1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qapi/error.h" 47 #include "hw/hw.h" 48 #include "disas/disas.h" 49 #include "monitor/monitor.h" 50 #include "sysemu/sysemu.h" 51 #include "uboot_image.h" 52 #include "hw/loader.h" 53 #include "hw/nvram/fw_cfg.h" 54 #include "exec/memory.h" 55 #include "exec/address-spaces.h" 56 #include "hw/boards.h" 57 #include "qemu/cutils.h" 58 59 #include <zlib.h> 60 61 static int roms_loaded; 62 63 /* return the size or -1 if error */ 64 int get_image_size(const char *filename) 65 { 66 int fd, size; 67 fd = open(filename, O_RDONLY | O_BINARY); 68 if (fd < 0) 69 return -1; 70 size = lseek(fd, 0, SEEK_END); 71 close(fd); 72 return size; 73 } 74 75 /* return the size or -1 if error */ 76 /* deprecated, because caller does not specify buffer size! */ 77 int load_image(const char *filename, uint8_t *addr) 78 { 79 int fd, size; 80 fd = open(filename, O_RDONLY | O_BINARY); 81 if (fd < 0) 82 return -1; 83 size = lseek(fd, 0, SEEK_END); 84 if (size == -1) { 85 fprintf(stderr, "file %-20s: get size error: %s\n", 86 filename, strerror(errno)); 87 close(fd); 88 return -1; 89 } 90 91 lseek(fd, 0, SEEK_SET); 92 if (read(fd, addr, size) != size) { 93 close(fd); 94 return -1; 95 } 96 close(fd); 97 return size; 98 } 99 100 /* return the size or -1 if error */ 101 ssize_t load_image_size(const char *filename, void *addr, size_t size) 102 { 103 int fd; 104 ssize_t actsize; 105 106 fd = open(filename, O_RDONLY | O_BINARY); 107 if (fd < 0) { 108 return -1; 109 } 110 111 actsize = read(fd, addr, size); 112 if (actsize < 0) { 113 close(fd); 114 return -1; 115 } 116 close(fd); 117 118 return actsize; 119 } 120 121 /* read()-like version */ 122 ssize_t read_targphys(const char *name, 123 int fd, hwaddr dst_addr, size_t nbytes) 124 { 125 uint8_t *buf; 126 ssize_t did; 127 128 buf = g_malloc(nbytes); 129 did = read(fd, buf, nbytes); 130 if (did > 0) 131 rom_add_blob_fixed("read", buf, did, dst_addr); 132 g_free(buf); 133 return did; 134 } 135 136 int load_image_targphys(const char *filename, 137 hwaddr addr, uint64_t max_sz) 138 { 139 return load_image_targphys_as(filename, addr, max_sz, NULL); 140 } 141 142 /* return the size or -1 if error */ 143 int load_image_targphys_as(const char *filename, 144 hwaddr addr, uint64_t max_sz, AddressSpace *as) 145 { 146 int size; 147 148 size = get_image_size(filename); 149 if (size > max_sz) { 150 return -1; 151 } 152 if (size > 0) { 153 rom_add_file_fixed_as(filename, addr, -1, as); 154 } 155 return size; 156 } 157 158 int load_image_mr(const char *filename, MemoryRegion *mr) 159 { 160 int size; 161 162 if (!memory_access_is_direct(mr, false)) { 163 /* Can only load an image into RAM or ROM */ 164 return -1; 165 } 166 167 size = get_image_size(filename); 168 169 if (size > memory_region_size(mr)) { 170 return -1; 171 } 172 if (size > 0) { 173 if (rom_add_file_mr(filename, mr, -1) < 0) { 174 return -1; 175 } 176 } 177 return size; 178 } 179 180 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 181 const char *source) 182 { 183 const char *nulp; 184 char *ptr; 185 186 if (buf_size <= 0) return; 187 nulp = memchr(source, 0, buf_size); 188 if (nulp) { 189 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 190 } else { 191 rom_add_blob_fixed(name, source, buf_size, dest); 192 ptr = rom_ptr(dest + buf_size - 1); 193 *ptr = 0; 194 } 195 } 196 197 /* A.OUT loader */ 198 199 struct exec 200 { 201 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 202 uint32_t a_text; /* length of text, in bytes */ 203 uint32_t a_data; /* length of data, in bytes */ 204 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 205 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 206 uint32_t a_entry; /* start