1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qemu-common.h" 47 #include "qemu/datadir.h" 48 #include "qapi/error.h" 49 #include "trace.h" 50 #include "hw/hw.h" 51 #include "disas/disas.h" 52 #include "migration/vmstate.h" 53 #include "monitor/monitor.h" 54 #include "sysemu/reset.h" 55 #include "sysemu/sysemu.h" 56 #include "uboot_image.h" 57 #include "hw/loader.h" 58 #include "hw/nvram/fw_cfg.h" 59 #include "exec/memory.h" 60 #include "exec/address-spaces.h" 61 #include "hw/boards.h" 62 #include "qemu/cutils.h" 63 #include "sysemu/runstate.h" 64 65 #include <zlib.h> 66 67 static int roms_loaded; 68 69 /* return the size or -1 if error */ 70 int64_t get_image_size(const char *filename) 71 { 72 int fd; 73 int64_t size; 74 fd = open(filename, O_RDONLY | O_BINARY); 75 if (fd < 0) 76 return -1; 77 size = lseek(fd, 0, SEEK_END); 78 close(fd); 79 return size; 80 } 81 82 /* return the size or -1 if error */ 83 ssize_t load_image_size(const char *filename, void *addr, size_t size) 84 { 85 int fd; 86 ssize_t actsize, l = 0; 87 88 fd = open(filename, O_RDONLY | O_BINARY); 89 if (fd < 0) { 90 return -1; 91 } 92 93 while ((actsize = read(fd, addr + l, size - l)) > 0) { 94 l += actsize; 95 } 96 97 close(fd); 98 99 return actsize < 0 ? -1 : l; 100 } 101 102 /* read()-like version */ 103 ssize_t read_targphys(const char *name, 104 int fd, hwaddr dst_addr, size_t nbytes) 105 { 106 uint8_t *buf; 107 ssize_t did; 108 109 buf = g_malloc(nbytes); 110 did = read(fd, buf, nbytes); 111 if (did > 0) 112 rom_add_blob_fixed("read", buf, did, dst_addr); 113 g_free(buf); 114 return did; 115 } 116 117 int load_image_targphys(const char *filename, 118 hwaddr addr, uint64_t max_sz) 119 { 120 return load_image_targphys_as(filename, addr, max_sz, NULL); 121 } 122 123 /* return the size or -1 if error */ 124 int load_image_targphys_as(const char *filename, 125 hwaddr addr, uint64_t max_sz, AddressSpace *as) 126 { 127 int size; 128 129 size = get_image_size(filename); 130 if (size < 0 || size > max_sz) { 131 return -1; 132 } 133 if (size > 0) { 134 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 135 return -1; 136 } 137 } 138 return size; 139 } 140 141 int load_image_mr(const char *filename, MemoryRegion *mr) 142 { 143 int size; 144 145 if (!memory_access_is_direct(mr, false)) { 146 /* Can only load an image into RAM or ROM */ 147 return -1; 148 } 149 150 size = get_image_size(filename); 151 152 if (size < 0 || size > memory_region_size(mr)) { 153 return -1; 154 } 155 if (size > 0) { 156 if (rom_add_file_mr(filename, mr, -1) < 0) { 157 return -1; 158 } 159 } 160 return size; 161 } 162 163 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 164 const char *source) 165 { 166 const char *nulp; 167 char *ptr; 168 169 if (buf_size <= 0) return; 170 nulp = memchr(source, 0, buf_size); 171 if (nulp) { 172 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 173 } else { 174 rom_add_blob_fixed(name, source, buf_size, dest); 175 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 176 *ptr = 0; 177 } 178 } 179 180 /* A.OUT loader */ 181 182 struct exec 183 { 184 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 185 uint32_t a_text; /* length of text, in bytes */ 186 uint32_t a_data; /* length of data, in bytes */ 187 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 188 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 189 uint32_t a_entry; /* start address */ 190 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 191 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 192 }; 193 194 static void bswap_ahdr(struct exec *e) 195 { 196 bswap32s(&e->a_info); 197 bswap32s(&e->a_text); 198 bswap32s(&e->a_data); 199 bswap32s(&e->a_bss); 200 bswap32s(&e->a_syms); 201 bswap32s(&e->a_entry); 202 bswap32s(&e->a_trsize); 203 bswap32s(&e->a_drsize); 204 } 205 206 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 207 #define OMAGIC 0407 208 #define NMAGIC 0410 209 #define ZMAGIC 0413 210 #define QMAGIC 0314 211 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 212 #define N_TXTOFF(x) \ 213 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 214 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 215 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 216 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 217 218 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 219 220 #define N_DATADDR(x, target_page_size) \ 221 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 222 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 223 224 225 int load_aout(const char *filename, hwaddr addr, int max_sz, 226 int bswap_needed, hwaddr target_page_size) 227 { 228 int fd; 229 ssize_t size, ret; 230 struct exec e; 231 uint32_t magic; 232 233 fd = open(filename, O_RDONLY | O_BINARY); 234 if (fd < 0) 235 return -1; 236 237 size = read(fd, &e, sizeof(e)); 238 if (size < 0) 239 goto fail; 240 241 if (bswap_needed) { 242 bswap_ahdr(&e); 243 } 244 245 magic = N_MAGIC(e); 246 switch (magic) { 247 case ZMAGIC: 248 case QMAGIC: 249 case OMAGIC: 250 if (e.a_text + e.a_data > max_sz) 251 goto fail; 252 lseek(fd, N_TXTOFF(e), SEEK_SET); 253 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 254 if (size < 0) 255 goto fail; 256 break; 257 case NMAGIC: 258 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 259 goto fail; 260 lseek(fd, N_TXTOFF(e), SEEK_SET); 261 size = read_targphys(filename, fd, addr, e.a_text); 262 if (size < 0) 263 goto fail; 264 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 265 e.a_data); 266 if (ret < 0) 267 goto fail; 268 size += ret; 269 break; 270 default: 271 goto fail; 272 } 273 close(fd); 274 return size; 275 fail: 276 close(fd); 277 return -1; 278 } 279 280 /* ELF loader */ 281 282 static void *load_at(int fd, off_t offset, size_t size) 283 { 284 void *ptr; 285 if (lseek(fd, offset, SEEK_SET) < 0) 286 return NULL; 287 ptr = g_malloc(size); 288 if (read(fd, ptr, size) != size) { 289 g_free(ptr); 290 return NULL; 291 } 292 return ptr; 293 } 294 295 #ifdef ELF_CLASS 296 #undef ELF_CLASS 297 #endif 298 299 #define ELF_CLASS ELFCLASS32 300 #include "elf.h" 301 302 #define SZ 32 303 #define elf_word uint32_t 304 #define elf_sword int32_t 305 #define bswapSZs bswap32s 306 #include "hw/elf_ops.h" 307 308 #undef elfhdr 309 #undef elf_phdr 310 #undef elf_shdr 311 #undef elf_sym 312 #undef elf_rela 313 #undef elf_note 314 #undef elf_word 315 #undef elf_sword 316 #undef bswapSZs 317 #undef SZ 318 #define elfhdr elf64_hdr 319 #define elf_phdr elf64_phdr 320 #define elf_note elf64_note 321 #define elf_shdr elf64_shdr 322 #define elf_sym elf64_sym 323 #define elf_rela elf64_rela 324 #define elf_word uint64_t 325 #define elf_sword int64_t 326 #define bswapSZs bswap64s 327 #define SZ 64 328 #include "hw/elf_ops.h" 329 330 const char *load_elf_strerror(int error) 331 { 332 switch (error) { 333 case 0: 334 return "No error"; 335 case ELF_LOAD_FAILED: 336 return "Failed to load ELF"; 337 case ELF_LOAD_NOT_ELF: 338 return "The image is not ELF"; 339 case ELF_LOAD_WRONG_ARCH: 340 return "The image is from incompatible architecture"; 341 case ELF_LOAD_WRONG_ENDIAN: 342 return "The image has incorrect endianness"; 343 case ELF_LOAD_TOO_BIG: 344 return "The image segments are too big to load"; 345 default: 346 return "Unknown error"; 347 } 348 } 349 350 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 351 { 352 int fd; 353 uint8_t e_ident_local[EI_NIDENT]; 354 uint8_t *e_ident; 355 size_t hdr_size, off; 356 bool is64l; 357 358 if (!hdr) { 359 hdr = e_ident_local; 360 } 361 e_ident = hdr; 362 363 fd = open(filename, O_RDONLY | O_BINARY); 364 if (fd < 0) { 365 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 366 return; 367 } 368 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 369 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 370 goto fail; 371 } 372 if (e_ident[0] != ELFMAG0 || 373 e_ident[1] != ELFMAG1 || 374 e_ident[2] != ELFMAG2 || 375 e_ident[3] != ELFMAG3) { 376 error_setg(errp, "Bad ELF magic"); 377 goto fail; 378 } 379 380 is64l = e_ident[EI_CLASS] == ELFCLASS64; 381 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 382 if (is64) { 383 *is64 = is64l; 384 } 385 386 off = EI_NIDENT; 387 while (hdr != e_ident_local && off < hdr_size) { 388 size_t br = read(fd, hdr + off, hdr_size - off); 389 switch (br) { 390 case 0: 391 error_setg(errp, "File too short: %s", filename); 392 goto fail; 393 case -1: 394 error_setg_errno(errp, errno, "Failed to read file: %s", 395 filename); 396 goto fail; 397 } 398 off += br; 399 } 400 401 fail: 402 close(fd); 403 } 404 405 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 406 int load_elf(const char *filename, 407 uint64_t (*elf_note_fn)(void *, void *, bool), 408 uint64_t (*translate_fn)(void *, uint64_t), 409 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 410 uint64_t *highaddr, uint32_t *pflags, int big_endian, 411 int elf_machine, int clear_lsb, int data_swab) 412 { 413 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 414 pentry, lowaddr, highaddr, pflags, big_endian, 415 elf_machine, clear_lsb, data_swab, NULL); 416 } 417 418 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 419 int load_elf_as(const char *filename, 420 uint64_t (*elf_note_fn)(void *, void *, bool), 421 uint64_t (*translate_fn)(void *, uint64_t), 422 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 423 uint64_t *highaddr, uint32_t *pflags, int big_endian, 424 int elf_machine, int clear_lsb, int data_swab, AddressSpace *as) 425 { 426 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque, 427 pentry, lowaddr, highaddr, pflags, big_endian, 428 elf_machine, clear_lsb, data_swab, as, true); 429 } 430 431 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 432 int load_elf_ram(const char *filename, 433 uint64_t (*elf_note_fn)(void *, void *, bool), 434 uint64_t (*translate_fn)(void *, uint64_t), 435 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 436 uint64_t *highaddr, uint32_t *pflags, int big_endian, 437 int elf_machine, int clear_lsb, int data_swab, 438 AddressSpace *as, bool load_rom) 439 { 440 return load_elf_ram_sym(filename, elf_note_fn, 441 translate_fn, translate_opaque, 442 pentry, lowaddr, highaddr, pflags, big_endian, 443 elf_machine, clear_lsb, data_swab, as, 444 load_rom, NULL); 445 } 446 447 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 448 int load_elf_ram_sym(const char *filename, 449 uint64_t (*elf_note_fn)(void *, void *, bool), 450 uint64_t (*translate_fn)(void *, uint64_t), 451 void *translate_opaque, uint64_t *pentry, 452 uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags, 453 int big_endian, int elf_machine, 454 int clear_lsb, int data_swab, 455 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 456 { 457 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; 458 uint8_t e_ident[EI_NIDENT]; 459 460 fd = open(filename, O_RDONLY | O_BINARY); 461 if (fd < 0) { 462 perror(filename); 463 return -1; 464 } 465 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 466 goto fail; 467 if (e_ident[0] != ELFMAG0 || 468 