1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qemu-common.h" 47 #include "qemu/datadir.h" 48 #include "qapi/error.h" 49 #include "trace.h" 50 #include "hw/hw.h" 51 #include "disas/disas.h" 52 #include "migration/vmstate.h" 53 #include "monitor/monitor.h" 54 #include "sysemu/reset.h" 55 #include "sysemu/sysemu.h" 56 #include "uboot_image.h" 57 #include "hw/loader.h" 58 #include "hw/nvram/fw_cfg.h" 59 #include "exec/memory.h" 60 #include "hw/boards.h" 61 #include "qemu/cutils.h" 62 #include "sysemu/runstate.h" 63 64 #include <zlib.h> 65 66 static int roms_loaded; 67 68 /* return the size or -1 if error */ 69 int64_t get_image_size(const char *filename) 70 { 71 int fd; 72 int64_t size; 73 fd = open(filename, O_RDONLY | O_BINARY); 74 if (fd < 0) 75 return -1; 76 size = lseek(fd, 0, SEEK_END); 77 close(fd); 78 return size; 79 } 80 81 /* return the size or -1 if error */ 82 ssize_t load_image_size(const char *filename, void *addr, size_t size) 83 { 84 int fd; 85 ssize_t actsize, l = 0; 86 87 fd = open(filename, O_RDONLY | O_BINARY); 88 if (fd < 0) { 89 return -1; 90 } 91 92 while ((actsize = read(fd, addr + l, size - l)) > 0) { 93 l += actsize; 94 } 95 96 close(fd); 97 98 return actsize < 0 ? -1 : l; 99 } 100 101 /* read()-like version */ 102 ssize_t read_targphys(const char *name, 103 int fd, hwaddr dst_addr, size_t nbytes) 104 { 105 uint8_t *buf; 106 ssize_t did; 107 108 buf = g_malloc(nbytes); 109 did = read(fd, buf, nbytes); 110 if (did > 0) 111 rom_add_blob_fixed("read", buf, did, dst_addr); 112 g_free(buf); 113 return did; 114 } 115 116 int load_image_targphys(const char *filename, 117 hwaddr addr, uint64_t max_sz) 118 { 119 return load_image_targphys_as(filename, addr, max_sz, NULL); 120 } 121 122 /* return the size or -1 if error */ 123 int load_image_targphys_as(const char *filename, 124 hwaddr addr, uint64_t max_sz, AddressSpace *as) 125 { 126 int size; 127 128 size = get_image_size(filename); 129 if (size < 0 || size > max_sz) { 130 return -1; 131 } 132 if (size > 0) { 133 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 134 return -1; 135 } 136 } 137 return size; 138 } 139 140 int load_image_mr(const char *filename, MemoryRegion *mr) 141 { 142 int size; 143 144 if (!memory_access_is_direct(mr, false)) { 145 /* Can only load an image into RAM or ROM */ 146 return -1; 147 } 148 149 size = get_image_size(filename); 150 151 if (size < 0 || size > memory_region_size(mr)) { 152 return -1; 153 } 154 if (size > 0) { 155 if (rom_add_file_mr(filename, mr, -1) < 0) { 156 return -1; 157 } 158 } 159 return size; 160 } 161 162 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 163 const char *source) 164 { 165 const char *nulp; 166 char *ptr; 167 168 if (buf_size <= 0) return; 169 nulp = memchr(source, 0, buf_size); 170 if (nulp) { 171 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 172 } else { 173 rom_add_blob_fixed(name, source, buf_size, dest); 174 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 175 *ptr = 0; 176 } 177 } 178 179 /* A.OUT loader */ 180 181 struct exec 182 { 183 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 184 uint32_t a_text; /* length of text, in bytes */ 185 uint32_t a_data; /* length of data, in bytes */ 186 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 187 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 188 uint32_t a_entry; /* start address */ 189 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 190 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 191 }; 192 193 static void bswap_ahdr(struct exec *e) 194 { 195 bswap32s(&e->a_info); 196 bswap32s(&e->a_text); 197 bswap32s(&e->a_data); 198 bswap32s(&e->a_bss); 199 bswap32s(&e->a_syms); 200 bswap32s(&e->a_entry); 201 bswap32s(&e->a_trsize); 202 bswap32s(&e->a_drsize); 203 } 204 205 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 206 #define OMAGIC 0407 207 #define NMAGIC 0410 208 #define ZMAGIC 0413 209 #define QMAGIC 0314 210 