1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qemu-common.h" 47 #include "qemu/datadir.h" 48 #include "qapi/error.h" 49 #include "qapi/qapi-commands-machine.h" 50 #include "qapi/type-helpers.h" 51 #include "trace.h" 52 #include "hw/hw.h" 53 #include "disas/disas.h" 54 #include "migration/vmstate.h" 55 #include "monitor/monitor.h" 56 #include "sysemu/reset.h" 57 #include "sysemu/sysemu.h" 58 #include "uboot_image.h" 59 #include "hw/loader.h" 60 #include "hw/nvram/fw_cfg.h" 61 #include "exec/memory.h" 62 #include "hw/boards.h" 63 #include "qemu/cutils.h" 64 #include "sysemu/runstate.h" 65 66 #include <zlib.h> 67 68 static int roms_loaded; 69 70 /* return the size or -1 if error */ 71 int64_t get_image_size(const char *filename) 72 { 73 int fd; 74 int64_t size; 75 fd = open(filename, O_RDONLY | O_BINARY); 76 if (fd < 0) 77 return -1; 78 size = lseek(fd, 0, SEEK_END); 79 close(fd); 80 return size; 81 } 82 83 /* return the size or -1 if error */ 84 ssize_t load_image_size(const char *filename, void *addr, size_t size) 85 { 86 int fd; 87 ssize_t actsize, l = 0; 88 89 fd = open(filename, O_RDONLY | O_BINARY); 90 if (fd < 0) { 91 return -1; 92 } 93 94 while ((actsize = read(fd, addr + l, size - l)) > 0) { 95 l += actsize; 96 } 97 98 close(fd); 99 100 return actsize < 0 ? -1 : l; 101 } 102 103 /* read()-like version */ 104 ssize_t read_targphys(const char *name, 105 int fd, hwaddr dst_addr, size_t nbytes) 106 { 107 uint8_t *buf; 108 ssize_t did; 109 110 buf = g_malloc(nbytes); 111 did = read(fd, buf, nbytes); 112 if (did > 0) 113 rom_add_blob_fixed("read", buf, did, dst_addr); 114 g_free(buf); 115 return did; 116 } 117 118 int load_image_targphys(const char *filename, 119 hwaddr addr, uint64_t max_sz) 120 { 121 return load_image_targphys_as(filename, addr, max_sz, NULL); 122 } 123 124 /* return the size or -1 if error */ 125 int load_image_targphys_as(const char *filename, 126 hwaddr addr, uint64_t max_sz, AddressSpace *as) 127 { 128 int size; 129 130 size = get_image_size(filename); 131 if (size < 0 || size > max_sz) { 132 return -1; 133 } 134 if (size > 0) { 135 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 136 return -1; 137 } 138 } 139 return size; 140 } 141 142 int load_image_mr(const char *filename, MemoryRegion *mr) 143 { 144 int size; 145 146 if (!memory_access_is_direct(mr, false)) { 147 /* Can only load an image into RAM or ROM */ 148 return -1; 149 } 150 151 size = get_image_size(filename); 152 153 if (size < 0 || size > memory_region_size(mr)) { 154 return -1; 155 } 156 if (size > 0) { 157 if (rom_add_file_mr(filename, mr, -1) < 0) { 158 return -1; 159 } 160 } 161 return size; 162 } 163 164 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 165 const char *source) 166 { 167 const char *nulp; 168 char *ptr; 169 170 if (buf_size <= 0) return; 171 nulp = memchr(source, 0, buf_size); 172 if (nulp) { 173 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 174 } else { 175 rom_add_blob_fixed(name, source, buf_size, dest); 176 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 177 *ptr = 0; 178 } 179 } 180 181 /* A.OUT loader */ 182 183 struct exec 184 { 185 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 186 uint32_t a_text; /* length of text, in bytes */ 187 uint32_t a_data; /* length of data, in bytes */ 188 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 189 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 190 uint32_t a_entry; /* start address */ 191 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 192 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 193 }; 194 195 static void bswap_ahdr(struct exec *e) 196 { 197 bswap32s(&e->a_info); 198 bswap32s(&e->a_text); 199 bswap32s(&e->a_data); 200 bswap32s(&e->a_bss); 201 bswap32s(&e->a_syms); 202 bswap32s(&e->a_entry); 203 bswap32s(&e->a_trsize); 204 bswap32s(&e->a_drsize); 205 } 206 207 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 208 #define OMAGIC 0407 209 #define NMAGIC 0410 210 #define ZMAGIC 0413 211 #define QMAGIC 0314 212 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 213 #define N_TXTOFF(x) \ 214 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 215 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 216 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 217 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 218 219 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 220 221 #define N_DATADDR(x, target_page_size) \ 222 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 223 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 224 225 226 int load_aout(const char *filename, hwaddr addr, int max_sz, 227 int bswap_needed, hwaddr target_page_size) 228 { 229 int fd; 230 ssize_t size, ret; 231 struct exec e; 232 uint32_t magic; 233 234 fd = open(filename, O_RDONLY | O_BINARY); 235 if (fd < 0) 236 return -1; 237 238 size = read(fd, &e, sizeof(e)); 239 if (size < 0) 240 goto fail; 241 242 if (bswap_needed) { 243 bswap_ahdr(&e); 244 } 245 246 magic = N_MAGIC(e); 247 switch (magic) { 248 case ZMAGIC: 249 case QMAGIC: 250 case OMAGIC: 251 if (e.a_text + e.a_data > max_sz) 252 goto fail; 253 lseek(fd, N_TXTOFF(e), SEEK_SET); 254 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 255 if (size < 0) 256 goto fail; 257 break; 258 case NMAGIC: 259 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 260 goto fail; 261 lseek(fd, N_TXTOFF(e), SEEK_SET); 262 size = read_targphys(filename, fd, addr, e.a_text); 263 if (size < 0) 264 goto fail; 265 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 266 e.a_data); 267 if (ret < 0) 268 goto