e_ident[1] != ELFMAG1 || 469 e_ident[2] != ELFMAG2 || 470 e_ident[3] != ELFMAG3) { 471 ret = ELF_LOAD_NOT_ELF; 472 goto fail; 473 } 474 #ifdef HOST_WORDS_BIGENDIAN 475 data_order = ELFDATA2MSB; 476 #else 477 data_order = ELFDATA2LSB; 478 #endif 479 must_swab = data_order != e_ident[EI_DATA]; 480 if (big_endian) { 481 target_data_order = ELFDATA2MSB; 482 } else { 483 target_data_order = ELFDATA2LSB; 484 } 485 486 if (target_data_order != e_ident[EI_DATA]) { 487 ret = ELF_LOAD_WRONG_ENDIAN; 488 goto fail; 489 } 490 491 lseek(fd, 0, SEEK_SET); 492 if (e_ident[EI_CLASS] == ELFCLASS64) { 493 ret = load_elf64(filename, fd, elf_note_fn, 494 translate_fn, translate_opaque, must_swab, 495 pentry, lowaddr, highaddr, pflags, elf_machine, 496 clear_lsb, data_swab, as, load_rom, sym_cb); 497 } else { 498 ret = load_elf32(filename, fd, elf_note_fn, 499 translate_fn, translate_opaque, must_swab, 500 pentry, lowaddr, highaddr, pflags, elf_machine, 501 clear_lsb, data_swab, as, load_rom, sym_cb); 502 } 503 504 fail: 505 close(fd); 506 return ret; 507 } 508 509 static void bswap_uboot_header(uboot_image_header_t *hdr) 510 { 511 #ifndef HOST_WORDS_BIGENDIAN 512 bswap32s(&hdr->ih_magic); 513 bswap32s(&hdr->ih_hcrc); 514 bswap32s(&hdr->ih_time); 515 bswap32s(&hdr->ih_size); 516 bswap32s(&hdr->ih_load); 517 bswap32s(&hdr->ih_ep); 518 bswap32s(&hdr->ih_dcrc); 519 #endif 520 } 521 522 523 #define ZALLOC_ALIGNMENT 16 524 525 static void *zalloc(void *x, unsigned items, unsigned size) 526 { 527 void *p; 528 529 size *= items; 530 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 531 532 p = g_malloc(size); 533 534 return (p); 535 } 536 537 static void zfree(void *x, void *addr) 538 { 539 g_free(addr); 540 } 541 542 543 #define HEAD_CRC 2 544 #define EXTRA_FIELD 4 545 #define ORIG_NAME 8 546 #define COMMENT 0x10 547 #define RESERVED 0xe0 548 549 #define DEFLATED 8 550 551 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 552 { 553 z_stream s; 554 ssize_t dstbytes; 555 int r, i, flags; 556 557 /* skip header */ 558 i = 10; 559 flags = src[3]; 560 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 561 puts ("Error: Bad gzipped data\n"); 562 return -1; 563 } 564 if ((flags & EXTRA_FIELD) != 0) 565 i = 12 + src[10] + (src[11] << 8); 566 if ((flags & ORIG_NAME) != 0) 567 while (src[i++] != 0) 568 ; 569 if ((flags & COMMENT) != 0) 570 while (src[i++] != 0) 571 ; 572 if ((flags & HEAD_CRC) != 0) 573 i += 2; 574 if (i >= srclen) { 575 puts ("Error: gunzip out of data in header\n"); 576 return -1; 577 } 578 579 s.zalloc = zalloc; 580 s.zfree = zfree; 581 582 r = inflateInit2(&s, -MAX_WBITS); 583 if (r != Z_OK) { 584 printf ("Error: inflateInit2() returned %d\n", r); 585 return (-1); 586 } 587 s.next_in = src + i; 588 s.avail_in = srclen - i; 589 s.next_out = dst; 590 s.avail_out = dstlen; 591 r = inflate(&s, Z_FINISH); 592 if (r != Z_OK && r != Z_STREAM_END) { 593 printf ("Error: inflate() returned %d\n", r); 594 return -1; 595 } 596 dstbytes = s.next_out - (unsigned char *) dst; 597 inflateEnd(&s); 598 599 return dstbytes; 600 } 601 602 /* Load a U-Boot image. */ 603 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 604 int *is_linux, uint8_t image_type, 605 uint64_t (*translate_fn)(void *, uint64_t), 606 void *translate_opaque, AddressSpace *as) 607 { 608 int fd; 609 int size; 610 hwaddr address; 611 uboot_image_header_t h; 612 uboot_image_header_t *hdr = &h; 613 uint8_t *data = NULL; 614 int ret = -1; 615 int do_uncompress = 0; 616 617 fd = open(filename, O_RDONLY | O_BINARY); 618 if (fd < 0) 619 return -1; 620 621 size = read(fd, hdr, sizeof(uboot_image_header_t)); 622 if (size < sizeof(uboot_image_header_t)) { 623 goto out; 624 } 625 626 bswap_uboot_header(hdr); 627 628 if (hdr->ih_magic != IH_MAGIC) 629 goto out; 630 631 if (hdr->ih_type != image_type) { 632 if (!(image_type == IH_TYPE_KERNEL && 633 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 634 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 635 image_type); 636 goto out; 637 } 638 } 639 640 /* TODO: Implement other image types. */ 641 switch (hdr->ih_type) { 642 case IH_TYPE_KERNEL_NOLOAD: 643 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 644 fprintf(stderr, "this image format (kernel_noload) cannot be " 645 "loaded on this machine type"); 646 goto out; 647 } 648 649 hdr->ih_load = *loadaddr + sizeof(*hdr); 650 hdr->ih_ep += hdr->ih_load; 651 /* fall through */ 652 case IH_TYPE_KERNEL: 653 address = hdr->ih_load; 654 if (translate_fn) { 655 address = translate_fn(translate_opaque, address); 656 } 657 if (loadaddr) { 658 *loadaddr = hdr->ih_load; 659 } 660 661 switch (hdr->ih_comp) { 662 case IH_COMP_NONE: 663 break; 664 case IH_COMP_GZIP: 665 do_uncompress = 1; 666 break; 667 default: 668 fprintf(stderr, 669 "Unable to load u-boot images with compression type %d\n", 670 hdr->ih_comp); 671 goto out; 672 } 673 674 if (ep) { 675 *ep = hdr->ih_ep; 676 } 677 678 /* TODO: Check CPU type. */ 679 if (is_linux) { 680 if (hdr->ih_os == IH_OS_LINUX) { 681 *is_linux = 1; 682 } else { 683 *is_linux = 0; 684 } 685 } 686 687 break; 688 case IH_TYPE_RAMDISK: 689 address = *loadaddr; 690 break; 691 default: 692 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 693 goto out; 694 } 695 696 data = g_malloc(hdr->ih_size); 697 698 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 699 fprintf(stderr, "Error reading file\n"); 700 goto out; 701 } 702 703 if (do_uncompress) { 704 uint8_t *compressed_data; 705 size_t max_bytes; 706 ssize_t bytes; 707 708 compressed_data = data; 709 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 710 data = g_malloc(max_bytes); 711 712 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 713 g_free(compressed_data); 714 if (bytes < 0) { 715 fprintf(stderr, "Unable to decompress gzipped image!