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 211 #define N_TXTOFF(x) \ 212 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 213 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 214 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 215 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 216 217 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 218 219 #define N_DATADDR(x, target_page_size) \ 220 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 221 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 222 223 224 int load_aout(const char *filename, hwaddr addr, int max_sz, 225 int bswap_needed, hwaddr target_page_size) 226 { 227 int fd; 228 ssize_t size, ret; 229 struct exec e; 230 uint32_t magic; 231 232 fd = open(filename, O_RDONLY | O_BINARY); 233 if (fd < 0) 234 return -1; 235 236 size = read(fd, &e, sizeof(e)); 237 if (size < 0) 238 goto fail; 239 240 if (bswap_needed) { 241 bswap_ahdr(&e); 242 } 243 244 magic = N_MAGIC(e); 245 switch (magic) { 246 case ZMAGIC: 247 case QMAGIC: 248 case OMAGIC: 249 if (e.a_text + e.a_data > max_sz) 250 goto fail; 251 lseek(fd, N_TXTOFF(e), SEEK_SET); 252 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 253 if (size < 0) 254 goto fail; 255 break; 256 case NMAGIC: 257 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 258 goto fail; 259 lseek(fd, N_TXTOFF(e), SEEK_SET); 260 size = read_targphys(filename, fd, addr, e.a_text); 261 if (size < 0) 262 goto fail; 263 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 264 e.a_data); 265 if (ret < 0) 266 goto fail; 267 size += ret; 268 break; 269 default: 270 goto fail; 271 } 272 close(fd); 273 return size; 274 fail: 275 close(fd); 276 return -1; 277 } 278 279 /* ELF loader */ 280 281 static void *load_at(int fd, off_t offset, size_t size) 282 { 283 void *ptr; 284 if (lseek(fd, offset, SEEK_SET) < 0) 285 return NULL; 286 ptr = g_malloc(size); 287 if (read(fd, ptr, size) != size) { 288 g_free(ptr); 289 return NULL; 290 } 291 return ptr; 292 } 293 294 #ifdef ELF_CLASS 295 #undef ELF_CLASS 296 #endif 297 298 #define ELF_CLASS ELFCLASS32 299 #include "elf.h" 300 301 #define SZ 32 302 #define elf_word uint32_t 303 #define elf_sword int32_t 304 #define bswapSZs bswap32s 305 #include "hw/elf_ops.h" 306 307 #undef elfhdr 308 #undef elf_phdr 309 #undef elf_shdr 310 #undef elf_sym 311 #undef elf_rela 312 #undef elf_note 313 #undef elf_word 314 #undef elf_sword 315 #undef bswapSZs 316 #undef SZ 317 #define elfhdr elf64_hdr 318 #define elf_phdr elf64_phdr 319 #define elf_note elf64_note 320 #define elf_shdr elf64_shdr 321 #define elf_sym elf64_sym 322 #define elf_rela elf64_rela 323 #define elf_word uint64_t 324 #define elf_sword int64_t 325 #define bswapSZs bswap64s 326 #define SZ 64 327 #include "hw/elf_ops.h" 328 329 const char *load_elf_strerror(int error) 330 { 331 switch (error) { 332 case 0: 333 return "No error"; 334 case ELF_LOAD_FAILED: 335 return "Failed to load ELF"; 336 case ELF_LOAD_NOT_ELF: 337 return "The image is not ELF"; 338 case ELF_LOAD_WRONG_ARCH: 339 return "The image is from incompatible architecture"; 340 case ELF_LOAD_WRONG_ENDIAN: 341 return "The image has incorrect endianness"; 342 case ELF_LOAD_TOO_BIG: 343 return "The image segments are too big to load"; 344 default: 345 return "Unknown error"; 346 } 347 } 348 349 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 350 { 351 int fd; 352 uint8_t e_ident_local[EI_NIDENT]; 353 uint8_t *e_ident; 354 size_t hdr_size, off; 355 bool is64l; 356 357 if (!hdr) { 358 hdr = e_ident_local; 359 } 360 e_ident = hdr; 361 362 fd = open(filename, O_RDONLY | O_BINARY); 363 if (fd < 0) { 364 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 365 return; 366 } 367 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 368 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 369 goto fail; 370 } 371 if (e_ident[0] != ELFMAG0 || 372 e_ident[1] != ELFMAG1 || 373 e_ident[2] != ELFMAG2 || 374 e_ident[3] != ELFMAG3) { 375 