fail; 269 size += ret; 270 break; 271 default: 272 goto fail; 273 } 274 close(fd); 275 return size; 276 fail: 277 close(fd); 278 return -1; 279 } 280 281 /* ELF loader */ 282 283 static void *load_at(int fd, off_t offset, size_t size) 284 { 285 void *ptr; 286 if (lseek(fd, offset, SEEK_SET) < 0) 287 return NULL; 288 ptr = g_malloc(size); 289 if (read(fd, ptr, size) != size) { 290 g_free(ptr); 291 return NULL; 292 } 293 return ptr; 294 } 295 296 #ifdef ELF_CLASS 297 #undef ELF_CLASS 298 #endif 299 300 #define ELF_CLASS ELFCLASS32 301 #include "elf.h" 302 303 #define SZ 32 304 #define elf_word uint32_t 305 #define elf_sword int32_t 306 #define bswapSZs bswap32s 307 #include "hw/elf_ops.h" 308 309 #undef elfhdr 310 #undef elf_phdr 311 #undef elf_shdr 312 #undef elf_sym 313 #undef elf_rela 314 #undef elf_note 315 #undef elf_word 316 #undef elf_sword 317 #undef bswapSZs 318 #undef SZ 319 #define elfhdr elf64_hdr 320 #define elf_phdr elf64_phdr 321 #define elf_note elf64_note 322 #define elf_shdr elf64_shdr 323 #define elf_sym elf64_sym 324 #define elf_rela elf64_rela 325 #define elf_word uint64_t 326 #define elf_sword int64_t 327 #define bswapSZs bswap64s 328 #define SZ 64 329 #include "hw/elf_ops.h" 330 331 const char *load_elf_strerror(ssize_t error) 332 { 333 switch (error) { 334 case 0: 335 return "No error"; 336 case ELF_LOAD_FAILED: 337 return "Failed to load ELF"; 338 case ELF_LOAD_NOT_ELF: 339 return "The image is not ELF"; 340 case ELF_LOAD_WRONG_ARCH: 341 return "The image is from incompatible architecture"; 342 case ELF_LOAD_WRONG_ENDIAN: 343 return "The image has incorrect endianness"; 344 case ELF_LOAD_TOO_BIG: 345 return "The image segments are too big to load"; 346 default: 347 return "Unknown error"; 348 } 349 } 350 351 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 352 { 353 int fd; 354 uint8_t e_ident_local[EI_NIDENT]; 355 uint8_t *e_ident; 356 size_t hdr_size, off; 357 bool is64l; 358 359 if (!hdr) { 360 hdr = e_ident_local; 361 } 362 e_ident = hdr; 363 364 fd = open(filename, O_RDONLY | O_BINARY); 365 if (fd < 0) { 366 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 367 return; 368 } 369 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 370 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 371 goto fail; 372 } 373 if (e_ident[0] != ELFMAG0 || 374 e_ident[1] != ELFMAG1 || 375 e_ident[2] != ELFMAG2 || 376 e_ident[3] != ELFMAG3) { 377 error_setg(errp, "Bad ELF magic"); 378 goto fail; 379 } 380 381 is64l = e_ident[EI_CLASS] == ELFCLASS64; 382 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 383 if (is64) { 384 *is64 = is64l; 385 } 386 387 off = EI_NIDENT; 388 while (hdr != e_ident_local && off < hdr_size) { 389 size_t br = read(fd, hdr + off, hdr_size - off); 390 switch (br) { 391 case 0: 392 error_setg(errp, "File too short: %s", filename); 393 goto fail; 394 case -1: 395 error_setg_errno(errp, errno, "Failed to read file: %s", 396 filename); 397 goto fail; 398 } 399 off += br; 400 } 401 402 fail: 403 close(fd); 404 } 405 406 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 407 ssize_t load_elf(const char *filename, 408 uint64_t (*elf_note_fn)(void *, void *, bool), 409 uint64_t (*translate_fn)(void *, uint64_t), 410 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 411 uint64_t *highaddr, uint32_t *pflags, int big_endian, 412 int elf_machine, int clear_lsb, int data_swab) 413 { 414 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 415 pentry, lowaddr, highaddr, pflags, big_endian, 416 elf_machine, clear_lsb, data_swab, NULL); 417 } 418 419 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 420 ssize_t load_elf_as(const char *filename, 421 uint64_t (*elf_note_fn)(void *, void *, bool), 422 uint64_t (*translate_fn)(void *, uint64_t), 423 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 424 uint64_t *highaddr, uint32_t *pflags, int big_endian, 425 int elf_machine, int clear_lsb, int data_swab, 426 AddressSpace *as) 427 { 428 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque, 429 pentry, lowaddr, highaddr, pflags, big_endian, 430 elf_machine, clear_lsb, data_swab, as, true); 431 } 432 433 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 434 ssize_t load_elf_ram(const char *filename, 435 uint64_t (*elf_note_fn)(void *, void *, bool), 436 uint64_t (*translate_fn)(void *, uint64_t), 437 void *translate_opaque, uint64_t *pentry, 438 uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags, 439 int big_endian, int elf_machine, int clear_lsb, 440 int data_swab, AddressSpace *as, bool load_rom) 441 { 442 return load_elf_ram_sym(filename, elf_note_fn, 443 translate_fn, translate_opaque, 444 pentry, lowaddr, highaddr, pflags, big_endian, 445 elf_machine, clear_lsb, data_swab, as, 446 load_rom, NULL); 447 } 448 449 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 450 ssize_t load_elf_ram_sym(const char *filename, 451 uint64_t (*elf_note_fn)(void *, void *, bool), 452 uint64_t (*translate_fn)(void *, uint64_t), 453 void *translate_opaque, uint64_t *pentry, 454 uint64_t *lowaddr, uint64_t *highaddr, 455 uint32_t *pflags, int big_endian, int elf_machine, 456 int clear_lsb, int data_swab, 457 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 458 { 459 int fd, data_order, target_data_order, must_swab; 460 ssize_t ret = ELF_LOAD_FAILED; 461 uint8_t e_ident[EI_NIDENT]; 462 463 fd = open(filename, O_RDONLY | O_BINARY); 464 if (fd < 0) { 465 perror(filename); 466 return -1; 467 } 468 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 469 goto fail; 470 if (e_ident[0] != ELFMAG0 || 471 e_ident[1] != ELFMAG1 || 472 e_ident[2] != ELFMAG2 || 473 e_ident[3] != ELFMAG3) { 474 ret = ELF_LOAD_NOT_ELF; 475 goto fail; 476 } 477 #ifdef HOST_WORDS_BIGENDIAN 478 data_order = ELFDATA2MSB; 479 #else 480 data_order = ELFDATA2LSB; 481 #endif 482 must_swab = data_order != e_ident[EI_DATA]; 483 if (big_endian) { 484 target_data_order = ELFDATA2MSB; 485 } else { 486 target_data_order = ELFDATA2LSB; 487 } 488 489 if (target_data_order != e_ident[EI_DATA]) { 490 ret = ELF_LOAD_WRONG_ENDIAN; 491 goto fail; 492 } 493 494 lseek(fd, 0, SEEK_SET); 495 if (e_ident[EI_CLASS] == ELFCLASS64) { 496 ret = load_elf64(filename, fd, elf_note_fn, 497 translate_fn, translate_opaque, must_swab, 498 pentry, lowaddr, highaddr, pflags, elf_machine, 499 clear_lsb, data_swab, as, load_rom, sym_cb); 500 } else { 501 ret = load_elf32(filename, fd, elf_note_fn, 502 translate_fn, translate_opaque, must_swab, 503 pentry, lowaddr, highaddr, pflags, elf_machine, 504 clear_lsb, data_swab, as, load_rom, sym_cb); 505 } 506 507 fail: 508 close(fd); 509 return ret; 510 } 511 512 static void bswap_uboot_header(uboot_image_header_t *hdr) 513 { 514 #ifndef HOST_WORDS_BIGENDIAN 515 bswap32s(&hdr->ih_magic); 516 bswap32s(&hdr->ih_hcrc); 517 bswap32s(&hdr->ih_time); 518 bswap32s(&hdr->ih_size); 519 bswap32s(&hdr->ih_load); 520 bswap32s(&hdr->ih_ep); 521 bswap32s(&hdr->ih_dcrc); 522 #endif 523 } 524 525 526 #define ZALLOC_ALIGNMENT 16 527 528 static void *zalloc(void *x, unsigned items, unsigned size) 529 { 530 void *p; 531 532 size *= items; 533 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 534 535 p = g_malloc(size); 536 537 return (p); 538 } 539 540 static void zfree(void *x, void *addr) 541 { 542 g_free(addr); 543 } 544 545 546 #define HEAD_CRC 2 547 #define EXTRA_FIELD 4 548 #define ORIG_NAME 8 549 #define COMMENT 0x10 550 #define RESERVED 0xe0 551 552 #define DEFLATED 8 553 554 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 555 { 556 z_stream s; 557 ssize_t dstbytes; 558 int r, i, flags; 559 560 /* skip header */ 561 i = 10; 562 if (srclen < 4) { 563 goto toosmall; 564 } 565 flags = src[3]; 566 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 567 puts ("Error: Bad gzipped data\n"); 568 return -1; 569 } 570 if ((flags & EXTRA_FIELD) != 0) { 571 if (srclen < 12) { 572 goto toosmall; 573 } 574 i = 12 + src[10] + (src[11] << 8); 575 } 576 if ((flags & ORIG_NAME) != 0) { 577 while (i < srclen && src[i++] != 0) { 578 /* do nothing */ 579 } 580 } 581 if ((flags & COMMENT) != 0) { 582 while (i < srclen && src[i++] != 0) { 583 /* do nothing */ 584 } 585 } 586 if ((flags & HEAD_CRC) != 0) { 587 i += 2; 588 } 589 if (i >= srclen) { 590 goto toosmall; 591 } 592 593 s.zalloc = zalloc; 594 s.zfree = zfree; 595 596 r = inflateInit2(&s, -MAX_WBITS); 597 if (r != Z_OK) { 598 printf ("Error: inflateInit2() returned %d\n", r); 599 return (-1); 600 } 601 s.next_in = src + i; 602 s.avail_in = srclen - i; 603 s.next_out = dst; 604 s.avail_out = dstlen; 605 r = inflate(&s, Z_FINISH); 606 if (r != Z_OK && r != Z_STREAM_END) { 607 printf ("Error: inflate() returned %d\n", r); 608 return -1; 609 } 610 dstbytes = s.next_out - (unsigned char *) dst; 611 inflateEnd(&s); 612 613 return dstbytes; 614 615 toosmall: 616 puts("Error: gunzip out of data in header\n"); 617 return -1; 618 } 619 620 /* Load a U-Boot image. */ 621 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 622 int *is_linux, uint8_t image_type, 623 uint64_t (*translate_fn)(void *, uint64_t), 624 void *translate_opaque, AddressSpace *as) 625 { 626 int fd; 627 int size; 628 hwaddr address; 629 uboot_image_header_t h; 630 uboot_image_header_t *hdr = &h; 631 uint8_t *data = NULL; 632 int ret = -1; 633 int do_uncompress = 0; 634 635 fd = open(filename, O_RDONLY | O_BINARY); 636 if (fd < 0) 637 return -1; 638 639 size = read(fd, hdr, sizeof(uboot_image_header_t)); 640 if (size < sizeof(uboot_image_header_t)) { 641 goto out; 642 } 643 644 bswap_uboot_header(hdr); 645 646 if (hdr->ih_magic != IH_MAGIC) 647 goto out; 648 649 if (hdr->ih_type != image_type) { 650 if (!(image_type == IH_TYPE_KERNEL && 651 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 652 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 653 image_type); 654 goto out; 655 } 656 } 657 658 /* TODO: Implement other image types. */ 659 switch (hdr->ih_type) { 660 case IH_TYPE_KERNEL_NOLOAD: 661 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 662 fprintf(stderr, "this image format (kernel_noload) cannot be " 663 "loaded on this machine type"); 664 goto out; 665 } 666 667 hdr->ih_load = *loadaddr + sizeof(*hdr); 668 hdr->ih_ep += hdr->ih_load; 669 /* fall through */ 670 case IH_TYPE_KERNEL: 671 address = hdr->ih_load; 672 if (translate_fn) { 673 address = translate_fn(translate_opaque, address); 674 } 675 if (loadaddr) { 676 *loadaddr = hdr->ih_load; 677 } 678 679 switch (hdr->ih_comp) { 680 case IH_COMP_NONE: 681 break; 682 case IH_COMP_GZIP: 683 do_uncompress = 1; 684 break; 685 default: 686 fprintf(stderr, 687 "Unable to load u-boot images with compression type %d\n", 688 hdr->ih_comp); 689 goto out; 690 } 691 692 if (ep) { 693 *ep = hdr->ih_ep; 694 } 695 696 /* TODO: Check CPU type. */ 697 if (is_linux) { 698 if (hdr->ih_os == IH_OS_LINUX) { 699 *is_linux = 1; 700 } else { 701 *is_linux = 0; 702 } 703 } 704 705 break; 706 case IH_TYPE_RAMDISK: 707 address = *loadaddr; 708 break; 709 default: 710 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 711 goto out; 712 } 713 714 data = g_malloc(hdr->ih_size); 715 716 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 717 fprintf(stderr, "Error reading file\n"); 718 goto out; 719 } 720 721 if (do_uncompress) { 722 uint8_t *compressed_data; 723 size_t max_bytes; 724 ssize_t bytes; 725 726 compressed_data = data; 727 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 728 data = g_malloc(max_bytes); 729 730 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 731 g_free(compressed_data); 732 if (bytes < 0) { 733 fprintf(stderr, "Unable to decompress gzipped image!