\n"); 716 goto out; 717 } 718 hdr->ih_size = bytes; 719 } 720 721 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 722 723 ret = hdr->ih_size; 724 725 out: 726 g_free(data); 727 close(fd); 728 return ret; 729 } 730 731 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 732 int *is_linux, 733 uint64_t (*translate_fn)(void *, uint64_t), 734 void *translate_opaque) 735 { 736 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 737 translate_fn, translate_opaque, NULL); 738 } 739 740 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 741 int *is_linux, 742 uint64_t (*translate_fn)(void *, uint64_t), 743 void *translate_opaque, AddressSpace *as) 744 { 745 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 746 translate_fn, translate_opaque, as); 747 } 748 749 /* Load a ramdisk. */ 750 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 751 { 752 return load_ramdisk_as(filename, addr, max_sz, NULL); 753 } 754 755 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 756 AddressSpace *as) 757 { 758 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 759 NULL, NULL, as); 760 } 761 762 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 763 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 764 uint8_t **buffer) 765 { 766 uint8_t *compressed_data = NULL; 767 uint8_t *data = NULL; 768 gsize len; 769 ssize_t bytes; 770 int ret = -1; 771 772 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 773 NULL)) { 774 goto out; 775 } 776 777 /* Is it a gzip-compressed file? */ 778 if (len < 2 || 779 compressed_data[0] != 0x1f || 780 compressed_data[1] != 0x8b) { 781 goto out; 782 } 783 784 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 785 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 786 } 787 788 data = g_malloc(max_sz); 789 bytes = gunzip(data, max_sz, compressed_data, len); 790 if (bytes < 0) { 791 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 792 filename); 793 goto out; 794 } 795 796 /* trim to actual size and return to caller */ 797 *buffer = g_realloc(data, bytes); 798 ret = bytes; 799 /* ownership has been transferred to caller */ 800 data = NULL; 801 802 out: 803 g_free(compressed_data); 804 g_free(data); 805 return ret; 806 } 807 808 /* Load a gzip-compressed kernel. */ 809 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 810 { 811 int bytes; 812 uint8_t *data; 813 814 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 815 if (bytes != -1) { 816 rom_add_blob_fixed(filename, data, bytes, addr); 817 g_free(data); 818 } 819 return bytes; 820 } 821 822 /* 823 * Functions for reboot-persistent memory regions. 824 * - used for vga bios and option roms. 825 * - also linux kernel (-kernel / -initrd). 826 */ 827 828 typedef struct Rom Rom; 829 830 struct Rom { 831 char *name; 832 char *path; 833 834 /* datasize is the amount of memory allocated in "data". If datasize is less 835 * than romsize, it means that the area from datasize to romsize is filled 836 * with zeros. 837 */ 838 size_t romsize; 839 size_t datasize; 840 841 uint8_t *data; 842 MemoryRegion *mr; 843 AddressSpace *as; 844 int isrom; 845 char *fw_dir; 846 char *fw_file; 847 GMappedFile *mapped_file; 848 849 bool committed; 850 851 hwaddr addr; 852 QTAILQ_ENTRY(Rom) next; 853 }; 854 855 static FWCfgState *fw_cfg; 856 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 857 858 /* 859 * rom->data can be heap-allocated or memory-mapped (e.g. when added with 860 * rom_add_elf_program()) 861 */ 862 static void rom_free_data(Rom *rom) 863 { 864 if (rom->mapped_file) { 865 g_mapped_file_unref(rom->mapped_file); 866 rom->mapped_file = NULL; 867 } else { 868 g_free(rom->data); 869 } 870 871 rom->data = NULL; 872 } 873 874 static void rom_free(Rom *rom) 875 { 876 rom_free_data(rom); 877 g_free(rom->path); 878 g_free(rom->name); 879 g_free(rom->fw_dir); 880 g_free(rom->fw_file); 881 g_free(rom); 882 } 883 884 static inline bool rom_order_compare(Rom *rom, Rom *item) 885 { 886 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 887 (rom->as == item->as && rom->addr >= item->addr); 888 } 889 890 static void rom_insert(Rom *rom) 891 { 892 Rom *item; 893 894 if (roms_loaded) { 895 hw_error ("ROM images must be loaded at startup\n"); 896 } 897 898 /* The user didn't specify an address space, this is the default */ 899 if (!rom->as) { 900 rom->as = &address_space_memory; 901 } 902 903 rom->committed = false; 904 905 /* List is ordered by load address in the same address space */ 906 QTAILQ_FOREACH(item, &roms, next) { 907 if (rom_order_compare(rom, item)) { 908 continue; 909 } 910 QTAILQ_INSERT_BEFORE(item, rom, next); 911 return; 912 } 913 QTAILQ_INSERT_TAIL(&roms, rom, next); 914 } 915 916 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 917 { 918 if (fw_cfg) { 919 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 920 } 921 } 922 923 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 924 { 925 void *data; 926 927 rom->mr = g_malloc(sizeof(*rom->mr)); 928 memory_region_init_resizeable_ram(rom->mr, owner, name, 929 rom->datasize, rom->romsize, 930 fw_cfg_resized, 931 &error_fatal); 932 memory_region_set_readonly(rom->mr, ro); 933 vmstate_register_ram_global(rom->mr); 934 935 data = memory_region_get_ram_ptr(rom->mr); 936 