error_setg(errp, "Bad ELF magic"); 376 goto fail; 377 } 378 379 is64l = e_ident[EI_CLASS] == ELFCLASS64; 380 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 381 if (is64) { 382 *is64 = is64l; 383 } 384 385 off = EI_NIDENT; 386 while (hdr != e_ident_local && off < hdr_size) { 387 size_t br = read(fd, hdr + off, hdr_size - off); 388 switch (br) { 389 case 0: 390 error_setg(errp, "File too short: %s", filename); 391 goto fail; 392 case -1: 393 error_setg_errno(errp, errno, "Failed to read file: %s", 394 filename); 395 goto fail; 396 } 397 off += br; 398 } 399 400 fail: 401 close(fd); 402 } 403 404 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 405 int load_elf(const char *filename, 406 uint64_t (*elf_note_fn)(void *, void *, bool), 407 uint64_t (*translate_fn)(void *, uint64_t), 408 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 409 uint64_t *highaddr, uint32_t *pflags, int big_endian, 410 int elf_machine, int clear_lsb, int data_swab) 411 { 412 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 413 pentry, lowaddr, highaddr, pflags, big_endian, 414 elf_machine, clear_lsb, data_swab, NULL); 415 } 416 417 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 418 int load_elf_as(const char *filename, 419 uint64_t (*elf_note_fn)(void *, void *, bool), 420 uint64_t (*translate_fn)(void *, uint64_t), 421 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 422 uint64_t *highaddr, uint32_t *pflags, int big_endian, 423 int elf_machine, int clear_lsb, int data_swab, AddressSpace *as) 424 { 425 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque, 426 pentry, lowaddr, highaddr, pflags, big_endian, 427 elf_machine, clear_lsb, data_swab, as, true); 428 } 429 430 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 431 int load_elf_ram(const char *filename, 432 uint64_t (*elf_note_fn)(void *, void *, bool), 433 uint64_t (*translate_fn)(void *, uint64_t), 434 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 435 uint64_t *highaddr, uint32_t *pflags, int big_endian, 436 int elf_machine, int clear_lsb, int data_swab, 437 AddressSpace *as, bool load_rom) 438 { 439 return load_elf_ram_sym(filename, elf_note_fn, 440 translate_fn, translate_opaque, 441 pentry, lowaddr, highaddr, pflags, big_endian, 442 elf_machine, clear_lsb, data_swab, as, 443 load_rom, NULL); 444 } 445 446 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 447 int load_elf_ram_sym(const char *filename, 448 uint64_t (*elf_note_fn)(void *, void *, bool), 449 uint64_t (*translate_fn)(void *, uint64_t), 450 void *translate_opaque, uint64_t *pentry, 451 uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags, 452 int big_endian, int elf_machine, 453 int clear_lsb, int data_swab, 454 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 455 { 456 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; 457 uint8_t e_ident[EI_NIDENT]; 458 459 fd = open(filename, O_RDONLY | O_BINARY); 460 if (fd < 0) { 461 perror(filename); 462 return -1; 463 } 464 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 465 goto fail; 466 if (e_ident[0] != ELFMAG0 || 467 e_ident[1] != ELFMAG1 || 468 e_ident[2] != ELFMAG2 || 469 e_ident[3] != ELFMAG3) { 470 ret = ELF_LOAD_NOT_ELF; 471 goto fail; 472 } 473 #ifdef HOST_WORDS_BIGENDIAN 474 data_order = ELFDATA2MSB; 475 #else 476 data_order = ELFDATA2LSB; 477 #endif 478 must_swab = data_order != e_ident[EI_DATA]; 479 if (big_endian) { 480 target_data_order = ELFDATA2MSB; 481 } else { 482 target_data_order = ELFDATA2LSB; 483 } 484 485 if (target_data_order != e_ident[EI_DATA]) { 486 ret = ELF_LOAD_WRONG_ENDIAN; 487 goto fail; 488 } 489 490 lseek(fd, 0, SEEK_SET); 491 if (e_ident[EI_CLASS] == ELFCLASS64) { 492 ret = load_elf64(filename, fd, elf_note_fn, 493 translate_fn, translate_opaque, must_swab, 494 pentry, lowaddr, highaddr, pflags, elf_machine, 495 clear_lsb, data_swab, as, load_rom, sym_cb); 496 } else { 497 ret = load_elf32(filename, fd, elf_note_fn, 498 translate_fn, translate_opaque, must_swab, 