address */ 207 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 208 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 209 }; 210 211 static void bswap_ahdr(struct exec *e) 212 { 213 bswap32s(&e->a_info); 214 bswap32s(&e->a_text); 215 bswap32s(&e->a_data); 216 bswap32s(&e->a_bss); 217 bswap32s(&e->a_syms); 218 bswap32s(&e->a_entry); 219 bswap32s(&e->a_trsize); 220 bswap32s(&e->a_drsize); 221 } 222 223 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 224 #define OMAGIC 0407 225 #define NMAGIC 0410 226 #define ZMAGIC 0413 227 #define QMAGIC 0314 228 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 229 #define N_TXTOFF(x) \ 230 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 231 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 232 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 233 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 234 235 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 236 237 #define N_DATADDR(x, target_page_size) \ 238 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 239 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 240 241 242 int load_aout(const char *filename, hwaddr addr, int max_sz, 243 int bswap_needed, hwaddr target_page_size) 244 { 245 int fd; 246 ssize_t size, ret; 247 struct exec e; 248 uint32_t magic; 249 250 fd = open(filename, O_RDONLY | O_BINARY); 251 if (fd < 0) 252 return -1; 253 254 size = read(fd, &e, sizeof(e)); 255 if (size < 0) 256 goto fail; 257 258 if (bswap_needed) { 259 bswap_ahdr(&e); 260 } 261 262 magic = N_MAGIC(e); 263 switch (magic) { 264 case ZMAGIC: 265 case QMAGIC: 266 case OMAGIC: 267 if (e.a_text + e.a_data > max_sz) 268 goto fail; 269 lseek(fd, N_TXTOFF(e), SEEK_SET); 270 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 271 if (size < 0) 272 goto fail; 273 break; 274 case NMAGIC: 275 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 276 goto fail; 277 lseek(fd, N_TXTOFF(e), SEEK_SET); 278 size = read_targphys(filename, fd, addr, e.a_text); 279 if (size < 0) 280 goto fail; 281 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 282 e.a_data); 283 if (ret < 0) 284 goto fail; 285 size += ret; 286 break; 287 default: 288 goto fail; 289 } 290 close(fd); 291 return size; 292 fail: 293 close(fd); 294 return -1; 295 } 296 297 /* ELF loader */ 298 299 static void *load_at(int fd, off_t offset, size_t size) 300 { 301 void *ptr; 302 if (lseek(fd, offset, SEEK_SET) < 0) 303 return NULL; 304 ptr = g_malloc(size); 305 if (read(fd, ptr, size) != size) { 306 g_free(ptr); 307 return NULL; 308 } 309 return ptr; 310 } 311 312 #ifdef ELF_CLASS 313 #undef ELF_CLASS 314 #endif 315 316 #define ELF_CLASS ELFCLASS32 317 #include "elf.h" 318 319 #define SZ 32 320 #define elf_word uint32_t 321 #define elf_sword int32_t 322 #define bswapSZs bswap32s 323 #include "hw/elf_ops.h" 324 325 #undef elfhdr 326 #undef elf_phdr 327 #undef elf_shdr 328 #undef elf_sym 329 #undef elf_rela 330 #undef elf_note 331 #undef elf_word 332 #undef elf_sword 333 #undef bswapSZs 334 #undef SZ 335 #define elfhdr elf64_hdr 336 #define elf_phdr elf64_phdr 337 #define elf_note elf64_note 338 #define elf_shdr elf64_shdr 339 #define elf_sym elf64_sym 340 #define elf_rela elf64_rela 341 #define elf_word uint64_t 342 #define elf_sword int64_t 343 #define bswapSZs bswap64s 344 #define SZ 64 345 #include "hw/elf_ops.h" 346 347 const char *load_elf_strerror(int error) 348 { 349 switch (error) { 350 case 0: 351 return "No error"; 352 case ELF_LOAD_FAILED: 353 return "Failed to load ELF"; 354 case ELF_LOAD_NOT_ELF: 355 return "The image is not ELF"; 356 case ELF_LOAD_WRONG_ARCH: 357 return "The image is from incompatible architecture"; 358 case ELF_LOAD_WRONG_ENDIAN: 359 return "The