memcpy(data, rom->data, rom->datasize); 937 938 return data; 939 } 940 941 int rom_add_file(const char *file, const char *fw_dir, 942 hwaddr addr, int32_t bootindex, 943 bool option_rom, MemoryRegion *mr, 944 AddressSpace *as) 945 { 946 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 947 Rom *rom; 948 int rc, fd = -1; 949 char devpath[100]; 950 951 if (as && mr) { 952 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 953 "not valid when loading a rom\n"); 954 /* We haven't allocated anything so we don't need any cleanup */ 955 return -1; 956 } 957 958 rom = g_malloc0(sizeof(*rom)); 959 rom->name = g_strdup(file); 960 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 961 rom->as = as; 962 if (rom->path == NULL) { 963 rom->path = g_strdup(file); 964 } 965 966 fd = open(rom->path, O_RDONLY | O_BINARY); 967 if (fd == -1) { 968 fprintf(stderr, "Could not open option rom '%s': %s\n", 969 rom->path, strerror(errno)); 970 goto err; 971 } 972 973 if (fw_dir) { 974 rom->fw_dir = g_strdup(fw_dir); 975 rom->fw_file = g_strdup(file); 976 } 977 rom->addr = addr; 978 rom->romsize = lseek(fd, 0, SEEK_END); 979 if (rom->romsize == -1) { 980 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 981 rom->name, strerror(errno)); 982 goto err; 983 } 984 985 rom->datasize = rom->romsize; 986 rom->data = g_malloc0(rom->datasize); 987 lseek(fd, 0, SEEK_SET); 988 rc = read(fd, rom->data, rom->datasize); 989 if (rc != rom->datasize) { 990 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 991 rom->name, rc, rom->datasize); 992 goto err; 993 } 994 close(fd); 995 rom_insert(rom); 996 if (rom->fw_file && fw_cfg) { 997 const char *basename; 998 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 999 void *data; 1000 1001 basename = strrchr(rom->fw_file, '/'); 1002 if (basename) { 1003 basename++; 1004 } else { 1005 basename = rom->fw_file; 1006 } 1007 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 1008 basename); 1009 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1010 1011 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 1012 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 1013 } else { 1014 data = rom->data; 1015 } 1016 1017 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 1018 } else { 1019 if (mr) { 1020 rom->mr = mr; 1021 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 1022 } else { 1023 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 1024 } 1025 } 1026 1027 add_boot_device_path(bootindex, NULL, devpath); 1028 return 0; 1029 1030 err: 1031 if (fd != -1) 1032 close(fd); 1033 1034 rom_free(rom); 1035 return -1; 1036 } 1037 1038 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1039 size_t max_len, hwaddr addr, const char *fw_file_name, 1040 FWCfgCallback fw_callback, void *callback_opaque, 1041 AddressSpace *as, bool read_only) 1042 { 1043 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1044 Rom *rom; 1045 MemoryRegion *mr = NULL; 1046 1047 rom = g_malloc0(sizeof(*rom)); 1048 rom->name = g_strdup(name); 1049 rom->as = as; 1050 rom->addr = addr; 1051 rom->romsize = max_len ? max_len : len; 1052 rom->datasize = len; 1053 g_assert(rom->romsize >= rom->datasize); 1054 rom->data = g_malloc0(rom->datasize); 1055 memcpy(rom->data, blob, len); 1056 rom_insert(rom); 1057 if (fw_file_name && fw_cfg) { 1058 char devpath[100]; 1059 void *data; 1060 1061 if (read_only) { 1062 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1063 } else { 1064 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1065 } 1066 1067 if (mc->rom_file_has_mr) { 1068 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1069 mr = rom->mr; 1070 } else { 1071 data = rom->data; 1072 } 1073 1074 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1075 fw_callback, NULL, callback_opaque, 1076 data, rom->datasize, read_only); 1077 } 1078 return mr; 1079 } 1080 1081 /* This function is specific for elf program because we don't need to allocate 1082 * all the rom. We just allocate the first part and the rest is just zeros. This 1083 * is why romsize and datasize are different. Also, this function takes its own 1084 * reference to "mapped_file", so we don't have to allocate and copy the buffer. 1085 */ 1086 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, 1087 size_t datasize, size_t romsize, hwaddr addr, 1088 AddressSpace *as) 1089 { 1090 Rom *rom; 1091 1092 rom = g_malloc0(sizeof(*rom)); 1093 rom->name = g_strdup(name); 1094 rom->addr = addr; 1095 rom->datasize = datasize; 1096 rom->romsize = romsize; 1097 rom->data = data; 1098 rom->as = as; 1099 1100 if (mapped_file && data) { 1101 g_mapped_file_ref(mapped_file); 1102 rom->mapped_file = mapped_file; 1103 } 1104 1105 rom_insert(rom); 1106 return 0; 1107 } 1108 1109 int rom_add_vga(const char *file) 1110 { 1111 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1112 } 1113 1114 int rom_add_option(const char *file, int32_t bootindex) 1115 { 1116 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1117 } 1118 1119 static void rom_reset(void *unused) 1120 { 1121 Rom *rom; 1122 1123 QTAILQ_FOREACH(rom, &roms, next) { 1124 if (rom->fw_file) { 1125 continue; 1126 } 1127 /* 1128 * We don't need to fill in the RAM with ROM data because we'll fill 1129 * the data in during the next incoming migration in all cases. Note 1130 * that some of those RAMs can actually be modified by the guest. 1131 */ 1132 if (runstate_check(RUN_STATE_INMIGRATE)) { 1133 if (rom->data && rom->isrom) { 1134 /* 1135 * Free it so that a rom_reset after migration doesn't 1136 * overwrite a potentially modified 'rom'. 