499 pentry, lowaddr, highaddr, pflags, elf_machine, 500 clear_lsb, data_swab, as, load_rom, sym_cb); 501 } 502 503 fail: 504 close(fd); 505 return ret; 506 } 507 508 static void bswap_uboot_header(uboot_image_header_t *hdr) 509 { 510 #ifndef HOST_WORDS_BIGENDIAN 511 bswap32s(&hdr->ih_magic); 512 bswap32s(&hdr->ih_hcrc); 513 bswap32s(&hdr->ih_time); 514 bswap32s(&hdr->ih_size); 515 bswap32s(&hdr->ih_load); 516 bswap32s(&hdr->ih_ep); 517 bswap32s(&hdr->ih_dcrc); 518 #endif 519 } 520 521 522 #define ZALLOC_ALIGNMENT 16 523 524 static void *zalloc(void *x, unsigned items, unsigned size) 525 { 526 void *p; 527 528 size *= items; 529 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 530 531 p = g_malloc(size); 532 533 return (p); 534 } 535 536 static void zfree(void *x, void *addr) 537 { 538 g_free(addr); 539 } 540 541 542 #define HEAD_CRC 2 543 #define EXTRA_FIELD 4 544 #define ORIG_NAME 8 545 #define COMMENT 0x10 546 #define RESERVED 0xe0 547 548 #define DEFLATED 8 549 550 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 551 { 552 z_stream s; 553 ssize_t dstbytes; 554 int r, i, flags; 555 556 /* skip header */ 557 i = 10; 558 flags = src[3]; 559 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 560 puts ("Error: Bad gzipped data\n"); 561 return -1; 562 } 563 if ((flags & EXTRA_FIELD) != 0) 564 i = 12 + src[10] + (src[11] << 8); 565 if ((flags & ORIG_NAME) != 0) 566 while (src[i++] != 0) 567 ; 568 if ((flags & COMMENT) != 0) 569 while (src[i++] != 0) 570 ; 571 if ((flags & HEAD_CRC) != 0) 572 i += 2; 573 if (i >= srclen) { 574 puts ("Error: gunzip out of data in header\n"); 575 return -1; 576 } 577 578 s.zalloc = zalloc; 579 s.zfree = zfree; 580 581 r = inflateInit2(&s, -MAX_WBITS); 582 if (r != Z_OK) { 583 printf ("Error: inflateInit2() returned %d\n", r); 584 return (-1); 585 } 586 s.next_in = src + i; 587 s.avail_in = srclen - i; 588 s.next_out = dst; 589 s.avail_out = dstlen; 590 r = inflate(&s, Z_FINISH); 591 if (r != Z_OK && r != Z_STREAM_END) { 592 printf ("Error: inflate() returned %d\n", r); 593 return -1; 594 } 595 dstbytes = s.next_out - (unsigned char *) dst; 596 inflateEnd(&s); 597 598 return dstbytes; 599 } 600 601 /* Load a U-Boot image. */ 602 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 603 int *is_linux, uint8_t image_type, 604 uint64_t (*translate_fn)(void *, uint64_t), 605 void *translate_opaque, AddressSpace *as) 606 { 607 int fd; 608 int size; 609 hwaddr address; 610 uboot_image_header_t h; 611 uboot_image_header_t *hdr = &h; 612 uint8_t *data = NULL; 613 int ret = -1; 614 int do_uncompress = 0; 615 616 fd = open(filename, O_RDONLY | O_BINARY); 617 if (fd < 0) 618 return -1; 619 620 size = read(fd, hdr, sizeof(uboot_image_header_t)); 621 if (size < sizeof(uboot_image_header_t)) { 622 goto out; 623 } 624 625 bswap_uboot_header(hdr); 626 627 if (hdr->ih_magic != IH_MAGIC) 628 goto out; 629 630 if (hdr->ih_type != image_type) { 631 if (!(image_type == IH_TYPE_KERNEL && 632 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 633 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 634 image_type); 635 goto out; 636 } 637 } 638 639 /* TODO: Implement other image types. */ 640 switch (hdr->ih_type) { 641 case IH_TYPE_KERNEL_NOLOAD: 642 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 643 fprintf(stderr, "this image format (kernel_noload) cannot be " 644 "loaded on this machine type"); 645 goto out; 646 } 647 648 hdr->ih_load = *loadaddr + sizeof(*hdr); 649 hdr->ih_ep += hdr->ih_load; 650 /* fall through */ 651 case IH_TYPE_KERNEL: 652 address = hdr->ih_load; 653 if (translate_fn) { 654 address = translate_fn(translate_opaque, address); 655 } 656 if (loadaddr) { 657 *loadaddr = hdr->ih_load; 658 } 659 660 switch (hdr->ih_comp) { 661 case IH_COMP_NONE: 662 break; 663 case IH_COMP_GZIP: 664 do_uncompress = 1; 665 break; 666 default: 667 fprintf(stderr, 668 "Unable to load u-boot images with compression type %d\n", 669 