image has incorrect endianness"; 360 default: 361 return "Unknown error"; 362 } 363 } 364 365 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 366 { 367 int fd; 368 uint8_t e_ident_local[EI_NIDENT]; 369 uint8_t *e_ident; 370 size_t hdr_size, off; 371 bool is64l; 372 373 if (!hdr) { 374 hdr = e_ident_local; 375 } 376 e_ident = hdr; 377 378 fd = open(filename, O_RDONLY | O_BINARY); 379 if (fd < 0) { 380 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 381 return; 382 } 383 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 384 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 385 goto fail; 386 } 387 if (e_ident[0] != ELFMAG0 || 388 e_ident[1] != ELFMAG1 || 389 e_ident[2] != ELFMAG2 || 390 e_ident[3] != ELFMAG3) { 391 error_setg(errp, "Bad ELF magic"); 392 goto fail; 393 } 394 395 is64l = e_ident[EI_CLASS] == ELFCLASS64; 396 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 397 if (is64) { 398 *is64 = is64l; 399 } 400 401 off = EI_NIDENT; 402 while (hdr != e_ident_local && off < hdr_size) { 403 size_t br = read(fd, hdr + off, hdr_size - off); 404 switch (br) { 405 case 0: 406 error_setg(errp, "File too short: %s", filename); 407 goto fail; 408 case -1: 409 error_setg_errno(errp, errno, "Failed to read file: %s", 410 filename); 411 goto fail; 412 } 413 off += br; 414 } 415 416 fail: 417 close(fd); 418 } 419 420 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 421 int load_elf(const char *filename, uint64_t (*translate_fn)(void *, uint64_t), 422 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 423 uint64_t *highaddr, int big_endian, int elf_machine, 424 int clear_lsb, int data_swab) 425 { 426 return load_elf_as(filename, translate_fn, translate_opaque, pentry, 427 lowaddr, highaddr, big_endian, elf_machine, clear_lsb, 428 data_swab, NULL); 429 } 430 431 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 432 int load_elf_as(const char *filename, 433 uint64_t (*translate_fn)(void *, uint64_t), 434 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 435 uint64_t *highaddr, int big_endian, int elf_machine, 436 int clear_lsb, int data_swab, AddressSpace *as) 437 { 438 return load_elf_ram(filename, translate_fn, translate_opaque, 439 pentry, lowaddr, highaddr, big_endian, elf_machine, 440 clear_lsb, data_swab, as, true); 441 } 442 443 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 444 int load_elf_ram(const char *filename, 445 uint64_t (*translate_fn)(void *, uint64_t), 446 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 447 uint64_t *highaddr, int big_endian, int elf_machine, 448 int clear_lsb, int data_swab, AddressSpace *as, 449 bool load_rom) 450 { 451 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; 452 uint8_t e_ident[EI_NIDENT]; 453 454 fd = open(filename, O_RDONLY | O_BINARY); 455 if (fd < 0) { 456 perror(filename); 457 return -1; 458 } 459 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 460 goto fail; 461 if (e_ident[0] != ELFMAG0 || 462 e_ident[1] != ELFMAG1 || 463 e_ident[2] != ELFMAG2 || 464 e_ident[3] != ELFMAG3) { 465 ret = ELF_LOAD_NOT_ELF; 466 goto fail; 467 } 468 #ifdef HOST_WORDS_BIGENDIAN 469 data_order = ELFDATA2MSB; 470 #else 471 data_order = ELFDATA2LSB; 472 #endif 473 must_swab = data_order != e_ident[EI_DATA]; 474 if (big_endian) { 475 target_data_order = ELFDATA2MSB; 476 } else { 477 target_data_order = ELFDATA2LSB; 478 } 479 480 if (target_data_order != e_ident[EI_DATA]) { 481 ret = ELF_LOAD_WRONG_ENDIAN; 482 goto fail; 483 } 484 485 lseek(fd, 0, SEEK_SET); 486 if (e_ident[EI_CLASS] == ELFCLASS64) { 487 ret = load_elf64(filename, fd, translate_fn, translate_opaque, must_swab, 488 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 489 data_swab, as, load_rom); 