1137 */ 1138 rom_free_data(rom); 1139 } 1140 continue; 1141 } 1142 1143 if (rom->data == NULL) { 1144 continue; 1145 } 1146 if (rom->mr) { 1147 void *host = memory_region_get_ram_ptr(rom->mr); 1148 memcpy(host, rom->data, rom->datasize); 1149 } else { 1150 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1151 rom->data, rom->datasize); 1152 } 1153 if (rom->isrom) { 1154 /* rom needs to be written only once */ 1155 rom_free_data(rom); 1156 } 1157 /* 1158 * The rom loader is really on the same level as firmware in the guest 1159 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1160 * that the instruction cache for that new region is clear, so that the 1161 * CPU definitely fetches its instructions from the just written data. 1162 */ 1163 cpu_flush_icache_range(rom->addr, rom->datasize); 1164 1165 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom); 1166 } 1167 } 1168 1169 /* Return true if two consecutive ROMs in the ROM list overlap */ 1170 static bool roms_overlap(Rom *last_rom, Rom *this_rom) 1171 { 1172 if (!last_rom) { 1173 return false; 1174 } 1175 return last_rom->as == this_rom->as && 1176 last_rom->addr + last_rom->romsize > this_rom->addr; 1177 } 1178 1179 static const char *rom_as_name(Rom *rom) 1180 { 1181 const char *name = rom->as ? rom->as->name : NULL; 1182 return name ?: "anonymous"; 1183 } 1184 1185 static void rom_print_overlap_error_header(void) 1186 { 1187 error_report("Some ROM regions are overlapping"); 1188 error_printf( 1189 "These ROM regions might have been loaded by " 1190 "direct user request or by default.\n" 1191 "They could be BIOS/firmware images, a guest kernel, " 1192 "initrd or some other file loaded into guest memory.\n" 1193 "Check whether you intended to load all this guest code, and " 1194 "whether it has been built to load to the correct addresses.\n"); 1195 } 1196 1197 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom) 1198 { 1199 error_printf( 1200 "\nThe following two regions overlap (in the %s address space):\n", 1201 rom_as_name(rom)); 1202 error_printf( 1203 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n", 1204 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize); 1205 error_printf( 1206 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n", 1207 rom->name, rom->addr, rom->addr + rom->romsize); 1208 } 1209 1210 int rom_check_and_register_reset(void) 1211 { 1212 MemoryRegionSection section; 1213 Rom *rom, *last_rom = NULL; 1214 bool found_overlap = false; 1215 1216 QTAILQ_FOREACH(rom, &roms, next) { 1217 if (rom->fw_file) { 1218 continue; 1219 } 1220 if (!rom->mr) { 1221 if (roms_overlap(last_rom, rom)) { 1222 if (!found_overlap) { 1223 found_overlap = true; 1224 rom_print_overlap_error_header(); 1225 } 1226 rom_print_one_overlap_error(last_rom, rom); 1227 /* Keep going through the list so we report all overlaps */ 1228 } 1229 last_rom = rom; 1230 } 1231 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1232 rom->addr, 1); 1233 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1234 memory_region_unref(section.mr); 1235 } 1236 if (found_overlap) { 1237 return -1; 1238 } 1239 1240 qemu_register_reset(rom_reset, NULL); 1241 roms_loaded = 1; 1242 return 0; 1243 } 1244 1245 void rom_set_fw(FWCfgState *f) 1246 { 1247 fw_cfg = f; 1248 } 1249 1250 void rom_set_order_override(int order) 1251 { 1252 if (!fw_cfg) 1253 return; 1254 fw_cfg_set_order_override(fw_cfg, order); 1255 } 1256 1257 void rom_reset_order_override(void) 1258 { 1259 if (!fw_cfg) 1260 return; 1261 fw_cfg_reset_order_override(fw_cfg); 1262 } 1263 1264 void rom_transaction_begin(void) 1265 { 1266 Rom *rom; 1267 1268 /* Ignore ROMs added without the transaction API */ 1269 QTAILQ_FOREACH(rom, &roms, next) { 1270 rom->committed = true; 1271 } 1272 } 1273 1274 void rom_transaction_end(bool commit) 1275 { 1276 Rom *rom; 1277 Rom *tmp; 1278 1279 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1280 if (rom->committed) { 1281 continue; 1282 } 1283 if (commit) { 1284 rom->committed = true; 1285 } else { 1286 QTAILQ_REMOVE(&roms, rom, next); 1287 rom_free(rom); 1288 } 1289 } 1290 } 1291 1292 static Rom *find_rom(hwaddr addr, size_t size) 1293 { 1294 Rom *rom; 1295 1296 QTAILQ_FOREACH(rom, &roms, next) { 1297 if (rom->fw_file) { 1298 continue; 1299 } 1300 if (rom->mr) { 1301 continue; 1302 } 1303 if (rom->addr > addr) { 1304 continue; 1305 } 1306 if (rom->addr + rom->romsize < addr + size) { 1307 continue; 1308 } 1309 return rom; 1310 } 1311 return NULL; 1312 } 1313 1314 /* 1315 * Copies memory from registered ROMs to dest. Any memory that is contained in 1316 * a ROM between addr and addr + size is copied. Note that this can involve 1317 * multiple ROMs, which need not start at addr and need not end at addr + size. 1318 */ 1319 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1320 { 1321 hwaddr end = addr + size; 1322 uint8_t *s, *d = dest; 1323 size_t l = 0; 1324 Rom *rom; 1325 1326 QTAILQ_FOREACH(rom, &roms, next) { 1327 if (rom->fw_file) { 1328 continue; 1329 } 1330 if (rom->mr) { 1331 continue; 1332 } 1333 if (rom->addr + rom->romsize < addr) { 1334 continue; 1335 } 1336 if (rom->addr > end || rom->addr < addr) { 1337 break; 1338 } 1339 1340 d = dest + (rom->addr - addr); 1341 s = rom->data; 1342 l = rom->datasize; 1343 1344 if ((d + l) > (dest + size)) { 1345 l = dest - d; 1346 } 1347 1348 if (l > 0) { 1349 memcpy(d, s, l); 1350 } 1351 1352 if (rom->romsize > rom->datasize) { 1353 /* If datasize is less than romsize, it means that we didn't 1354 * allocate all the ROM because the trailing data are only zeros. 