hdr->ih_comp); 670 goto out; 671 } 672 673 if (ep) { 674 *ep = hdr->ih_ep; 675 } 676 677 /* TODO: Check CPU type. */ 678 if (is_linux) { 679 if (hdr->ih_os == IH_OS_LINUX) { 680 *is_linux = 1; 681 } else { 682 *is_linux = 0; 683 } 684 } 685 686 break; 687 case IH_TYPE_RAMDISK: 688 address = *loadaddr; 689 break; 690 default: 691 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 692 goto out; 693 } 694 695 data = g_malloc(hdr->ih_size); 696 697 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 698 fprintf(stderr, "Error reading file\n"); 699 goto out; 700 } 701 702 if (do_uncompress) { 703 uint8_t *compressed_data; 704 size_t max_bytes; 705 ssize_t bytes; 706 707 compressed_data = data; 708 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 709 data = g_malloc(max_bytes); 710 711 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 712 g_free(compressed_data); 713 if (bytes < 0) { 714 fprintf(stderr, "Unable to decompress gzipped image!\n"); 715 goto out; 716 } 717 hdr->ih_size = bytes; 718 } 719 720 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 721 722 ret = hdr->ih_size; 723 724 out: 725 g_free(data); 726 close(fd); 727 return ret; 728 } 729 730 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 731 int *is_linux, 732 uint64_t (*translate_fn)(void *, uint64_t), 733 void *translate_opaque) 734 { 735 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 736 translate_fn, translate_opaque, NULL); 737 } 738 739 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 740 int *is_linux, 741 uint64_t (*translate_fn)(void *, uint64_t), 742 void *translate_opaque, AddressSpace *as) 743 { 744 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 745 translate_fn, translate_opaque, as); 746 } 747 748 /* Load a ramdisk. */ 749 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 750 { 751 return load_ramdisk_as(filename, addr, max_sz, NULL); 752 } 753 754 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 755 AddressSpace *as) 756 { 757 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 758 NULL, NULL, as); 759 } 760 761 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 762 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 763 uint8_t **buffer) 764 { 765 uint8_t *compressed_data = NULL; 766 uint8_t *data = NULL; 767 gsize len; 768 ssize_t bytes; 769 int ret = -1; 770 771 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 772 NULL)) { 773 goto out; 774 } 775 776 /* Is it a gzip-compressed file? */ 777 if (len < 2 || 778 compressed_data[0] != 0x1f || 779 compressed_data[1] != 0x8b) { 780 goto out; 781 } 782 783 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 784 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 785 } 786 787 data = g_malloc(max_sz); 788 bytes = gunzip(data, max_sz, compressed_data, len); 789 if (bytes < 0) { 790 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 791 filename); 792 goto out; 793 } 794 795 /* trim to actual size and return to caller */ 796 *buffer = g_realloc(data, bytes); 797 ret = bytes; 798 /* ownership has been transferred to caller */ 799 data = NULL; 800 801 out: 802 g_free(compressed_data); 803 g_free(data); 804 return ret; 805 } 806 807 /* Load a gzip-compressed kernel. */ 808 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 809 { 810 int bytes; 811 uint8_t *data; 812 813 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 814 if (bytes != -1) { 815 rom_add_blob_fixed(filename, data, bytes, addr); 816 g_free(data); 817 } 818 return bytes; 819 } 820 821 /* 822 * Functions for reboot-persistent memory regions. 823 * - used for vga bios and option roms. 824 * - also linux kernel (-kernel / -initrd). 825 */ 826 827 typedef struct Rom Rom; 828 829 struct Rom { 830 char *name; 831 char *path; 832 833 /* datasize is the amount of memory allocated in "data". If datasize is less 834 * than romsize, it means that the area from datasize to romsize is filled 835 * with zeros. 