1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qapi/error.h" 47 #include "hw/hw.h" 48 #include "disas/disas.h" 49 #include "monitor/monitor.h" 50 #include "sysemu/sysemu.h" 51 #include "uboot_image.h" 52 #include "hw/loader.h" 53 #include "hw/nvram/fw_cfg.h" 54 #include "exec/memory.h" 55 #include "exec/address-spaces.h" 56 #include "hw/boards.h" 57 #include "qemu/cutils.h" 58 59 #include <zlib.h> 60 61 static int roms_loaded; 62 63 /* return the size or -1 if error */ 64 int64_t get_image_size(const char *filename) 65 { 66 int fd; 67 int64_t size; 68 fd = open(filename, O_RDONLY | O_BINARY); 69 if (fd < 0) 70 return -1; 71 size = lseek(fd, 0, SEEK_END); 72 close(fd); 73 return size; 74 } 75 76 /* return the size or -1 if error */ 77 /* deprecated, because caller does not specify buffer size! */ 78 int load_image(const char *filename, uint8_t *addr) 79 { 80 int fd, size; 81 fd = open(filename, O_RDONLY | O_BINARY); 82 if (fd < 0) 83 return -1; 84 size = lseek(fd, 0, SEEK_END); 85 if (size == -1) { 86 fprintf(stderr, "file %-20s: get size error: %s\n", 87 filename, strerror(errno)); 88 close(fd); 89 return -1; 90 } 91 92 lseek(fd, 0, SEEK_SET); 93 if (read(fd, addr, size) != size) { 94 close(fd); 95 return -1; 96 } 97 close(fd); 98 return size; 99 } 100 101 /* return the size or -1 if error */ 102 ssize_t load_image_size(const char *filename, void *addr, size_t size) 103 { 104 int fd; 105 ssize_t actsize; 106 107 fd = open(filename, O_RDONLY | O_BINARY); 108 if (fd < 0) { 109 return -1; 110 } 111 112 actsize = read(fd, addr, size); 113 if (actsize < 0) { 114 close(fd); 115 return -1; 116 } 117 close(fd); 118 119 return actsize; 120 } 121 122 /* read()-like version */ 123 ssize_t read_targphys(const char *name, 124 int fd, hwaddr dst_addr, size_t nbytes) 125 { 126 uint8_t *buf; 127 ssize_t did; 128 129 buf = g_malloc(nbytes); 130 did = read(fd, buf, nbytes); 131 if (did > 0) 132 rom_add_blob_fixed("read", buf, did, dst_addr); 133 g_free(buf); 134 return did; 135 } 136 137 int load_image_targphys(const char *filename, 138 hwaddr addr, uint64_t max_sz) 139 { 140 return load_image_targphys_as(filename, addr, max_sz, NULL); 141 } 142 143 /* return the size or -1 if error */ 144 int load_image_targphys_as(const char *filename, 145 hwaddr addr, uint64_t max_sz, AddressSpace *as) 146 { 147 int size; 148 149 size = get_image_size(filename); 150 if (size < 0 || size > max_sz) { 151 return -1; 152 } 153 if (size > 0) { 154 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 155 return -1; 156 } 157 } 158 return size; 159 } 160 161 int load_image_mr(const char *filename, MemoryRegion *mr) 162 { 163 int size; 164 165 if (!memory_access_is_direct(mr, false)) { 166 /* Can only load an image into RAM or ROM */ 167 return -1; 168 } 169 170 size = get_image_size(filename); 171 172 if (size < 0 || size > memory_region_size(mr)) { 173 return -1; 174 } 175 if (size > 0) { 176 if (rom_add_file_mr(filename, mr, -1) < 0) { 177 return -1; 178 } 179 } 180 return size; 181 } 182 183 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 184 const char *source) 185 { 186 const char *nulp; 187 char *ptr; 188 189 if (buf_size <= 0) return; 190 nulp = memchr(source, 0, buf_size); 191 if (nulp) { 192 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 193 } else { 194 rom_add_blob_fixed(name, source, buf_size, dest); 195 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 196 *ptr = 0; 197 } 198 } 199 200 /* A.OUT loader */ 201 202 struct exec 203 { 204 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 205 uint32_t a_text; /* length of text, in bytes */ 206 uint32_t a_data; /* length of data, in bytes */ 207 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 208 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 209 uint32_t a_entry; /* start address */ 210 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 211 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 212 }; 213 214 static void bswap_ahdr(struct exec *e) 215 { 216 bswap32s(&e->a_info); 217 bswap32s(&e->a_text); 218 bswap32s(&e->a_data); 219 bswap32s(&e->a_bss); 220 bswap32s(&e->a_syms); 221 bswap32s(&e->a_entry); 222 bswap32s(&e->a_trsize); 223 bswap32s(&e->a_drsize); 224 } 225 226 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 227 #define OMAGIC 0407 228 #define NMAGIC 0410 229 #define ZMAGIC 0413 230 #define QMAGIC 0314 231 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 232 #define N_TXTOFF(x) \ 233 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 234 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 235 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 236 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 237 238 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 239 240 #define N_DATADDR(x, target_page_size) \ 