\n"); 734 goto out; 735 } 736 hdr->ih_size = bytes; 737 } 738 739 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 740 741 ret = hdr->ih_size; 742 743 out: 744 g_free(data); 745 close(fd); 746 return ret; 747 } 748 749 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 750 int *is_linux, 751 uint64_t (*translate_fn)(void *, uint64_t), 752 void *translate_opaque) 753 { 754 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 755 translate_fn, translate_opaque, NULL); 756 } 757 758 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 759 int *is_linux, 760 uint64_t (*translate_fn)(void *, uint64_t), 761 void *translate_opaque, AddressSpace *as) 762 { 763 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 764 translate_fn, translate_opaque, as); 765 } 766 767 /* Load a ramdisk. */ 768 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 769 { 770 return load_ramdisk_as(filename, addr, max_sz, NULL); 771 } 772 773 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 774 AddressSpace *as) 775 { 776 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 777 NULL, NULL, as); 778 } 779 780 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 781 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 782 uint8_t **buffer) 783 { 784 uint8_t *compressed_data = NULL; 785 uint8_t *data = NULL; 786 gsize len; 787 ssize_t bytes; 788 int ret = -1; 789 790 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 791 NULL)) { 792 goto out; 793 } 794 795 /* Is it a gzip-compressed file? */ 796 if (len < 2 || 797 compressed_data[0] != 0x1f || 798 compressed_data[1] != 0x8b) { 799 goto out; 800 } 801 802 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 803 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 804 } 805 806 data = g_malloc(max_sz); 807 bytes = gunzip(data, max_sz, compressed_data, len); 808 if (bytes < 0) { 809 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 810 filename); 811 goto out; 812 } 813 814 /* trim to actual size and return to caller */ 815 *buffer = g_realloc(data, bytes); 816 ret = bytes; 817 /* ownership has been transferred to caller */ 818 data = NULL; 819 820 out: 821 g_free(compressed_data); 822 g_free(data); 823 return ret; 824 } 825 826 /* Load a gzip-compressed kernel. */ 827 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 828 { 829 int bytes; 830 uint8_t *data; 831 832 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 833 if (bytes != -1) { 834 rom_add_blob_fixed(filename, data, bytes, addr); 835 g_free(data); 836 } 837 return bytes; 838 } 839 840 /* 841 * Functions for reboot-persistent memory regions. 842 * - used for vga bios and option roms. 843 * - also linux kernel (-kernel / -initrd). 844 */ 845 846 typedef struct Rom Rom; 847 848 struct Rom { 849 char *name; 850 char *path; 851 852 /* datasize is the amount of memory allocated in "data". If datasize is less 853 * than romsize, it means that the area from datasize to romsize is filled 854 * with zeros. 855 */ 856 size_t romsize; 857 size_t datasize; 858 859 uint8_t *data; 860 MemoryRegion *mr; 861 AddressSpace *as; 862 int isrom; 863 char *fw_dir; 864 char *fw_file; 865 GMappedFile *mapped_file; 866 867 bool committed; 868 869 hwaddr addr; 870 QTAILQ_ENTRY(Rom) next; 871 }; 872 873 static FWCfgState *fw_cfg; 874 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 875 876 /* 877 * rom->data can be heap-allocated or memory-mapped (e.g. when added with 878 * rom_add_elf_program()) 879 */ 880 static void rom_free_data(Rom *rom) 881 { 882 if (rom->mapped_file) { 883 g_mapped_file_unref(rom->mapped_file); 884 rom->mapped_file = NULL; 885 } else { 886 g_free(rom->data); 887 } 888 889 rom->data = NULL; 890 } 891 892 static void rom_free(Rom *rom) 893 { 894 rom_free_data(rom); 895 g_free(rom->path); 896 g_free(rom->name); 897 g_free(rom->fw_dir); 898 g_free(rom->fw_file); 899 g_free(rom); 900 } 901 902 static inline bool rom_order_compare(Rom *rom, Rom *item) 903 { 904 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 905 (rom->as == item->as && rom->addr >= item->addr); 906 } 907 908 static void rom_insert(Rom *rom) 909 { 910 Rom *item; 911 912 if (roms_loaded) { 913 hw_error ("ROM images must be loaded at startup\n"); 914 } 915 916 /* The user didn't specify an address space, this is the default */ 917 if (!rom->as) { 918 rom->as = &address_space_memory; 919 } 920 921 rom->committed = false; 922 923 /* List is ordered by load address in the same address space */ 924 QTAILQ_FOREACH(item, &roms, next) { 925 if (rom_order_compare(rom, item)) { 926 continue; 927 } 928 QTAILQ_INSERT_BEFORE(item, rom, next); 929 return; 930 } 931 QTAILQ_INSERT_TAIL(&roms, rom, next); 932 } 933 934 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 935 { 936 if (fw_cfg) { 937 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 938 } 939 } 940 941 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 942 { 943 void *data; 944 945 rom->mr = g_malloc(sizeof(*rom->mr)); 946 memory_region_init_resizeable_ram(rom->mr, owner, name, 947 rom->datasize, rom->romsize, 948 fw_cfg_resized, 949 &error_fatal); 950 memory_region_set_readonly(rom->mr, ro); 951 