1355 */ 1356 1357 d += l; 1358 l = rom->romsize - rom->datasize; 1359 1360 if ((d + l) > (dest + size)) { 1361 /* Rom size doesn't fit in the destination area. Adjust to avoid 1362 * overflow. 1363 */ 1364 l = dest - d; 1365 } 1366 1367 if (l > 0) { 1368 memset(d, 0x0, l); 1369 } 1370 } 1371 } 1372 1373 return (d + l) - dest; 1374 } 1375 1376 void *rom_ptr(hwaddr addr, size_t size) 1377 { 1378 Rom *rom; 1379 1380 rom = find_rom(addr, size); 1381 if (!rom || !rom->data) 1382 return NULL; 1383 return rom->data + (addr - rom->addr); 1384 } 1385 1386 typedef struct FindRomCBData { 1387 size_t size; /* Amount of data we want from ROM, in bytes */ 1388 MemoryRegion *mr; /* MR at the unaliased guest addr */ 1389 hwaddr xlat; /* Offset of addr within mr */ 1390 void *rom; /* Output: rom data pointer, if found */ 1391 } FindRomCBData; 1392 1393 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr, 1394 hwaddr offset_in_region, void *opaque) 1395 { 1396 FindRomCBData *cbdata = opaque; 1397 hwaddr alias_addr; 1398 1399 if (mr != cbdata->mr) { 1400 return false; 1401 } 1402 1403 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region; 1404 cbdata->rom = rom_ptr(alias_addr, cbdata->size); 1405 if (!cbdata->rom) { 1406 return false; 1407 } 1408 /* Found a match, stop iterating */ 1409 return true; 1410 } 1411 1412 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size) 1413 { 1414 /* 1415 * Find any ROM data for the given guest address range. If there 1416 * is a ROM blob then return a pointer to the host memory 1417 * corresponding to 'addr'; otherwise return NULL. 1418 * 1419 * We look not only for ROM blobs that were loaded directly to 1420 * addr, but also for ROM blobs that were loaded to aliases of 1421 * that memory at other addresses within the AddressSpace. 1422 * 1423 * Note that we do not check @as against the 'as' member in the 1424 * 'struct Rom' returned by rom_ptr(). The Rom::as is the 1425 * AddressSpace which the rom blob should be written to, whereas 1426 * our @as argument is the AddressSpace which we are (effectively) 1427 * reading from, and the same underlying RAM will often be visible 1428 * in multiple AddressSpaces. (A common example is a ROM blob 1429 * written to the 'system' address space but then read back via a 1430 * CPU's cpu->as pointer.) This does mean we might potentially 1431 * return a false-positive match if a ROM blob was loaded into an 1432 * AS which is entirely separate and distinct from the one we're 1433 * querying, but this issue exists also for rom_ptr() and hasn't 1434 * caused any problems in practice. 1435 */ 1436 FlatView *fv; 1437 void *rom; 1438 hwaddr len_unused; 1439 FindRomCBData cbdata = {}; 1440 1441 /* Easy case: there's data at the actual address */ 1442 rom = rom_ptr(addr, size); 1443 if (rom) { 1444 return rom; 1445 } 1446 1447 RCU_READ_LOCK_GUARD(); 1448 1449 fv = address_space_to_flatview(as); 1450 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused, 1451 false, MEMTXATTRS_UNSPECIFIED); 1452 if (!cbdata.mr) { 1453 /* Nothing at this address, so there can't be any aliasing */ 1454 return NULL; 1455 } 1456 cbdata.size = size; 1457 flatview_for_each_range(fv, find_rom_cb, &cbdata); 1458 return cbdata.rom; 1459 } 1460 1461 void hmp_info_roms(Monitor *mon, const QDict *qdict) 1462 { 1463 Rom *rom; 1464 1465 QTAILQ_FOREACH(rom, &roms, next) { 1466 if (rom->mr) { 1467 monitor_printf(mon, "%s" 1468 " size=0x%06zx name=\"%s\"\n", 1469 memory_region_name(rom->mr), 1470 rom->romsize, 1471 rom->name); 1472 } else if (!rom->fw_file) { 1473 monitor_printf(mon, "addr=" TARGET_FMT_plx 1474 " size=0x%06zx mem=%s name=\"%s\"\n", 1475 rom->addr, rom->romsize, 1476 rom->isrom ? "rom" : "ram", 1477 rom->name); 1478 } else { 1479 monitor_printf(mon, "fw=%s/%s" 1480 " size=0x%06zx name=\"%s\"\n", 1481 rom->fw_dir, 1482 rom->fw_file, 1483 rom->romsize, 1484 rom->name); 1485 } 1486 } 1487 } 1488 1489 typedef enum HexRecord HexRecord; 1490 enum HexRecord { 1491 DATA_RECORD = 0, 1492 EOF_RECORD, 1493 EXT_SEG_ADDR_RECORD, 1494 START_SEG_ADDR_RECORD, 1495 EXT_LINEAR_ADDR_RECORD, 1496 START_LINEAR_ADDR_RECORD, 1497 }; 1498 1499 /* Each record contains a 16-bit address which is combined with the upper 16 1500 * bits of the implicit "next address" to form a 32-bit address. 1501 */ 1502 #define NEXT_ADDR_MASK 0xffff0000 1503 1504 #define DATA_FIELD_MAX_LEN 0xff 1505 #define LEN_EXCEPT_DATA 0x5 1506 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1507 * sizeof(checksum) */ 1508 typedef struct { 1509 uint8_t byte_count; 1510 uint16_t address; 1511 uint8_t record_type; 1512 uint8_t data[DATA_FIELD_MAX_LEN]; 1513 uint8_t checksum; 1514 } HexLine; 1515 1516 /* return 0 or -1 if error */ 1517 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1518 uint32_t *index, const bool in_process) 1519 { 1520 /* +-------+---------------+-------+---------------------+--------+ 1521 * | byte | |record | | | 1522 * | count | address | type | data |checksum| 1523 * +-------+---------------+-------+---------------------+--------+ 1524 * ^ ^ ^ ^ ^ ^ 1525 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1526 */ 1527 uint8_t value = 0; 1528 uint32_t idx = *index; 1529 /* ignore space */ 1530 if (g_ascii_isspace(c)) { 1531 return true; 1532 } 1533 if (!g_ascii_isxdigit(c) || !in_process) { 1534 return false; 1535 } 1536 value = g_ascii_xdigit_value(c); 1537 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1538 