241 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 242 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 243 244 245 int load_aout(const char *filename, hwaddr addr, int max_sz, 246 int bswap_needed, hwaddr target_page_size) 247 { 248 int fd; 249 ssize_t size, ret; 250 struct exec e; 251 uint32_t magic; 252 253 fd = open(filename, O_RDONLY | O_BINARY); 254 if (fd < 0) 255 return -1; 256 257 size = read(fd, &e, sizeof(e)); 258 if (size < 0) 259 goto fail; 260 261 if (bswap_needed) { 262 bswap_ahdr(&e); 263 } 264 265 magic = N_MAGIC(e); 266 switch (magic) { 267 case ZMAGIC: 268 case QMAGIC: 269 case OMAGIC: 270 if (e.a_text + e.a_data > max_sz) 271 goto fail; 272 lseek(fd, N_TXTOFF(e), SEEK_SET); 273 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 274 if (size < 0) 275 goto fail; 276 break; 277 case NMAGIC: 278 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 279 goto fail; 280 lseek(fd, N_TXTOFF(e), SEEK_SET); 281 size = read_targphys(filename, fd, addr, e.a_text); 282 if (size < 0) 283 goto fail; 284 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 285 e.a_data); 286 if (ret < 0) 287 goto fail; 288 size += ret; 289 break; 290 default: 291 goto fail; 292 } 293 close(fd); 294 return size; 295 fail: 296 close(fd); 297 return -1; 298 } 299 300 /* ELF loader */ 301 302 static void *load_at(int fd, off_t offset, size_t size) 303 { 304 void *ptr; 305 if (lseek(fd, offset, SEEK_SET) < 0) 306 return NULL; 307 ptr = g_malloc(size); 308 if (read(fd, ptr, size) != size) { 309 g_free(ptr); 310 return NULL; 311 } 312 return ptr; 313 } 314 315 #ifdef ELF_CLASS 316 #undef ELF_CLASS 317 #endif 318 319 #define ELF_CLASS ELFCLASS32 320 #include "elf.h" 321 322 #define SZ 32 323 #define elf_word uint32_t 324 #define elf_sword int32_t 325 #define bswapSZs bswap32s 326 #include "hw/elf_ops.h" 327 328 #undef elfhdr 329 #undef elf_phdr 330 #undef elf_shdr 331 #undef elf_sym 332 #undef elf_rela 333 #undef elf_note 334 #undef elf_word 335 #undef elf_sword 336 #undef bswapSZs 337 #undef SZ 338 #define elfhdr elf64_hdr 339 #define elf_phdr elf64_phdr 340 #define elf_note elf64_note 341 #define elf_shdr elf64_shdr 342 #define elf_sym elf64_sym 343 #define elf_rela elf64_rela 344 #define elf_word uint64_t 345 #define elf_sword int64_t 346 #define bswapSZs bswap64s 347 #define SZ 64 348 #include "hw/elf_ops.h" 349 350 const char *load_elf_strerror(int error) 351 { 352 switch (error) { 353 case 0: 354 return "No error"; 355 case ELF_LOAD_FAILED: 356 return "Failed to load ELF"; 357 case ELF_LOAD_NOT_ELF: 358 return "The image is not ELF"; 359 case ELF_LOAD_WRONG_ARCH: 360 return "The image is from incompatible architecture"; 361 case ELF_LOAD_WRONG_ENDIAN: 362 return "The image has incorrect endianness"; 363 default: 364 return "Unknown error"; 365 } 366 } 367 368 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 369 { 370 int fd; 371 uint8_t e_ident_local[EI_NIDENT]; 372 uint8_t *e_ident; 373 size_t hdr_size, off; 374 bool is64l; 375 376 if (!hdr) { 377 hdr = e_ident_local; 378 } 379 e_ident = hdr; 380 381 fd = open(filename, O_RDONLY | O_BINARY); 382 if (fd < 0) { 383 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 384 return; 385 } 386 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 387 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 388 goto fail; 389 } 390 if (e_ident[0] != ELFMAG0 || 391 e_ident[1] != ELFMAG1 || 392 e_ident[2] != ELFMAG2 || 393 e_ident[3] != ELFMAG3) { 394 error_setg(errp, "Bad ELF magic"); 395 goto fail; 396 } 397 398 is64l = e_ident[EI_CLASS] == ELFCLASS64; 399 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 400 if (is64) { 401 *is64 = is64l; 402 } 403 404 off = EI_NIDENT; 405 while (hdr != e_ident_local && off < hdr_size) { 406 size_t br = read(fd, hdr + off, hdr_size - off); 407 switch (br) { 408 case 0: 409 error_setg(errp, "File too short: %s", filename); 410 goto fail; 411 case -1: 412 error_setg_errno(errp, errno, "Failed to read file: %s", 413 filename); 414 goto fail; 415 } 416 off += br; 417 } 418 419 fail: 420 close(fd); 421 } 422 423 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 424 int load_elf(const char *filename, uint64_t (*translate_fn)(void *, uint64_t), 425 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 426 uint64_t *highaddr, int big_endian, int elf_machine, 427 int clear_lsb, int data_swab) 428 { 429 return load_elf_as(filename, translate_fn, translate_opaque, pentry, 430 lowaddr, highaddr, big_endian, elf_machine, clear_lsb, 431 data_swab, NULL); 432 } 433 434 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 435 int load_elf_as(const char *filename, 436 uint64_t (*translate_fn)(void *, uint64_t), 437 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 438 uint64_t *highaddr, int big_endian, int elf_machine, 