490 } else { 491 ret = load_elf32(filename, fd, translate_fn, translate_opaque, must_swab, 492 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 493 data_swab, as, load_rom); 494 } 495 496 fail: 497 close(fd); 498 return ret; 499 } 500 501 static void bswap_uboot_header(uboot_image_header_t *hdr) 502 { 503 #ifndef HOST_WORDS_BIGENDIAN 504 bswap32s(&hdr->ih_magic); 505 bswap32s(&hdr->ih_hcrc); 506 bswap32s(&hdr->ih_time); 507 bswap32s(&hdr->ih_size); 508 bswap32s(&hdr->ih_load); 509 bswap32s(&hdr->ih_ep); 510 bswap32s(&hdr->ih_dcrc); 511 #endif 512 } 513 514 515 #define ZALLOC_ALIGNMENT 16 516 517 static void *zalloc(void *x, unsigned items, unsigned size) 518 { 519 void *p; 520 521 size *= items; 522 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 523 524 p = g_malloc(size); 525 526 return (p); 527 } 528 529 static void zfree(void *x, void *addr) 530 { 531 g_free(addr); 532 } 533 534 535 #define HEAD_CRC 2 536 #define EXTRA_FIELD 4 537 #define ORIG_NAME 8 538 #define COMMENT 0x10 539 #define RESERVED 0xe0 540 541 #define DEFLATED 8 542 543 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 544 { 545 z_stream s; 546 ssize_t dstbytes; 547 int r, i, flags; 548 549 /* skip header */ 550 i = 10; 551 flags = src[3]; 552 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 553 puts ("Error: Bad gzipped data\n"); 554 return -1; 555 } 556 if ((flags & EXTRA_FIELD) != 0) 557 i = 12 + src[10] + (src[11] << 8); 558 if ((flags & ORIG_NAME) != 0) 559 while (src[i++] != 0) 560 ; 561 if ((flags & COMMENT) != 0) 562 while (src[i++] != 0) 563 ; 564 if ((flags & HEAD_CRC) != 0) 565 i += 2; 566 if (i >= srclen) { 567 puts ("Error: gunzip out of data in header\n"); 568 return -1; 569 } 570 571 s.zalloc = zalloc; 572 s.zfree = zfree; 573 574 r = inflateInit2(&s, -MAX_WBITS); 575 if (r != Z_OK) { 576 printf ("Error: inflateInit2() returned %d\n", r); 577 return (-1); 578 } 579 s.next_in = src + i; 580 s.avail_in = srclen - i; 581 s.next_out = dst; 582 s.avail_out = dstlen; 583 r = inflate(&s, Z_FINISH); 584 if (r != Z_OK && r != Z_STREAM_END) { 585 printf ("Error: inflate() returned %d\n", r); 586 return -1; 587 } 588 dstbytes = s.next_out - (unsigned char *) dst; 589 inflateEnd(&s); 590 591 return dstbytes; 592 } 593 594 /* Load a U-Boot image. */ 595 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 596 int *is_linux, uint8_t image_type, 597 uint64_t (*translate_fn)(void *, uint64_t), 598 void *translate_opaque, AddressSpace *as) 599 { 600 int fd; 601 int size; 602 hwaddr address; 603 uboot_image_header_t h; 604 uboot_image_header_t *hdr = &h; 605 uint8_t *data = NULL; 606 int ret = -1; 607 int do_uncompress = 0; 608 609 fd = open(filename, O_RDONLY | O_BINARY); 610 if (fd < 0) 611 return -1; 612 613 size = read(fd, hdr, sizeof(uboot_image_header_t)); 614 if (size < 0) 615 goto out; 616 617 bswap_uboot_header(hdr); 618 619 if (hdr->ih_magic != IH_MAGIC) 620 goto out; 621 622 if (hdr->ih_type != image_type) { 623 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 624 image_type); 625 goto out; 626 } 627 628 /* TODO: Implement other image types. */ 629 switch (hdr->ih_type) { 630 case IH_TYPE_KERNEL: 631 address = hdr->ih_load; 632 if (translate_fn) { 633 address = translate_fn(translate_opaque, address); 634 } 635 if (loadaddr) { 636 *loadaddr = hdr->ih_load; 637 } 638 639 switch (hdr->ih_comp) { 640 case IH_COMP_NONE: 641 break; 642 case IH_COMP_GZIP: 643 do_uncompress = 1; 644 break; 645 default: 646 fprintf(stderr, 647 "Unable to load u-boot images with compression type %d\n", 648 hdr->ih_comp); 649 goto out; 650 } 651 652 if (ep) { 653 *ep = hdr->ih_ep; 654 } 655 656 /* TODO: Check CPU type. */ 657 if (is_linux) { 658 if (hdr->ih_os == IH_OS_LINUX) { 659 *is_linux = 1; 660 } else { 661 *is_linux = 0; 662 } 663 } 664 665 break; 666 case IH_TYPE_RAMDISK: 667 address = *loadaddr; 668 break; 669 default: 670 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 671 goto out; 672 } 673 674 data = g_malloc(hdr->ih_size); 675 676 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 677 fprintf(stderr, "Error reading file\n"); 678 goto out; 679 } 680 681 if (do_uncompress) { 682 uint8_t *compressed_data; 683 size_t max_bytes; 684 ssize_t bytes; 685 686 compressed_data = data; 687 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 688 data = g_malloc(max_bytes); 689 690 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 691 g_free(compressed_data); 692 if (bytes < 0) { 693 fprintf(stderr, "Unable to decompress gzipped image!\n"); 694 goto out; 695 } 696 hdr->ih_size = bytes; 697 } 698 699 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 700 701 ret = hdr->ih_size; 702 703 out: 704 g_free(data); 705 close(fd); 706 return ret; 707 } 708 709 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 710 int *is_linux, 711 uint64_t (*translate_fn)(void *, uint64_t), 712 void *translate_opaque) 713 { 714 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 715 translate_fn, translate_opaque, NULL); 716 } 717 718 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 719 int *is_linux, 720 uint64_t (*translate_fn)(void *, uint64_t), 721 void *translate_opaque, AddressSpace *as) 722 { 723 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 724 translate_fn, translate_opaque, as); 725 } 726 727 /* Load a ramdisk. */ 728 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 729 { 730 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 731 NULL, NULL, NULL); 732 } 733 734 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 735 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 736 uint8_t **buffer) 737 { 738 uint8_t *compressed_data = NULL; 739 uint8_t *data = NULL; 740 gsize len; 741 ssize_t bytes; 742 int ret = -1; 743 744 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 745 NULL)) { 746 goto out; 747 } 748 749 /* Is it a gzip-compressed file? */ 750 if (len < 2 || 751 compressed_data[0] != 0x1f || 752 compressed_data[1] != 0x8b) { 753 goto out; 754 } 755 756 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 757 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 758 } 759 760 data = g_malloc(max_sz); 761 bytes = gunzip(data, max_sz, compressed_data, len); 762 if (bytes < 0) { 763 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 764 filename); 765 goto out; 766 } 767 768 /* trim to actual size and return to caller */ 769 *buffer = g_realloc(data, bytes); 770 ret = bytes; 771 /* ownership has been transferred to caller */ 772 data = NULL; 773 774 out: 775 g_free(compressed_data); 776 g_free(data); 777 return ret; 778 } 779 780 /* Load a gzip-compressed kernel. */ 781 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 782 { 783 int bytes; 784 uint8_t *data; 785 786 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 787 if (bytes != -1) { 788 rom_add_blob_fixed(filename, data, bytes, addr); 789 g_free(data); 790 } 791 return bytes; 792 } 793 794 /* 795 * Functions for reboot-persistent memory regions. 796 * - used for vga bios and option roms. 797 * - also linux kernel (-kernel / -initrd). 798 */ 799 800 typedef struct Rom Rom; 801 802 struct Rom { 803 char *name; 804 char *path; 805 806 /* datasize is the amount of memory allocated in "data". If datasize is less 807 * than romsize, it means that the area from datasize to romsize is filled 808 * with zeros. 