4;
1354         line->address += g_ascii_xdigit_value(c);
1355     } else if (6 <= idx && idx < 8) {
1356         line->record_type |= value;
1357     } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1358         line->data[(idx - 8) >> 1] |= value;
1359     } else if (8 + 2 * line->byte_count <= idx &&
1360                idx < 10 + 2 * line->byte_count) {
1361         line->checksum |= value;
1362     } else {
1363         return false;
1364     }
1365     *our_checksum += value;
1366     ++(*index);
1367     return true;
1368 }
1369 
1370 typedef struct {
1371     const char *filename;
1372     HexLine line;
1373     uint8_t *bin_buf;
1374     hwaddr *start_addr;
1375     int total_size;
1376     uint32_t next_address_to_write;
1377     uint32_t current_address;
1378     uint32_t current_rom_index;
1379     uint32_t rom_start_address;
1380     AddressSpace *as;
1381 } HexParser;
1382 
1383 /* return size or -1 if error */
1384 static int handle_record_type(HexParser *parser)
1385 {
1386     HexLine *line = &(parser->line);
1387     switch (line->record_type) {
1388     case DATA_RECORD:
1389         parser->current_address =
1390             (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1391         /* verify this is a contiguous block of memory */
1392         if (parser->current_address != parser->next_address_to_write) {
1393             if (parser->current_rom_index != 0) {
1394                 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1395                                       parser->current_rom_index,
1396                                       parser->rom_start_address, parser->as);
1397             }
1398             parser->rom_start_address = parser->current_address;
1399             parser->current_rom_index = 0;
1400         }
1401 
1402         /* copy from line buffer to output bin_buf */
1403         memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1404                line->byte_count);
1405         parser->current_rom_index += line->byte_count;
1406         parser->total_size += line->byte_count;
1407         /* save next address to write */
1408         parser->next_address_to_write =
1409             parser->current_address + line->byte_count;
1410         break;
1411 
1412     case EOF_RECORD:
1413         if (parser->current_rom_index != 0) {
1414             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1415                                   parser->current_rom_index,
1416                                   parser->rom_start_address, parser->as);
1417         }
1418         return parser->total_size;
1419     case EXT_SEG_ADDR_RECORD:
1420     case EXT_LINEAR_ADDR_RECORD:
1421         if (line->byte_count != 2 && line->address != 0) {
1422             return -1;
1423         }
1424 
1425         if (parser->current_rom_index != 0) {
1426             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1427                                   parser->current_rom_index,
1428                                   parser->rom_start_address, parser->as);
1429         }
1430 
1431         /* save next address to write,
1432          * in case of non-contiguous block of memory */
1433         parser->next_address_to_write = (line->data[0] << 12) |
1434                                         (line->data[1] << 4);
1435         if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1436             parser->next_address_to_write <<= 12;
1437         }
1438 
1439         parser->rom_start_address = parser->next_address_to_write;
1440         parser->current_rom_index = 0;
1441         break;
1442 
1443     case START_SEG_ADDR_RECORD:
1444         if (line->byte_count != 4 && line->address != 0) {
1445             return -1;
1446         }
1447 
1448         /* x86 16-bit CS:IP segmented addressing */
1449         *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1450                                 ((line->data[2] << 8) | line->data[3]);
1451         break;
1452 
1453     case START_LINEAR_ADDR_RECORD:
1454         if (line->byte_count != 4 && line->address != 0) {
1455             return -1;
1456         }
1457 
1458         *(parser->start_addr) = ldl_be_p(line->data);
1459         break;
1460 
1461     default:
1462         return -1;
1463     }
1464 
1465     return parser->total_size;
1466 }
1467 
1468 /* return size or -1 if error */
1469 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1470                           size_t hex_blob_size, AddressSpace *as)
1471 {
1472     bool in_process = false; /* avoid re-enter and
1473                               * check whether record begin with ':' */
1474     uint8_t *end = hex_blob + hex_blob_size;
1475     uint8_t our_checksum = 0;
1476     uint32_t record_index = 0;
1477     HexParser parser = {
1478         .filename = filename,
1479         .bin_buf = g_malloc(hex_blob_size),
1480         .start_addr = addr,
1481         .as = as,
1482     };
1483 
1484     rom_transaction_begin();
1485 
1486     for (; hex_blob < end; ++hex_blob) {
1487         switch (*hex_blob) {
1488         case '\r':
1489         case '\n':
1490             if (!in_process) {
1491                 break;
1492             }
1493 
1494             in_process = false;
1495             if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1496                     record_index ||
1497                 our_checksum != 0) {
1498                 parser.total_size = -1;
1499                 goto out;
1500             }
1501 
1502             if (handle_record_type(&parser) == -1) {
1503                 parser.total_size = -1;
1504                 goto out;
1505             }
1506             break;
1507 
1508         /* start of a new record. */
1509         case ':':
1510             memset(&parser.line, 0, sizeof(HexLine));
1511             in_process = true;
1512             record_index = 0;
1513             break;
1514 
1515         /* decoding lines */
1516         default:
1517             if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1518                               &record_index, in_process)) {
1519                 parser.total_size = -1;
1520                 goto out;
1521             }
1522             break;
1523         }
1524     }
1525 
1526 out:
1527     g_free(parser.bin_buf);
1528     rom_transaction_end(parser.total_size != -1);
1529     return parser.total_size;
1530 }
1531 
1532 /* return size or -1 if error */
1533 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as)
1534 {
1535     gsize hex_blob_size;
1536     gchar *hex_blob;
1537     int total_size = 0;
1538 
1539     if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1540         return -1;
1541     }
1542 
1543     total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1544                                 hex_blob_size, as);
1545 
1546     g_free(hex_blob);
1547     return total_size;
1548 }
1549