439 int clear_lsb, int data_swab, AddressSpace *as) 440 { 441 return load_elf_ram(filename, translate_fn, translate_opaque, 442 pentry, lowaddr, highaddr, big_endian, elf_machine, 443 clear_lsb, data_swab, as, true); 444 } 445 446 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 447 int load_elf_ram(const char *filename, 448 uint64_t (*translate_fn)(void *, uint64_t), 449 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 450 uint64_t *highaddr, int big_endian, int elf_machine, 451 int clear_lsb, int data_swab, AddressSpace *as, 452 bool load_rom) 453 { 454 return load_elf_ram_sym(filename, translate_fn, translate_opaque, 455 pentry, lowaddr, highaddr, big_endian, 456 elf_machine, clear_lsb, data_swab, as, 457 load_rom, NULL); 458 } 459 460 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 461 int load_elf_ram_sym(const char *filename, 462 uint64_t (*translate_fn)(void *, uint64_t), 463 void *translate_opaque, uint64_t *pentry, 464 uint64_t *lowaddr, uint64_t *highaddr, int big_endian, 465 int elf_machine, int clear_lsb, int data_swab, 466 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 467 { 468 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; 469 uint8_t e_ident[EI_NIDENT]; 470 471 fd = open(filename, O_RDONLY | O_BINARY); 472 if (fd < 0) { 473 perror(filename); 474 return -1; 475 } 476 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 477 goto fail; 478 if (e_ident[0] != ELFMAG0 || 479 e_ident[1] != ELFMAG1 || 480 e_ident[2] != ELFMAG2 || 481 e_ident[3] != ELFMAG3) { 482 ret = ELF_LOAD_NOT_ELF; 483 goto fail; 484 } 485 #ifdef HOST_WORDS_BIGENDIAN 486 data_order = ELFDATA2MSB; 487 #else 488 data_order = ELFDATA2LSB; 489 #endif 490 must_swab = data_order != e_ident[EI_DATA]; 491 if (big_endian) { 492 target_data_order = ELFDATA2MSB; 493 } else { 494 target_data_order = ELFDATA2LSB; 495 } 496 497 if (target_data_order != e_ident[EI_DATA]) { 498 ret = ELF_LOAD_WRONG_ENDIAN; 499 goto fail; 500 } 501 502 lseek(fd, 0, SEEK_SET); 503 if (e_ident[EI_CLASS] == ELFCLASS64) { 504 ret = load_elf64(filename, fd, translate_fn, translate_opaque, must_swab, 505 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 506 data_swab, as, load_rom, sym_cb); 507 } else { 508 ret = load_elf32(filename, fd, translate_fn, translate_opaque, must_swab, 509 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 510 data_swab, as, load_rom, sym_cb); 511 } 512 513 fail: 514 close(fd); 515 return ret; 516 } 517 518 static void bswap_uboot_header(uboot_image_header_t *hdr) 519 { 520 #ifndef HOST_WORDS_BIGENDIAN 521 bswap32s(&hdr->ih_magic); 522 bswap32s(&hdr->ih_hcrc); 523 bswap32s(&hdr->ih_time); 524 bswap32s(&hdr->ih_size); 525 bswap32s(&hdr->ih_load); 526 bswap32s(&hdr->ih_ep); 527 bswap32s(&hdr->ih_dcrc); 528 #endif 529 } 530 531 532 #define ZALLOC_ALIGNMENT 16 533 534 static void *zalloc(void *x, unsigned items, unsigned size) 535 { 536 void *p; 537 538 size *= items; 539 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 540 541 p = g_malloc(size); 542 543 return (p); 544 } 545 546 static void zfree(void *x, void *addr) 547 { 548 g_free(addr); 549 } 550 551 552 #define HEAD_CRC 2 553 #define EXTRA_FIELD 4 554 #define ORIG_NAME 8 555 #define COMMENT 0x10 556 #define RESERVED 0xe0 557 558 #define DEFLATED 8 559 560 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 561 { 562 z_stream s; 563 ssize_t dstbytes; 564 int r, i, flags; 565 566 /* skip header */ 567 i = 10; 568 flags = src[3]; 569 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 570 puts ("Error: Bad gzipped data\n"); 571 return -1; 572 } 573 if ((flags & EXTRA_FIELD) != 0) 574 i = 12 + src[10] + (src[11] << 8); 575 if ((flags & ORIG_NAME) != 0) 576 while (src[i++] != 0) 577 ; 578 if ((flags & COMMENT) != 0) 579 while (src[i++] != 0) 580 ; 581 if ((flags & HEAD_CRC) != 0) 582 i += 2; 583 if (i >= srclen) { 584 puts ("Error: gunzip out of data in header\n"); 585 return -1; 586 } 587 588 s.zalloc = zalloc; 589 s.zfree = zfree; 590 591 r = inflateInit2(&s, -MAX_WBITS); 592 if (r != Z_OK) { 593 printf ("Error: inflateInit2() returned %d\n", r); 594 return (-1); 595 } 596 s.next_in = src + i; 597 s.avail_in = srclen - i; 598 s.next_out = dst; 599 s.avail_out = dstlen; 600 r = inflate(&s, Z_FINISH); 601 if (r != Z_OK && r != Z_STREAM_END) { 602 printf ("Error: inflate() returned %d\n", r); 603 return -1; 604 } 605 dstbytes = s.next_out - (unsigned char *) dst; 606 inflateEnd(&s); 607 608 return dstbytes; 609 } 610 611 /* Load a U-Boot image. */ 612 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 613 int *is_linux, uint8_t image_type, 614 uint64_t (*translate_fn)(void *, uint64_t), 615 void *translate_opaque, AddressSpace *as) 616 { 617 int fd; 618 int size; 619 hwaddr address; 620 uboot_image_header_t h; 621 uboot_image_header_t *hdr = &h; 622 uint8_t *data = NULL; 623 int ret = -1; 624 int do_uncompress = 0; 625 626 fd = open(filename, O_RDONLY | O_BINARY); 627 if (fd < 0) 628 return -1; 629 630 size = read(fd, hdr, sizeof(uboot_image_header_t)); 631 if (size < sizeof(uboot_image_header_t)) { 632 goto out; 633 } 634 635 bswap_uboot_header(hdr); 636 637 if (hdr->ih_magic != IH_MAGIC) 638 goto out; 639 640 if (hdr->ih_type != image_type) { 641 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 642 image_type); 643 goto out; 644 } 645 646 /* TODO: Implement other image types. */ 647 switch (hdr->ih_type) { 648 case IH_TYPE_KERNEL: 649 address = hdr->ih_load; 650 if (translate_fn) { 651 address = translate_fn(translate_opaque, address); 652 } 653 if (loadaddr) { 654 *loadaddr = hdr->ih_load; 655 } 656 657 switch (hdr->ih_comp) { 658 case IH_COMP_NONE: 659 break; 660 case IH_COMP_GZIP: 661 do_uncompress = 1; 662 break; 663 default: 664 fprintf(stderr, 665 "Unable to load u-boot images with compression type %d\n", 666 hdr->ih_comp); 667 goto out; 668 } 669 670 if (ep) { 671 *ep = hdr->ih_ep; 672 } 673 674 /* TODO: Check CPU type. */ 675 if (is_linux) { 676 if (hdr->ih_os == IH_OS_LINUX) { 677 *is_linux = 1; 678 } else { 679 *is_linux = 0; 680 } 681 } 682 683 break; 684 case IH_TYPE_RAMDISK: 685 address = *loadaddr; 686 break; 687 default: 688 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 689 goto out; 690 } 691 692 data = g_malloc(hdr->ih_size); 693 694 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 695 fprintf(stderr, "Error reading file\n"); 696 goto out; 697 } 698 699 if (do_uncompress) { 700 uint8_t *compressed_data; 701 size_t max_bytes; 702 ssize_t bytes; 703 704 compressed_data = data; 705 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 706 data = g_malloc(max_bytes); 707 708 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 709 g_free(compressed_data); 710 if (bytes < 0) { 711 fprintf(stderr, "Unable to decompress gzipped image!\n"); 712 goto out; 713 } 714 hdr->ih_size = bytes; 715 } 716 717 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 718 719 ret = hdr->ih_size; 720 721 out: 722 g_free(data); 723 close(fd); 724 return ret; 725 } 726 727 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 728 int *is_linux, 729 uint64_t (*translate_fn)(void *, uint64_t), 730 void *translate_opaque) 731 { 732 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 733 translate_fn, translate_opaque, NULL); 734 } 735 736 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 737 int *is_linux, 738 uint64_t (*translate_fn)(void *, uint64_t), 739 void *translate_opaque, AddressSpace *as) 740 { 741 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 742 translate_fn, translate_opaque, as); 743 } 744 745 /* Load a ramdisk. */ 746 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 747 { 748 return load_ramdisk_as(filename, addr, max_sz, NULL); 749 } 750 751 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 752 AddressSpace *as) 753 { 754 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 755 NULL, NULL, as); 756 } 757 758 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 759 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 760 uint8_t **buffer) 761 { 762 uint8_t *compressed_data = NULL; 763 uint8_t *data = NULL; 764 gsize len; 765 ssize_t bytes; 766 int ret = -1; 767 768 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 769 NULL)) { 770 goto out; 771 } 772 773 /* Is it a gzip-compressed file? */ 774 if (len < 2 || 775 compressed_data[0] != 0x1f || 776 compressed_data[1] != 0x8b) { 777 goto out; 778 } 779 780 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 781 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 782 } 783 784 data = g_malloc(max_sz); 785 bytes = gunzip(data, max_sz, compressed_data, len); 786 if (bytes < 0) { 787 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 788 filename); 789 goto out; 790 } 791 792 /* trim to actual size and return to caller */ 793 *buffer = g_realloc(data, bytes); 794 ret = bytes; 795 /* ownership has been transferred to caller */ 796 data = NULL; 797 798 out: 799 g_free(compressed_data); 800 g_free(data); 801 return ret; 802 } 803 804 /* Load a gzip-compressed kernel. */ 805 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 806 { 807 int bytes; 808 uint8_t *data; 809 810 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 811 if (bytes != -1) { 812 rom_add_blob_fixed(filename, data, bytes, addr); 813 g_free(data); 814 } 815 return bytes; 816 } 817 818 /* 819 * Functions for reboot-persistent memory regions. 820 * - used for vga bios and option roms. 821 * - also linux kernel (-kernel / -initrd). 