809 */ 810 size_t romsize; 811 size_t datasize; 812 813 uint8_t *data; 814 MemoryRegion *mr; 815 AddressSpace *as; 816 int isrom; 817 char *fw_dir; 818 char *fw_file; 819 820 hwaddr addr; 821 QTAILQ_ENTRY(Rom) next; 822 }; 823 824 static FWCfgState *fw_cfg; 825 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 826 827 static inline bool rom_order_compare(Rom *rom, Rom *item) 828 { 829 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 830 (rom->as == item->as && rom->addr >= item->addr); 831 } 832 833 static void rom_insert(Rom *rom) 834 { 835 Rom *item; 836 837 if (roms_loaded) { 838 hw_error ("ROM images must be loaded at startup\n"); 839 } 840 841 /* The user didn't specify an address space, this is the default */ 842 if (!rom->as) { 843 rom->as = &address_space_memory; 844 } 845 846 /* List is ordered by load address in the same address space */ 847 QTAILQ_FOREACH(item, &roms, next) { 848 if (rom_order_compare(rom, item)) { 849 continue; 850 } 851 QTAILQ_INSERT_BEFORE(item, rom, next); 852 return; 853 } 854 QTAILQ_INSERT_TAIL(&roms, rom, next); 855 } 856 857 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 858 { 859 if (fw_cfg) { 860 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 861 } 862 } 863 864 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 865 { 866 void *data; 867 868 rom->mr = g_malloc(sizeof(*rom->mr)); 869 memory_region_init_resizeable_ram(rom->mr, owner, name, 870 rom->datasize, rom->romsize, 871 fw_cfg_resized, 872 &error_fatal); 873 memory_region_set_readonly(rom->mr, ro); 874 vmstate_register_ram_global(rom->mr); 875 876 data = memory_region_get_ram_ptr(rom->mr); 877 memcpy(data, rom->data, rom->datasize); 878 879 return data; 880 } 881 882 int rom_add_file(const char *file, const char *fw_dir, 883 hwaddr addr, int32_t bootindex, 884 bool option_rom, MemoryRegion *mr, 885 AddressSpace *as) 886 { 887 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 888 Rom *rom; 889 int rc, fd = -1; 890 char devpath[100]; 891 892 if (as && mr) { 893 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 894 "not valid when loading a rom\n"); 895 /* We haven't allocated anything so we don't need any cleanup */ 896 return -1; 897 } 898 899 rom = g_malloc0(sizeof(*rom)); 900 rom->name = g_strdup(file); 901 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 902 rom->as = as; 903 if (rom->path == NULL) { 904 rom->path = g_strdup(file); 905 } 906 907 fd = open(rom->path, O_RDONLY | O_BINARY); 908 if (fd == -1) { 909 fprintf(stderr, "Could not open option rom '%s': %s\n", 910 rom->path, strerror(errno)); 911 goto err; 912 } 913 914 if (fw_dir) { 915 rom->fw_dir = g_strdup(fw_dir); 916 rom->fw_file = g_strdup(file); 917 } 918 rom->addr = addr; 919 rom->romsize = lseek(fd, 0, SEEK_END); 920 if (rom->romsize == -1) { 921 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 922 rom->name, strerror(errno)); 923 goto err; 924 } 925 926 rom->datasize = rom->romsize; 927 rom->data = g_malloc0(rom->datasize); 928 lseek(fd, 0, SEEK_SET); 929 rc = read(fd, rom->data, rom->datasize); 930 if (rc != rom->datasize) { 931 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 932 rom->name, rc, rom->datasize); 933 goto err; 934 } 935 close(fd); 936 rom_insert(rom); 937 if (rom->fw_file && fw_cfg) { 938 const char *basename; 939 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 940 void *data; 941 942 basename = strrchr(rom->fw_file, '/'); 943 if (basename) { 944 basename++; 945 } else { 946 basename = rom->fw_file; 947 } 948 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 949 basename); 950 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 951 952 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 953 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 954 } else { 955 data = rom->data; 956 } 957 958 