vmstate_register_ram_global(rom->mr); 952 953 data = memory_region_get_ram_ptr(rom->mr); 954 memcpy(data, rom->data, rom->datasize); 955 956 return data; 957 } 958 959 int rom_add_file(const char *file, const char *fw_dir, 960 hwaddr addr, int32_t bootindex, 961 bool option_rom, MemoryRegion *mr, 962 AddressSpace *as) 963 { 964 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 965 Rom *rom; 966 int rc, fd = -1; 967 char devpath[100]; 968 969 if (as && mr) { 970 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 971 "not valid when loading a rom\n"); 972 /* We haven't allocated anything so we don't need any cleanup */ 973 return -1; 974 } 975 976 rom = g_malloc0(sizeof(*rom)); 977 rom->name = g_strdup(file); 978 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 979 rom->as = as; 980 if (rom->path == NULL) { 981 rom->path = g_strdup(file); 982 } 983 984 fd = open(rom->path, O_RDONLY | O_BINARY); 985 if (fd == -1) { 986 fprintf(stderr, "Could not open option rom '%s': %s\n", 987 rom->path, strerror(errno)); 988 goto err; 989 } 990 991 if (fw_dir) { 992 rom->fw_dir = g_strdup(fw_dir); 993 rom->fw_file = g_strdup(file); 994 } 995 rom->addr = addr; 996 rom->romsize = lseek(fd, 0, SEEK_END); 997 if (rom->romsize == -1) { 998 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 999 rom->name, strerror(errno)); 1000 goto err; 1001 } 1002 1003 rom->datasize = rom->romsize; 1004 rom->data = g_malloc0(rom->datasize); 1005 lseek(fd, 0, SEEK_SET); 1006 rc = read(fd, rom->data, rom->datasize); 1007 if (rc != rom->datasize) { 1008 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 1009 rom->name, rc, rom->datasize); 1010 goto err; 1011 } 1012 close(fd); 1013 rom_insert(rom); 1014 if (rom->fw_file && fw_cfg) { 1015 const char *basename; 1016 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 1017 void *data; 1018 1019 basename = strrchr(rom->fw_file, '/'); 1020 if (basename) { 1021 basename++; 1022 } else { 1023 basename = rom->fw_file; 1024 } 1025 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 1026 basename); 1027 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1028 1029 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 1030 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 1031 } else { 1032 data = rom->data; 1033 } 1034 1035 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 1036 } else { 1037 if (mr) { 1038 rom->mr = mr; 1039 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 1040 } else { 1041 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 1042 } 1043 } 1044 1045 add_boot_device_path(bootindex, NULL, devpath); 1046 return 0; 1047 1048 err: 1049 if (fd != -1) 1050 close(fd); 1051 1052 rom_free(rom); 1053 return -1; 1054 } 1055 1056 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1057 size_t max_len, hwaddr addr, const char *fw_file_name, 1058 FWCfgCallback fw_callback, void *callback_opaque, 1059 AddressSpace *as, bool read_only) 1060 { 1061 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1062 Rom *rom; 1063 MemoryRegion *mr = NULL; 1064 1065 rom = g_malloc0(sizeof(*rom)); 1066 rom->name = g_strdup(name); 1067 rom->as = as; 1068 rom->addr = addr; 1069 rom->romsize = max_len ? max_len : len; 1070 rom->datasize = len; 1071 g_assert(rom->romsize >= rom->datasize); 1072 rom->data = g_malloc0(rom->datasize); 1073 memcpy(rom->data, blob, len); 1074 rom_insert(rom); 1075 if (fw_file_name && fw_cfg) { 1076 char devpath[100]; 1077 void *data; 1078 1079 if (read_only) { 1080 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1081 } else { 1082 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1083 } 1084 1085 if (mc->rom_file_has_mr) { 1086 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1087 mr = rom->mr; 1088 } else { 1089 data = rom->data; 1090 } 1091 1092 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1093 fw_callback, NULL, callback_opaque, 1094 data, rom->datasize, read_only); 1095 } 1096 return mr; 1097 } 1098 1099 /* This function is specific for elf program because we don't need to allocate 1100 * all the rom. We just allocate the first part and the rest is just zeros. This 1101 * is why romsize and datasize are different. Also, this function takes its own 1102 * reference to "mapped_file", so we don't have to allocate and copy the buffer. 1103 */ 1104 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, 1105 size_t datasize, size_t romsize, hwaddr addr, 1106 AddressSpace *as) 1107 { 1108 Rom *rom; 1109 1110 rom = g_malloc0(sizeof(*rom)); 1111 rom->name = g_strdup(name); 1112 rom->addr = addr; 1113 rom->datasize = datasize; 1114 rom->romsize = romsize; 1115 rom->data = data; 1116 rom->as = as; 1117 1118 if (mapped_file && data) { 1119 g_mapped_file_ref(mapped_file); 1120 rom->mapped_file = mapped_file; 1121 } 1122 1123 rom_insert(rom); 1124 return 0; 1125 } 1126 1127 int rom_add_vga(const char *file) 1128 { 1129 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1130 } 1131 1132 int rom_add_option(const char *file, int32_t bootindex) 1133 { 1134 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1135 } 1136 1137 static void rom_reset(void *unused) 1138 { 1139 Rom *rom; 1140 1141 QTAILQ_FOREACH(rom, &roms, next) { 1142 if (rom->fw_file) { 1143 continue; 1144 } 1145 /* 1146 * We don't need to fill in the RAM with ROM data because we'll fill 1147 * the data in during the next incoming migration in all cases. Note 1148 * that some of those RAMs can actually be modified by the guest. 1149 */ 1150 if (runstate_check(RUN_STATE_INMIGRATE)) { 1151 if (rom->data && rom->isrom) { 1152 /* 1153 * Free it so that a rom_reset after migration doesn't 1154 * overwrite a potentially modified 'rom'. 