822 */ 823 824 typedef struct Rom Rom; 825 826 struct Rom { 827 char *name; 828 char *path; 829 830 /* datasize is the amount of memory allocated in "data". If datasize is less 831 * than romsize, it means that the area from datasize to romsize is filled 832 * with zeros. 833 */ 834 size_t romsize; 835 size_t datasize; 836 837 uint8_t *data; 838 MemoryRegion *mr; 839 AddressSpace *as; 840 int isrom; 841 char *fw_dir; 842 char *fw_file; 843 844 bool committed; 845 846 hwaddr addr; 847 QTAILQ_ENTRY(Rom) next; 848 }; 849 850 static FWCfgState *fw_cfg; 851 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 852 853 /* rom->data must be heap-allocated (do not use with rom_add_elf_program()) */ 854 static void rom_free(Rom *rom) 855 { 856 g_free(rom->data); 857 g_free(rom->path); 858 g_free(rom->name); 859 g_free(rom->fw_dir); 860 g_free(rom->fw_file); 861 g_free(rom); 862 } 863 864 static inline bool rom_order_compare(Rom *rom, Rom *item) 865 { 866 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 867 (rom->as == item->as && rom->addr >= item->addr); 868 } 869 870 static void rom_insert(Rom *rom) 871 { 872 Rom *item; 873 874 if (roms_loaded) { 875 hw_error ("ROM images must be loaded at startup\n"); 876 } 877 878 /* The user didn't specify an address space, this is the default */ 879 if (!rom->as) { 880 rom->as = &address_space_memory; 881 } 882 883 rom->committed = false; 884 885 /* List is ordered by load address in the same address space */ 886 QTAILQ_FOREACH(item, &roms, next) { 887 if (rom_order_compare(rom, item)) { 888 continue; 889 } 890 QTAILQ_INSERT_BEFORE(item, rom, next); 891 return; 892 } 893 QTAILQ_INSERT_TAIL(&roms, rom, next); 894 } 895 896 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 897 { 898 if (fw_cfg) { 899 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 900 } 901 } 902 903 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 904 { 905 void *data; 906 907 rom->mr = g_malloc(sizeof(*rom->mr)); 908 memory_region_init_resizeable_ram(rom->mr, owner, name, 909 rom->datasize, rom->romsize, 910 fw_cfg_resized, 911 &error_fatal); 912 memory_region_set_readonly(rom->mr, ro); 913 vmstate_register_ram_global(rom->mr); 914 915 data = memory_region_get_ram_ptr(rom->mr); 916 memcpy(data, rom->data, rom->datasize); 917 918 return data; 919 } 920 921 int rom_add_file(const char *file, const char *fw_dir, 922 hwaddr addr, int32_t bootindex, 923 bool option_rom, MemoryRegion *mr, 924 AddressSpace *as) 925 { 926 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 927 Rom *rom; 928 int rc, fd = -1; 929 char devpath[100]; 930 931 if (as && mr) { 932 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 933 "not valid when loading a rom\n"); 934 /* We haven't allocated anything so we don't need any cleanup */ 935 return -1; 936 } 937 938 rom = g_malloc0(sizeof(*rom)); 939 rom->name = g_strdup(file); 940 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 941 rom->as = as; 942 if (rom->path == NULL) { 943 rom->path = g_strdup(file); 944 } 945 946 fd = open(rom->path, O_RDONLY | O_BINARY); 947 if (fd == -1) { 948 fprintf(stderr, "Could not open option rom '%s': %s\n", 949 rom->path, strerror(errno)); 950 goto err; 951 } 952 953 if (fw_dir) { 954 rom->fw_dir = g_strdup(fw_dir); 955 rom->fw_file = g_strdup(file); 956 } 957 rom->addr = addr; 958 rom->romsize = lseek(fd, 0, SEEK_END); 959 if (rom->romsize == -1) { 960 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 961 rom->name, strerror(errno)); 962 goto err; 963 } 964 965 rom->datasize = rom->romsize; 966 rom->data = g_malloc0(rom->datasize); 967 lseek(fd, 0, SEEK_SET); 968 rc = read(fd, rom->data, rom->datasize); 969 if (rc != rom->datasize) { 970 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 971 rom->name, rc, rom->datasize); 972 goto err; 973 } 974 close(fd); 975 rom_insert(rom); 976 if (rom->fw_file && fw_cfg) { 977 const char *basename; 978 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 979 void *data; 980 981 basename = strrchr(rom->fw_file, '/'); 982 if (basename) { 983 basename++; 984 } else { 985 basename = rom->fw_file; 986 } 987 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 988 basename); 989 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 990 991 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 992 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 993 } else { 994 data = rom->data; 995 } 996 997 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 998 } else { 999 if (mr) { 1000 rom->mr = mr; 1001 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 1002 } else { 1003 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 1004 } 1005 } 1006 1007 add_boot_device_path(bootindex, NULL, devpath); 1008 return 0; 1009 1010 err: 1011 if (fd != -1) 1012 close(fd); 1013 1014 rom_free(rom); 1015 return -1; 1016 } 1017 1018 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1019 size_t max_len, hwaddr