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 959 } else { 960 if (mr) { 961 rom->mr = mr; 962 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 963 } else { 964 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 965 } 966 } 967 968 add_boot_device_path(bootindex, NULL, devpath); 969 return 0; 970 971 err: 972 if (fd != -1) 973 close(fd); 974 975 g_free(rom->data); 976 g_free(rom->path); 977 g_free(rom->name); 978 if (fw_dir) { 979 g_free(rom->fw_dir); 980 g_free(rom->fw_file); 981 } 982 g_free(rom); 983 984 return -1; 985 } 986 987 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 988 size_t max_len, hwaddr addr, const char *fw_file_name, 989 FWCfgReadCallback fw_callback, void *callback_opaque, 990 AddressSpace *as, bool read_only) 991 { 992 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 993 Rom *rom; 994 MemoryRegion *mr = NULL; 995 996 rom = g_malloc0(sizeof(*rom)); 997 rom->name = g_strdup(name); 998 rom->as = as; 999 rom->addr = addr; 1000 rom->romsize = max_len ? max_len : len; 1001 rom->datasize = len; 1002 rom->data = g_malloc0(rom->datasize); 1003 memcpy(rom->data, blob, len); 1004 rom_insert(rom); 1005 if (fw_file_name && fw_cfg) { 1006 char devpath[100]; 1007 void *data; 1008 1009 if (read_only) { 1010 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1011 } else { 1012 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1013 } 1014 1015 if (mc->rom_file_has_mr) { 1016 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1017 mr = rom->mr; 1018 } else { 1019 data = rom->data; 1020 } 1021 1022 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1023 fw_callback, callback_opaque, 1024 data, rom->datasize, read_only); 1025 } 1026 return mr; 1027 } 1028 1029 /* This function is specific for elf program because we don't need to allocate 1030 * all the rom. We just allocate the first part and the rest is just zeros. This 1031 * is why romsize and datasize are different. Also, this function seize the 1032 * memory ownership of "data", so we don't have to allocate and copy the buffer. 1033 */ 1034 int rom_add_elf_program(const char *name, void *data, size_t datasize, 1035 size_t romsize, hwaddr addr, AddressSpace *as) 1036 { 1037 Rom *rom; 1038 1039 rom = g_malloc0(sizeof(*rom)); 1040 rom->name = g_strdup(name); 1041 rom->addr = addr; 1042 rom->datasize = datasize; 1043 rom->romsize = romsize; 1044 rom->data = data; 1045 rom->as = as; 1046 rom_insert(rom); 1047 return 0; 1048 } 1049 1050 int rom_add_vga(const char *file) 1051 { 1052 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1053 } 1054 1055 int rom_add_option(const char *file, int32_t bootindex) 1056 { 1057 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1058 } 1059 1060 static void rom_reset(void *unused) 1061 { 1062 Rom *rom; 1063 1064 QTAILQ_FOREACH(rom, &roms, next) { 1065 if (rom->fw_file) { 1066 continue; 1067 } 1068 if (rom->data == NULL) { 1069 continue; 1070 } 1071 if (rom->mr) { 1072 void *host = memory_region_get_ram_ptr(rom->mr); 1073 memcpy(host, rom->data, rom->datasize); 1074 } else { 1075 cpu_physical_memory_write_rom(rom->as, rom->addr, rom->data, 1076 rom->datasize); 1077 } 1078 if (rom->isrom) { 1079 /* rom needs to be written only once */ 1080 g_free(rom->data); 1081 rom->data = NULL; 1082 } 1083 /* 1084 * The rom loader is really on the same level as firmware in the guest 1085 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1086 * that the instruction cache for that new region is clear, so that the 1087 * CPU definitely fetches its instructions from the just written data. 1088 */ 1089 cpu_flush_icache_range(rom->addr, rom->datasize); 1090 } 1091 } 1092 1093 int rom_check_and_register_reset(void) 1094 { 1095 hwaddr addr = 0; 1096 