1155 */ 1156 rom_free_data(rom); 1157 } 1158 continue; 1159 } 1160 1161 if (rom->data == NULL) { 1162 continue; 1163 } 1164 if (rom->mr) { 1165 void *host = memory_region_get_ram_ptr(rom->mr); 1166 memcpy(host, rom->data, rom->datasize); 1167 } else { 1168 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1169 rom->data, rom->datasize); 1170 } 1171 if (rom->isrom) { 1172 /* rom needs to be written only once */ 1173 rom_free_data(rom); 1174 } 1175 /* 1176 * The rom loader is really on the same level as firmware in the guest 1177 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1178 * that the instruction cache for that new region is clear, so that the 1179 * CPU definitely fetches its instructions from the just written data. 1180 */ 1181 cpu_flush_icache_range(rom->addr, rom->datasize); 1182 1183 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom); 1184 } 1185 } 1186 1187 /* Return true if two consecutive ROMs in the ROM list overlap */ 1188 static bool roms_overlap(Rom *last_rom, Rom *this_rom) 1189 { 1190 if (!last_rom) { 1191 return false; 1192 } 1193 return last_rom->as == this_rom->as && 1194 last_rom->addr + last_rom->romsize > this_rom->addr; 1195 } 1196 1197 static const char *rom_as_name(Rom *rom) 1198 { 1199 const char *name = rom->as ? rom->as->name : NULL; 1200 return name ?: "anonymous"; 1201 } 1202 1203 static void rom_print_overlap_error_header(void) 1204 { 1205 error_report("Some ROM regions are overlapping"); 1206 error_printf( 1207 "These ROM regions might have been loaded by " 1208 "direct user request or by default.\n" 1209 "They could be BIOS/firmware images, a guest kernel, " 1210 "initrd or some other file loaded into guest memory.\n" 1211 "Check whether you intended to load all this guest code, and " 1212 "whether it has been built to load to the correct addresses.\n"); 1213 } 1214 1215 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom) 1216 { 1217 error_printf( 1218 "\nThe following two regions overlap (in the %s address space):\n", 1219 rom_as_name(rom)); 1220 error_printf( 1221 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n", 1222 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize); 1223 error_printf( 1224 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n", 1225 rom->name, rom->addr, rom->addr + rom->romsize); 1226 } 1227 1228 int rom_check_and_register_reset(void) 1229 { 1230 MemoryRegionSection section; 1231 Rom *rom, *last_rom = NULL; 1232 bool found_overlap = false; 1233 1234 QTAILQ_FOREACH(rom, &roms, next) { 1235 if (rom->fw_file) { 1236 continue; 1237 } 1238 if (!rom->mr) { 1239 if (roms_overlap(last_rom, rom)) { 1240 if (!found_overlap) { 1241 found_overlap = true; 1242 rom_print_overlap_error_header(); 1243 } 1244 rom_print_one_overlap_error(last_rom, rom); 1245 /* Keep going through the list so we report all overlaps */ 1246 } 1247 last_rom = rom; 1248 } 1249 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1250 rom->addr, 1); 1251 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1252 memory_region_unref(section.mr); 1253 } 1254 if (found_overlap) { 1255 return -1; 1256 } 1257 1258 qemu_register_reset(rom_reset, NULL); 1259 roms_loaded = 1; 1260 return 0; 1261 } 1262 1263 void rom_set_fw(FWCfgState *f) 1264 { 1265 fw_cfg = f; 1266 } 1267 1268 void rom_set_order_override(int order) 1269 { 1270 if (!fw_cfg) 1271 return; 1272 fw_cfg_set_order_override(fw_cfg, order); 1273 } 1274 1275 void rom_reset_order_override(void) 1276 { 1277 if (!fw_cfg) 1278 return; 1279 fw_cfg_reset_order_override(fw_cfg); 1280 } 1281 1282 void rom_transaction_begin(void) 1283 { 1284 Rom *rom; 1285 1286 /* Ignore ROMs added without the transaction API */ 1287 QTAILQ_FOREACH(rom, &roms, next) { 1288 rom->committed = true; 1289 } 1290 } 1291 1292 void rom_transaction_end(bool commit) 1293 { 1294 Rom *rom; 1295 Rom *tmp; 1296 1297 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1298 if (rom->committed) { 1299 continue; 1300 } 1301 if (commit) { 1302 rom->committed = true; 1303 } else { 1304 QTAILQ_REMOVE(&roms, rom, next); 1305 rom_free(rom); 1306 } 1307 } 1308 } 1309 1310 static Rom *find_rom(hwaddr addr, size_t size) 1311 { 1312 Rom *rom; 1313 1314 QTAILQ_FOREACH(rom, &roms, next) { 1315 if (rom->fw_file) { 1316 continue; 1317 } 1318 if (rom->mr) { 1319 continue; 1320 } 1321 if (rom->addr > addr) { 1322 continue; 1323 } 1324 if (rom->addr + rom->romsize < addr + size) { 1325 continue; 1326 } 1327 return rom; 1328 } 1329 return NULL; 1330 } 1331 1332 /* 1333 * Copies memory from registered ROMs to dest. Any memory that is contained in 1334 * a ROM between addr and addr + size is copied. Note that this can involve 1335 * multiple ROMs, which need not start at addr and need not end at addr + size. 1336 */ 1337 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1338 { 1339 hwaddr end = addr + size; 1340 uint8_t *s, *d = dest; 1341 size_t l = 0; 1342 Rom *rom; 1343 1344 QTAILQ_FOREACH(rom, &roms, next) { 1345 if (rom->fw_file) { 1346 continue; 1347 } 1348 if (rom->mr) { 1349 continue; 1350 } 1351 if (rom->addr + rom->romsize < addr) { 1352 continue; 1353 } 1354 if (rom->addr > end || rom->addr < addr) { 1355 break; 1356 } 1357 1358 d = dest + (rom->addr - addr); 1359 s = rom->data; 1360 l = rom->datasize; 1361 1362 if ((d + l) > (dest + size)) { 1363 l = dest - d; 1364 } 1365 1366 if (l > 0) { 1367 memcpy(d, s, l); 1368 } 1369 1370 if (rom->romsize > rom->datasize) { 1371 /* If datasize is less than romsize, it means that we didn't 1372 * allocate all the ROM because the trailing data are only zeros. 