if (idx < 2) { 1539 line->byte_count |= value; 1540 } else if (2 <= idx && idx < 6) { 1541 line->address <<= 4; 1542 line->address += g_ascii_xdigit_value(c); 1543 } else if (6 <= idx && idx < 8) { 1544 line->record_type |= value; 1545 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1546 line->data[(idx - 8) >> 1] |= value; 1547 } else if (8 + 2 * line->byte_count <= idx && 1548 idx < 10 + 2 * line->byte_count) { 1549 line->checksum |= value; 1550 } else { 1551 return false; 1552 } 1553 *our_checksum += value; 1554 ++(*index); 1555 return true; 1556 } 1557 1558 typedef struct { 1559 const char *filename; 1560 HexLine line; 1561 uint8_t *bin_buf; 1562 hwaddr *start_addr; 1563 int total_size; 1564 uint32_t next_address_to_write; 1565 uint32_t current_address; 1566 uint32_t current_rom_index; 1567 uint32_t rom_start_address; 1568 AddressSpace *as; 1569 bool complete; 1570 } HexParser; 1571 1572 /* return size or -1 if error */ 1573 static int handle_record_type(HexParser *parser) 1574 { 1575 HexLine *line = &(parser->line); 1576 switch (line->record_type) { 1577 case DATA_RECORD: 1578 parser->current_address = 1579 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1580 /* verify this is a contiguous block of memory */ 1581 if (parser->current_address != parser->next_address_to_write) { 1582 if (parser->current_rom_index != 0) { 1583 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1584 parser->current_rom_index, 1585 parser->rom_start_address, parser->as); 1586 } 1587 parser->rom_start_address = parser->current_address; 1588 parser->current_rom_index = 0; 1589 } 1590 1591 /* copy from line buffer to output bin_buf */ 1592 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1593 line->byte_count); 1594 parser->current_rom_index += line->byte_count; 1595 parser->total_size += line->byte_count; 1596 /* save next address to write */ 1597 parser->next_address_to_write = 1598 parser->current_address + line->byte_count; 1599 break; 1600 1601 case EOF_RECORD: 1602 if (parser->current_rom_index != 0) { 1603 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1604 parser->current_rom_index, 1605 parser->rom_start_address, parser->as); 1606 } 1607 parser->complete = true; 1608 return parser->total_size; 1609 case EXT_SEG_ADDR_RECORD: 1610 case EXT_LINEAR_ADDR_RECORD: 1611 if (line->byte_count != 2 && line->address != 0) { 1612 return -1; 1613 } 1614 1615 if (parser->current_rom_index != 0) { 1616 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1617 parser->current_rom_index, 1618 parser->rom_start_address, parser->as); 1619 } 1620 1621 /* save next address to write, 1622 * in case of non-contiguous block of memory */ 1623 parser->next_address_to_write = (line->data[0] << 12) | 1624 (line->data[1] << 4); 1625 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1626 parser->next_address_to_write <<= 12; 1627 } 1628 1629 parser->rom_start_address = parser->next_address_to_write; 1630 parser->current_rom_index = 0; 1631 break; 1632 1633 case START_SEG_ADDR_RECORD: 1634 if (line->byte_count != 4 && line->address != 0) { 1635 return -1; 1636 } 1637 1638 /* x86 16-bit CS:IP segmented addressing */ 1639 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1640 ((line->data[2] << 8) | line->data[3]); 1641 break; 1642 1643 case START_LINEAR_ADDR_RECORD: 1644 if (line->byte_count != 4 && line->address != 0) { 1645 return -1; 1646 } 1647 1648 *(parser->start_addr) = ldl_be_p(line->data); 1649 break; 1650 1651 default: 1652 return -1; 1653 } 1654 1655 return parser->total_size; 1656 } 1657 1658 /* return size or -1 if error */ 1659 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1660 size_t hex_blob_size, AddressSpace *as) 1661 { 1662 bool in_process = false; /* avoid re-enter and 1663 * check whether record begin with ':' */ 1664 uint8_t *end = hex_blob + hex_blob_size; 1665 uint8_t our_checksum = 0; 1666 uint32_t record_index = 0; 1667 HexParser parser = { 1668 .filename = filename, 1669 .bin_buf = g_malloc(hex_blob_size), 1670 .start_addr = addr, 1671 .as = as, 1672 .complete = false 1673 }; 1674 1675 rom_transaction_begin(); 1676 1677 for (; hex_blob < end && !parser.complete; ++hex_blob) { 1678 switch (*hex_blob) { 1679 case '\r': 1680 case '\n': 1681 if (!in_process) { 1682 break; 1683 } 1684 1685 in_process = false; 1686 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1687 record_index || 1688 our_checksum != 0) { 1689 parser.total_size = -1; 1690 goto out; 1691 } 1692 1693 if (handle_record_type(&parser) == -1) { 1694 parser.total_size = -1; 1695 goto out; 1696 } 1697 break; 1698 1699 /* start of a new record. */ 1700 case ':': 1701 memset(&parser.line, 0, sizeof(HexLine)); 1702 in_process = true; 1703 record_index = 0; 1704 break; 1705 1706 /* decoding lines */ 1707 default: 1708 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1709 &record_index, in_process)) { 1710 parser.total_size = -1; 1711 goto out; 1712 } 1713 break; 1714 } 1715 } 1716 1717 out: 1718 g_free(parser.bin_buf); 1719 rom_transaction_end(parser.total_size != -1); 1720 return parser.total_size; 1721 } 1722 1723 /* return size or -1 if error */ 1724 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as) 1725 { 1726 gsize hex_blob_size; 1727 gchar *hex_blob; 1728 int total_size = 0; 1729 1730 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1731 return -1; 1732 } 1733 1734 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1735 hex_blob_size, as); 1736 1737 g_free(hex_blob); 1738 return total_size; 1739 } 1740