addr, const char *fw_file_name, 1020 FWCfgCallback fw_callback, void *callback_opaque, 1021 AddressSpace *as, bool read_only) 1022 { 1023 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1024 Rom *rom; 1025 MemoryRegion *mr = NULL; 1026 1027 rom = g_malloc0(sizeof(*rom)); 1028 rom->name = g_strdup(name); 1029 rom->as = as; 1030 rom->addr = addr; 1031 rom->romsize = max_len ? max_len : len; 1032 rom->datasize = len; 1033 rom->data = g_malloc0(rom->datasize); 1034 memcpy(rom->data, blob, len); 1035 rom_insert(rom); 1036 if (fw_file_name && fw_cfg) { 1037 char devpath[100]; 1038 void *data; 1039 1040 if (read_only) { 1041 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1042 } else { 1043 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1044 } 1045 1046 if (mc->rom_file_has_mr) { 1047 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1048 mr = rom->mr; 1049 } else { 1050 data = rom->data; 1051 } 1052 1053 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1054 fw_callback, NULL, callback_opaque, 1055 data, rom->datasize, read_only); 1056 } 1057 return mr; 1058 } 1059 1060 /* This function is specific for elf program because we don't need to allocate 1061 * all the rom. We just allocate the first part and the rest is just zeros. This 1062 * is why romsize and datasize are different. Also, this function seize the 1063 * memory ownership of "data", so we don't have to allocate and copy the buffer. 1064 */ 1065 int rom_add_elf_program(const char *name, void *data, size_t datasize, 1066 size_t romsize, hwaddr addr, AddressSpace *as) 1067 { 1068 Rom *rom; 1069 1070 rom = g_malloc0(sizeof(*rom)); 1071 rom->name = g_strdup(name); 1072 rom->addr = addr; 1073 rom->datasize = datasize; 1074 rom->romsize = romsize; 1075 rom->data = data; 1076 rom->as = as; 1077 rom_insert(rom); 1078 return 0; 1079 } 1080 1081 int rom_add_vga(const char *file) 1082 { 1083 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1084 } 1085 1086 int rom_add_option(const char *file, int32_t bootindex) 1087 { 1088 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1089 } 1090 1091 static void rom_reset(void *unused) 1092 { 1093 Rom *rom; 1094 1095 QTAILQ_FOREACH(rom, &roms, next) { 1096 if (rom->fw_file) { 1097 continue; 1098 } 1099 if (rom->data == NULL) { 1100 continue; 1101 } 1102 if (rom->mr) { 1103 void *host = memory_region_get_ram_ptr(rom->mr); 1104 memcpy(host, rom->data, rom->datasize); 1105 } else { 1106 cpu_physical_memory_write_rom(rom->as, rom->addr, rom->data, 1107 rom->datasize); 1108 } 1109 if (rom->isrom) { 1110 /* rom needs to be written only once */ 1111 g_free(rom->data); 1112 rom->data = NULL; 1113 } 1114 /* 1115 * The rom loader is really on the same level as firmware in the guest 1116 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1117 * that the instruction cache for that new region is clear, so that the 1118 * CPU definitely fetches its instructions from the just written data. 1119 */ 1120 cpu_flush_icache_range(rom->addr, rom->datasize); 1121 } 1122 } 1123 1124 int rom_check_and_register_reset(void) 1125 { 1126 hwaddr addr = 0; 1127 MemoryRegionSection section; 1128 Rom *rom; 1129 AddressSpace *as = NULL; 1130 1131 QTAILQ_FOREACH(rom, &roms, next) { 1132 if (rom->fw_file) { 1133 continue; 1134 } 1135 if (!rom->mr) { 1136 if ((addr > rom->addr) && (as == rom->as)) { 1137 fprintf(stderr, "rom: requested regions overlap " 1138 "(rom %s. free=0x" TARGET_FMT_plx 1139 ", addr=0x" TARGET_FMT_plx ")\n", 1140 rom->name, addr, rom->addr); 1141 return -1; 1142 } 1143 addr = rom->addr; 1144 addr += rom->romsize; 1145 as = rom->as; 1146 } 1147 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1148 rom->addr, 1); 1149 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1150 memory_region_unref(section.mr); 1151 } 1152 qemu_register_reset(rom_reset, NULL); 1153 roms_loaded = 1; 1154 return 0; 1155 } 1156 1157 void rom_set_fw(FWCfgState *f) 1158 { 1159 fw_cfg = f; 1160 } 1161 1162 void rom_set_order_override(int order) 1163 { 1164 if (!fw_cfg) 1165 return; 1166 fw_cfg_set_order_override(fw_cfg, order); 1167 } 1168 1169 void rom_reset_order_override(void) 1170 { 1171 if (!fw_cfg) 1172 return; 1173 fw_cfg_reset_order_override(fw_cfg); 1174 } 1175 1176 void rom_transaction_begin(void) 1177 { 1178 Rom *rom; 1179 1180 /* Ignore ROMs added without the transaction API */ 1181 QTAILQ_FOREACH(rom, &roms, next) { 1182 rom->committed = true; 1183 } 1184 } 1185 1186 void rom_transaction_end(bool commit) 1187 { 1188 Rom *rom; 1189 Rom *tmp; 1190 1191 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1192 if (rom->committed) { 1193 continue; 1194 } 1195 if (commit) { 1196 rom->committed = true; 1197 } else { 1198 QTAILQ_REMOVE(&roms, rom, next); 1199 rom_free(rom); 1200 } 1201 } 1202 } 1203 1204 static Rom *find_rom(hwaddr addr, size_t size) 1205 { 1206 Rom *rom; 1207 1208 QTAILQ_FOREACH(rom, &roms, next) { 1209 if (rom->fw_file) { 1210 continue; 1211 } 1212 if (rom->mr) { 1213 continue; 1214 } 1215 if (rom->addr > addr) { 1216 continue; 1217 } 1218 if (rom->addr + rom->romsize < addr + size) { 1219 continue; 1220 } 1221 return rom; 1222 } 1223 return NULL; 1224 } 1225 1226 /* 1227 * Copies memory from registered ROMs to dest. Any memory that is contained in 1228 * a ROM between addr and addr + size is copied. Note that this can involve 1229 * multiple ROMs, which need not start at addr and need not end at addr + size. 1230 */ 1231 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1232 { 1233 hwaddr end = addr + size; 1234 uint8_t *s, *d = dest; 1235 size_t l = 0; 1236 Rom *rom; 1237 1238 QTAILQ_FOREACH(rom, &roms, next) { 1239 if (rom->fw_file) { 1240 continue; 1241 } 1242 if (rom->mr) { 1243 continue; 1244 } 1245 if (rom->addr + rom->romsize < addr) { 1246 continue; 1247 } 1248 if (rom->addr > end) { 1249 break; 1250 } 1251 1252 d = dest + (rom->addr - addr); 1253 s = rom->data; 1254 l = rom->datasize; 1255 1256 if ((d + l) > (dest + size)) { 1257 l = dest - d; 1258 } 1259 1260 if (l > 0) { 1261 memcpy(d, s, l); 1262 } 1263 1264 if (rom->romsize > rom->datasize) { 1265 /* If datasize is less than romsize, it means that we didn't 1266 * allocate all the ROM because the trailing data are only zeros. 1267 */ 1268 1269 d += l; 1270 l = rom->romsize - rom->datasize; 1271 1272 if ((d + l) > (dest + size)) { 1273 /* Rom size doesn't fit in the destination area. Adjust to avoid 1274 * overflow. 1275 */ 1276 l = dest - d; 1277 } 1278 1279 if (l > 0) { 1280 memset(d, 0x0, l); 1281 } 1282 } 1283 } 1284 1285 return (d + l) - dest; 1286 } 1287 1288 void *rom_ptr(hwaddr addr, size_t size) 1289 { 1290 Rom *rom; 1291 1292 rom = find_rom(addr, size); 1293 if (!rom || !rom->data) 1294 return NULL; 1295 return rom->data + (addr - rom->addr); 1296 } 1297 1298 void hmp_info_roms(Monitor *mon, const QDict *qdict) 1299 { 1300 Rom *rom; 1301 1302 QTAILQ_FOREACH(rom, &roms, next) { 1303 if (rom->mr) { 1304 monitor_printf(mon, "%s" 1305 " size=0x%06zx name=\"%s\"\n", 1306 memory_region_name(rom->mr), 1307 rom->romsize, 1308 rom->name); 1309 } else if (!rom->fw_file) { 1310 monitor_printf(mon, "addr=" TARGET_FMT_plx 1311 " size=0x%06zx mem=%s name=\"%s\"\n", 1312 rom->addr, rom->romsize, 1313 rom->isrom ? "rom" : "ram", 1314 rom->name); 1315 } else { 1316 monitor_printf(mon, "fw=%s/%s" 1317 " size=0x%06zx name=\"%s\"\n", 1318 rom->fw_dir, 1319 rom->fw_file, 1320 rom->romsize, 1321 rom->name); 1322 } 1323 } 1324 } 1325 1326 typedef enum HexRecord HexRecord; 1327 enum HexRecord { 1328 DATA_RECORD = 0, 1329 EOF_RECORD, 1330 EXT_SEG_ADDR_RECORD, 1331 START_SEG_ADDR_RECORD, 1332 EXT_LINEAR_ADDR_RECORD, 1333 START_LINEAR_ADDR_RECORD, 1334 }; 1335 1336 /* Each record contains a 16-bit address which is combined with the upper 16 1337 * bits of the implicit "next address" to form a 32-bit address. 1338 */ 1339 #define NEXT_ADDR_MASK 0xffff0000 1340 1341 #define DATA_FIELD_MAX_LEN 0xff 1342 #define LEN_EXCEPT_DATA 0x5 1343 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1344 * sizeof(checksum) */ 1345 typedef struct { 1346 uint8_t byte_count; 1347 uint16_t address; 1348 uint8_t record_type; 1349 uint8_t data[DATA_FIELD_MAX_LEN]; 1350 uint8_t checksum; 1351 } HexLine; 1352 1353 /* return 0 or -1 if error */ 1354 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1355 uint32_t *index, const bool in_process) 1356 { 1357 /* +-------+---------------+-------+---------------------+--------+ 1358 * | byte | |record | | | 1359 * | count | address | type | data |checksum| 1360 * +-------+---------------+-------+---------------------+--------+ 1361 * ^ ^ ^ ^ ^ ^ 1362 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1363 */ 1364 uint8_t value = 0; 1365 uint32_t idx = *index; 1366 /* ignore space */ 1367 if (g_ascii_isspace(c)) { 1368 return true; 1369 } 1370 if (!g_ascii_isxdigit(c) || !in_process) { 1371 return false; 1372 } 1373 value = g_ascii_xdigit_value(c); 1374 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1375 if (idx < 2) { 1376 line->byte_count |= value; 1377 } else if (2 <= idx && idx < 6) { 1378 line->address <<= 4; 1379 line->address += g_ascii_xdigit_value(c); 1380 } else if (6 <= idx && idx < 8) { 1381 line->record_type |= value; 1382 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1383 line->data[(idx - 8) >> 1] |= value; 1384 } else if (8 + 2 * line->byte_count <= idx && 1385 idx < 10 + 2 * line->byte_count) { 1386 line->checksum |= value; 1387 } else { 1388 return false; 1389 } 1390 *our_checksum += value; 1391 ++(*index); 1392 return true; 1393 } 1394 1395 typedef struct { 1396 const char *filename; 1397 