1373 */ 1374 1375 d += l; 1376 l = rom->romsize - rom->datasize; 1377 1378 if ((d + l) > (dest + size)) { 1379 /* Rom size doesn't fit in the destination area. Adjust to avoid 1380 * overflow. 1381 */ 1382 l = dest - d; 1383 } 1384 1385 if (l > 0) { 1386 memset(d, 0x0, l); 1387 } 1388 } 1389 } 1390 1391 return (d + l) - dest; 1392 } 1393 1394 void *rom_ptr(hwaddr addr, size_t size) 1395 { 1396 Rom *rom; 1397 1398 rom = find_rom(addr, size); 1399 if (!rom || !rom->data) 1400 return NULL; 1401 return rom->data + (addr - rom->addr); 1402 } 1403 1404 typedef struct FindRomCBData { 1405 size_t size; /* Amount of data we want from ROM, in bytes */ 1406 MemoryRegion *mr; /* MR at the unaliased guest addr */ 1407 hwaddr xlat; /* Offset of addr within mr */ 1408 void *rom; /* Output: rom data pointer, if found */ 1409 } FindRomCBData; 1410 1411 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr, 1412 hwaddr offset_in_region, void *opaque) 1413 { 1414 FindRomCBData *cbdata = opaque; 1415 hwaddr alias_addr; 1416 1417 if (mr != cbdata->mr) { 1418 return false; 1419 } 1420 1421 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region; 1422 cbdata->rom = rom_ptr(alias_addr, cbdata->size); 1423 if (!cbdata->rom) { 1424 return false; 1425 } 1426 /* Found a match, stop iterating */ 1427 return true; 1428 } 1429 1430 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size) 1431 { 1432 /* 1433 * Find any ROM data for the given guest address range. If there 1434 * is a ROM blob then return a pointer to the host memory 1435 * corresponding to 'addr'; otherwise return NULL. 1436 * 1437 * We look not only for ROM blobs that were loaded directly to 1438 * addr, but also for ROM blobs that were loaded to aliases of 1439 * that memory at other addresses within the AddressSpace. 1440 * 1441 * Note that we do not check @as against the 'as' member in the 1442 * 'struct Rom' returned by rom_ptr(). The Rom::as is the 1443 * AddressSpace which the rom blob should be written to, whereas 1444 * our @as argument is the AddressSpace which we are (effectively) 1445 * reading from, and the same underlying RAM will often be visible 1446 * in multiple AddressSpaces. (A common example is a ROM blob 1447 * written to the 'system' address space but then read back via a 1448 * CPU's cpu->as pointer.) This does mean we might potentially 1449 * return a false-positive match if a ROM blob was loaded into an 1450 * AS which is entirely separate and distinct from the one we're 1451 * querying, but this issue exists also for rom_ptr() and hasn't 1452 * caused any problems in practice. 1453 */ 1454 FlatView *fv; 1455 void *rom; 1456 hwaddr len_unused; 1457 FindRomCBData cbdata = {}; 1458 1459 /* Easy case: there's data at the actual address */ 1460 rom = rom_ptr(addr, size); 1461 if (rom) { 1462 return rom; 1463 } 1464 1465 RCU_READ_LOCK_GUARD(); 1466 1467 fv = address_space_to_flatview(as); 1468 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused, 1469 false, MEMTXATTRS_UNSPECIFIED); 1470 if (!cbdata.mr) { 1471 /* Nothing at this address, so there can't be any aliasing */ 1472 return NULL; 1473 } 1474 cbdata.size = size; 1475 flatview_for_each_range(fv, find_rom_cb, &cbdata); 1476 return cbdata.rom; 1477 } 1478 1479 HumanReadableText *qmp_x_query_roms(Error **errp) 1480 { 1481 Rom *rom; 1482 g_autoptr(GString) buf = g_string_new(""); 1483 1484 QTAILQ_FOREACH(rom, &roms, next) { 1485 if (rom->mr) { 1486 g_string_append_printf(buf, "%s" 1487 " size=0x%06zx name=\"%s\"\n", 1488 memory_region_name(rom->mr), 1489 rom->romsize, 1490 rom->name); 1491 } else if (!rom->fw_file) { 1492 g_string_append_printf(buf, "addr=" TARGET_FMT_plx 1493 " size=0x%06zx mem=%s name=\"%s\"\n", 1494 rom->addr, rom->romsize, 1495 rom->isrom ? "rom" : "ram", 1496 rom->name); 1497 } else { 1498 g_string_append_printf(buf, "fw=%s/%s" 1499 " size=0x%06zx name=\"%s\"\n", 1500 rom->fw_dir, 1501 rom->fw_file, 1502 rom->romsize, 1503 rom->name); 1504 } 1505 } 1506 1507 return human_readable_text_from_str(buf); 1508 } 1509 1510 typedef enum HexRecord HexRecord; 1511 enum HexRecord { 1512 DATA_RECORD = 0, 1513 EOF_RECORD, 1514 EXT_SEG_ADDR_RECORD, 1515 START_SEG_ADDR_RECORD, 1516 EXT_LINEAR_ADDR_RECORD, 1517 START_LINEAR_ADDR_RECORD, 1518 }; 1519 1520 /* Each record contains a 16-bit address which is combined with the upper 16 1521 * bits of the implicit "next address" to form a 32-bit address. 1522 */ 1523 #define NEXT_ADDR_MASK 0xffff0000 1524 1525 #define DATA_FIELD_MAX_LEN 0xff 1526 #define LEN_EXCEPT_DATA 0x5 1527 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1528 * sizeof(checksum) */ 1529 typedef struct { 1530 uint8_t byte_count; 1531 uint16_t address; 1532 uint8_t record_type; 1533 uint8_t data[DATA_FIELD_MAX_LEN]; 1534 uint8_t checksum; 1535 } HexLine; 1536 1537 /* return 0 or -1 if error */ 1538 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1539 uint32_t *index, const bool in_process) 1540 { 1541 /* +-------+---------------+-------+---------------------+--------+ 1542 * | byte | |record | | | 1543 * | count | address | type | data |checksum| 1544 * +-------+---------------+-------+---------------------+--------+ 1545 * ^ ^ ^ ^ ^ ^ 1546 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1547 */ 1548 uint8_t value = 0; 1549 uint32_t idx = *index; 1550 /* ignore space */ 1551 if (g_ascii_isspace(c)) { 1552 return true; 1553 } 1554 if (!g_ascii_isxdigit(c) || !in_process) { 1555 return false; 1556 } 1557 value = g_ascii_xdigit_value(c); 