MemoryRegionSection section; 1097 Rom *rom; 1098 AddressSpace *as = NULL; 1099 1100 QTAILQ_FOREACH(rom, &roms, next) { 1101 if (rom->fw_file) { 1102 continue; 1103 } 1104 if ((addr > rom->addr) && (as == rom->as)) { 1105 fprintf(stderr, "rom: requested regions overlap " 1106 "(rom %s. free=0x" TARGET_FMT_plx 1107 ", addr=0x" TARGET_FMT_plx ")\n", 1108 rom->name, addr, rom->addr); 1109 return -1; 1110 } 1111 addr = rom->addr; 1112 addr += rom->romsize; 1113 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1114 rom->addr, 1); 1115 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1116 memory_region_unref(section.mr); 1117 as = rom->as; 1118 } 1119 qemu_register_reset(rom_reset, NULL); 1120 roms_loaded = 1; 1121 return 0; 1122 } 1123 1124 void rom_set_fw(FWCfgState *f) 1125 { 1126 fw_cfg = f; 1127 } 1128 1129 void rom_set_order_override(int order) 1130 { 1131 if (!fw_cfg) 1132 return; 1133 fw_cfg_set_order_override(fw_cfg, order); 1134 } 1135 1136 void rom_reset_order_override(void) 1137 { 1138 if (!fw_cfg) 1139 return; 1140 fw_cfg_reset_order_override(fw_cfg); 1141 } 1142 1143 static Rom *find_rom(hwaddr addr) 1144 { 1145 Rom *rom; 1146 1147 QTAILQ_FOREACH(rom, &roms, next) { 1148 if (rom->fw_file) { 1149 continue; 1150 } 1151 if (rom->mr) { 1152 continue; 1153 } 1154 if (rom->addr > addr) { 1155 continue; 1156 } 1157 if (rom->addr + rom->romsize < addr) { 1158 continue; 1159 } 1160 return rom; 1161 } 1162 return NULL; 1163 } 1164 1165 /* 1166 * Copies memory from registered ROMs to dest. Any memory that is contained in 1167 * a ROM between addr and addr + size is copied. Note that this can involve 1168 * multiple ROMs, which need not start at addr and need not end at addr + size. 1169 */ 1170 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1171 { 1172 hwaddr end = addr + size; 1173 uint8_t *s, *d = dest; 1174 size_t l = 0; 1175 Rom *rom; 1176 1177 QTAILQ_FOREACH(rom, &roms, next) { 1178 if (rom->fw_file) { 1179 continue; 1180 } 1181 if (rom->mr) { 1182 continue; 1183 } 1184 if (rom->addr + rom->romsize < addr) { 1185 continue; 1186 } 1187 if (rom->addr > end) { 1188 break; 1189 } 1190 1191 d = dest + (rom->addr - addr); 1192 s = rom->data; 1193 l = rom->datasize; 1194 1195 if ((d + l) > (dest + size)) { 1196 l = dest - d; 1197 } 1198 1199 if (l > 0) { 1200 memcpy(d, s, l); 1201 } 1202 1203 if (rom->romsize > rom->datasize) { 1204 /* If datasize is less than romsize, it means that we didn't 1205 * allocate all the ROM because the trailing data are only zeros. 1206 */ 1207 1208 d += l; 1209 l = rom->romsize - rom->datasize; 1210 1211 if ((d + l) > (dest + size)) { 1212 /* Rom size doesn't fit in the destination area. Adjust to avoid 1213 * overflow. 1214 */ 1215 l = dest - d; 1216 } 1217 1218 if (l > 0) { 1219 memset(d, 0x0, l); 1220 } 1221 } 1222 } 1223 1224 return (d + l) - dest; 1225 } 1226 1227 void *rom_ptr(hwaddr addr) 1228 { 1229 Rom *rom; 1230 1231 rom = find_rom(addr); 1232 if (!rom || !rom->data) 1233 return NULL; 1234 return rom->data + (addr - rom->addr); 1235 } 1236 1237 void hmp_info_roms(Monitor *mon, const QDict *qdict) 1238 { 1239 Rom *rom; 1240 1241 QTAILQ_FOREACH(rom, &roms, next) { 1242 if (rom->mr) { 1243 monitor_printf(mon, "%s" 1244 " size=0x%06zx name=\"%s\"\n", 1245 memory_region_name(rom->mr), 1246 rom->romsize, 1247 rom->name); 1248 } else if (!rom->fw_file) { 1249 monitor_printf(mon, "addr=" TARGET_FMT_plx 1250 " size=0x%06zx mem=%s name=\"%s\"\n", 1251 rom->addr, rom->romsize, 1252 rom->isrom ? "rom" : "ram", 1253 rom->name); 1254 } else { 1255 monitor_printf(mon, "fw=%s/%s" 1256 " size=0x%06zx name=\"%s\"\n", 1257 rom->fw_dir, 1258 rom->fw_file, 1259 rom->romsize, 1260 rom->name); 1261 } 1262 } 1263 } 1264