HexLine line; 1398 uint8_t *bin_buf; 1399 hwaddr *start_addr; 1400 int total_size; 1401 uint32_t next_address_to_write; 1402 uint32_t current_address; 1403 uint32_t current_rom_index; 1404 uint32_t rom_start_address; 1405 AddressSpace *as; 1406 } HexParser; 1407 1408 /* return size or -1 if error */ 1409 static int handle_record_type(HexParser *parser) 1410 { 1411 HexLine *line = &(parser->line); 1412 switch (line->record_type) { 1413 case DATA_RECORD: 1414 parser->current_address = 1415 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1416 /* verify this is a contiguous block of memory */ 1417 if (parser->current_address != parser->next_address_to_write) { 1418 if (parser->current_rom_index != 0) { 1419 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1420 parser->current_rom_index, 1421 parser->rom_start_address, parser->as); 1422 } 1423 parser->rom_start_address = parser->current_address; 1424 parser->current_rom_index = 0; 1425 } 1426 1427 /* copy from line buffer to output bin_buf */ 1428 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1429 line->byte_count); 1430 parser->current_rom_index += line->byte_count; 1431 parser->total_size += line->byte_count; 1432 /* save next address to write */ 1433 parser->next_address_to_write = 1434 parser->current_address + line->byte_count; 1435 break; 1436 1437 case EOF_RECORD: 1438 if (parser->current_rom_index != 0) { 1439 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1440 parser->current_rom_index, 1441 parser->rom_start_address, parser->as); 1442 } 1443 return parser->total_size; 1444 case EXT_SEG_ADDR_RECORD: 1445 case EXT_LINEAR_ADDR_RECORD: 1446 if (line->byte_count != 2 && line->address != 0) { 1447 return -1; 1448 } 1449 1450 if (parser->current_rom_index != 0) { 1451 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1452 parser->current_rom_index, 1453 parser->rom_start_address, parser->as); 1454 } 1455 1456 /* save next address to write, 1457 * in case of non-contiguous block of memory */ 1458 parser->next_address_to_write = (line->data[0] << 12) | 1459 (line->data[1] << 4); 1460 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1461 parser->next_address_to_write <<= 12; 1462 } 1463 1464 parser->rom_start_address = parser->next_address_to_write; 1465 parser->current_rom_index = 0; 1466 break; 1467 1468 case START_SEG_ADDR_RECORD: 1469 if (line->byte_count != 4 && line->address != 0) { 1470 return -1; 1471 } 1472 1473 /* x86 16-bit CS:IP segmented addressing */ 1474 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1475 ((line->data[2] << 8) | line->data[3]); 1476 break; 1477 1478 case START_LINEAR_ADDR_RECORD: 1479 if (line->byte_count != 4 && line->address != 0) { 1480 return -1; 1481 } 1482 1483 *(parser->start_addr) = ldl_be_p(line->data); 1484 break; 1485 1486 default: 1487 return -1; 1488 } 1489 1490 return parser->total_size; 1491 } 1492 1493 /* return size or -1 if error */ 1494 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1495 size_t hex_blob_size, AddressSpace *as) 1496 { 1497 bool in_process = false; /* avoid re-enter and 1498 * check whether record begin with ':' */ 1499 uint8_t *end = hex_blob + hex_blob_size; 1500 uint8_t our_checksum = 0; 1501 uint32_t record_index = 0; 1502 HexParser parser = { 1503 .filename = filename, 1504 .bin_buf = g_malloc(hex_blob_size), 1505 .start_addr = addr, 1506 .as = as, 1507 }; 1508 1509 rom_transaction_begin(); 1510 1511 for (; hex_blob < end; ++hex_blob) { 1512 switch (*hex_blob) { 1513 case '\r': 1514 case '\n': 1515 if (!in_process) { 1516 break; 1517 } 1518 1519 in_process = false; 1520 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1521 record_index || 1522 our_checksum != 0) { 1523 parser.total_size = -1; 1524 goto out; 1525 } 1526 1527 if (handle_record_type(&parser) == -1) { 1528 parser.total_size = -1; 1529 goto out; 1530 } 1531 break; 1532 1533 /* start of a new record. */ 1534 case ':': 1535 memset(&parser.line, 0, sizeof(HexLine)); 1536 in_process = true; 1537 record_index = 0; 1538 break; 1539 1540 /* decoding lines */ 1541 default: 1542 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1543 &record_index, in_process)) { 1544 parser.total_size = -1; 1545 goto out; 1546 } 1547 break; 1548 } 1549 } 1550 1551 out: 1552 g_free(parser.bin_buf); 1553 rom_transaction_end(parser.total_size != -1); 1554 return parser.total_size; 1555 } 1556 1557 /* return size or -1 if error */ 1558 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as) 1559 { 1560 gsize hex_blob_size; 1561 gchar *hex_blob; 1562 int total_size = 0; 1563 1564 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1565 return -1; 1566 } 1567 1568 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1569 hex_blob_size, as); 1570 1571 g_free(hex_blob); 1572 return total_size; 1573 } 1574