1558 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1559 if (idx < 2) { 1560 line->byte_count |= value; 1561 } else if (2 <= idx && idx < 6) { 1562 line->address <<= 4; 1563 line->address += g_ascii_xdigit_value(c); 1564 } else if (6 <= idx && idx < 8) { 1565 line->record_type |= value; 1566 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1567 line->data[(idx - 8) >> 1] |= value; 1568 } else if (8 + 2 * line->byte_count <= idx && 1569 idx < 10 + 2 * line->byte_count) { 1570 line->checksum |= value; 1571 } else { 1572 return false; 1573 } 1574 *our_checksum += value; 1575 ++(*index); 1576 return true; 1577 } 1578 1579 typedef struct { 1580 const char *filename; 1581 HexLine line; 1582 uint8_t *bin_buf; 1583 hwaddr *start_addr; 1584 int total_size; 1585 uint32_t next_address_to_write; 1586 uint32_t current_address; 1587 uint32_t current_rom_index; 1588 uint32_t rom_start_address; 1589 AddressSpace *as; 1590 bool complete; 1591 } HexParser; 1592 1593 /* return size or -1 if error */ 1594 static int handle_record_type(HexParser *parser) 1595 { 1596 HexLine *line = &(parser->line); 1597 switch (line->record_type) { 1598 case DATA_RECORD: 1599 parser->current_address = 1600 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1601 /* verify this is a contiguous block of memory */ 1602 if (parser->current_address != parser->next_address_to_write) { 1603 if (parser->current_rom_index != 0) { 1604 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1605 parser->current_rom_index, 1606 parser->rom_start_address, parser->as); 1607 } 1608 parser->rom_start_address = parser->current_address; 1609 parser->current_rom_index = 0; 1610 } 1611 1612 /* copy from line buffer to output bin_buf */ 1613 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1614 line->byte_count); 1615 parser->current_rom_index += line->byte_count; 1616 parser->total_size += line->byte_count; 1617 /* save next address to write */ 1618 parser->next_address_to_write = 1619 parser->current_address + line->byte_count; 1620 break; 1621 1622 case EOF_RECORD: 1623 if (parser->current_rom_index != 0) { 1624 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1625 parser->current_rom_index, 1626 parser->rom_start_address, parser->as); 1627 } 1628 parser->complete = true; 1629 return parser->total_size; 1630 case EXT_SEG_ADDR_RECORD: 1631 case EXT_LINEAR_ADDR_RECORD: 1632 if (line->byte_count != 2 && line->address != 0) { 1633 return -1; 1634 } 1635 1636 if (parser->current_rom_index != 0) { 1637 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1638 parser->current_rom_index, 1639 parser->rom_start_address, parser->as); 1640 } 1641 1642 /* save next address to write, 1643 * in case of non-contiguous block of memory */ 1644 parser->next_address_to_write = (line->data[0] << 12) | 1645 (line->data[1] << 4); 1646 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1647 parser->next_address_to_write <<= 12; 1648 } 1649 1650 parser->rom_start_address = parser->next_address_to_write; 1651 parser->current_rom_index = 0; 1652 break; 1653 1654 case START_SEG_ADDR_RECORD: 1655 if (line->byte_count != 4 && line->address != 0) { 1656 return -1; 1657 } 1658 1659 /* x86 16-bit CS:IP segmented addressing */ 1660 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1661 ((line->data[2] << 8) | line->data[3]); 1662 break; 1663 1664 case START_LINEAR_ADDR_RECORD: 1665 if (line->byte_count != 4 && line->address != 0) { 1666 return -1; 1667 } 1668 1669 *(parser->start_addr) = ldl_be_p(line->data); 1670 break; 1671 1672 default: 1673 return -1; 1674 } 1675 1676 return parser->total_size; 1677 } 1678 1679 /* return size or -1 if error */ 1680 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1681 size_t hex_blob_size, AddressSpace *as) 1682 { 1683 bool in_process = false; /* avoid re-enter and 1684 * check whether record begin with ':' */ 1685 uint8_t *end = hex_blob + hex_blob_size; 1686 uint8_t our_checksum = 0; 1687 uint32_t record_index = 0; 1688 HexParser parser = { 1689 .filename = filename, 1690 .bin_buf = g_malloc(hex_blob_size), 1691 .start_addr = addr, 1692 .as = as, 1693 .complete = false 1694 }; 1695 1696 rom_transaction_begin(); 1697 1698 for (; hex_blob < end && !parser.complete; ++hex_blob) { 1699 switch (*hex_blob) { 1700 case '\r': 1701 case '\n': 1702 if (!in_process) { 1703 break; 1704 } 1705 1706 in_process = false; 1707 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1708 record_index || 1709 our_checksum != 0) { 1710 parser.total_size = -1; 1711 goto out; 1712 } 1713 1714 if (handle_record_type(&parser) == -1) { 1715 parser.total_size = -1; 1716 goto out; 1717 } 1718 break; 1719 1720 /* start of a new record. */ 1721 case ':': 1722 memset(&parser.line, 0, sizeof(HexLine)); 1723 in_process = true; 1724 record_index = 0; 1725 break; 1726 1727 /* decoding lines */ 1728 default: 1729 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1730 &record_index, in_process)) { 1731 parser.total_size = -1; 1732 goto out; 1733 } 1734 break; 1735 } 1736 } 1737 1738 out: 1739 g_free(parser.bin_buf); 1740 rom_transaction_end(parser.total_size != -1); 1741 return parser.total_size; 1742 } 1743 1744 /* return size or -1 if error */ 1745 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as) 1746 { 1747 gsize hex_blob_size; 1748 gchar *hex_blob; 1749 int total_size = 0; 1750 1751 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1752 return -1; 1753 } 1754 1755 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1756 hex_blob_size, as); 1757 1758 g_free(hex_blob); 1759 return total_size; 1760 } 1761