836 */ 837 size_t romsize; 838 size_t datasize; 839 840 uint8_t *data; 841 MemoryRegion *mr; 842 AddressSpace *as; 843 int isrom; 844 char *fw_dir; 845 char *fw_file; 846 GMappedFile *mapped_file; 847 848 bool committed; 849 850 hwaddr addr; 851 QTAILQ_ENTRY(Rom) next; 852 }; 853 854 static FWCfgState *fw_cfg; 855 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 856 857 /* 858 * rom->data can be heap-allocated or memory-mapped (e.g. when added with 859 * rom_add_elf_program()) 860 */ 861 static void rom_free_data(Rom *rom) 862 { 863 if (rom->mapped_file) { 864 g_mapped_file_unref(rom->mapped_file); 865 rom->mapped_file = NULL; 866 } else { 867 g_free(rom->data); 868 } 869 870 rom->data = NULL; 871 } 872 873 static void rom_free(Rom *rom) 874 { 875 rom_free_data(rom); 876 g_free(rom->path); 877 g_free(rom->name); 878 g_free(rom->fw_dir); 879 g_free(rom->fw_file); 880 g_free(rom); 881 } 882 883 static inline bool rom_order_compare(Rom *rom, Rom *item) 884 { 885 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 886 (rom->as == item->as && rom->addr >= item->addr); 887 } 888 889 static void rom_insert(Rom *rom) 890 { 891 Rom *item; 892 893 if (roms_loaded) { 894 hw_error ("ROM images must be loaded at startup\n"); 895 } 896 897 /* The user didn't specify an address space, this is the default */ 898 if (!rom->as) { 899 rom->as = &address_space_memory; 900 } 901 902 rom->committed = false; 903 904 /* List is ordered by load address in the same address space */ 905 QTAILQ_FOREACH(item, &roms, next) { 906 if (rom_order_compare(rom, item)) { 907 continue; 908 } 909 QTAILQ_INSERT_BEFORE(item, rom, next); 910 return; 911 } 912 QTAILQ_INSERT_TAIL(&roms, rom, next); 913 } 914 915 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 916 { 917 if (fw_cfg) { 918 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 919 } 920 } 921 922 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 923 { 924 void *data; 925 926 rom->mr = g_malloc(sizeof(*rom->mr)); 927 memory_region_init_resizeable_ram(rom->mr, owner, name, 928 rom->datasize, rom->romsize, 929 fw_cfg_resized, 930 &error_fatal); 931 memory_region_set_readonly(rom->mr, ro); 932 vmstate_register_ram_global(rom->mr); 933 934 data = memory_region_get_ram_ptr(rom->mr); 935 memcpy(data, rom->data, rom->datasize); 936 937 return data; 938 } 939 940 int rom_add_file(const char *file, const char *fw_dir, 941 hwaddr addr, int32_t bootindex, 942 bool option_rom, MemoryRegion *mr, 943 AddressSpace *as) 944 { 945 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 946 Rom *rom; 947 int rc, fd = -1; 948 char devpath[100]; 949 950 if (as && mr) { 951 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 952 "not valid when loading a rom\n"); 953 /* We haven't allocated anything so we don't need any cleanup */ 954 return -1; 955 } 956 957 rom = g_malloc0(sizeof(*rom)); 958 rom->name = g_strdup(file); 959 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 960 rom->as = as; 961 if (rom->path == NULL) { 962 rom->path = g_strdup(file); 963 } 964 965 fd = open(rom->path, O_RDONLY | O_BINARY); 966 if (fd == -1) { 967 fprintf(stderr, "Could not open option rom '%s': %s\n", 968 rom->path, strerror(errno)); 969 goto err; 970 } 971 972 if (fw_dir) { 973 rom->fw_dir = g_strdup(fw_dir); 974 rom->fw_file = g_strdup(file); 975 } 976 rom->addr = addr; 977 rom->romsize = lseek(fd, 0, SEEK_END); 978 if (rom->romsize == -1) { 979 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 980 rom->name, strerror(errno)); 981 goto err; 982 } 983 984 rom->datasize = rom->romsize; 985 rom->data = g_malloc0(rom->datasize); 986 lseek(fd, 0, SEEK_SET); 987 rc = read(fd, rom->data, rom->datasize); 988 if (rc != rom->datasize) { 989 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 990 rom->name, rc, rom->datasize); 991 goto err; 992 } 993 close(fd); 994 rom_insert(rom); 995 if (rom->fw_file && fw_cfg) { 996 const char *basename; 997 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 998 void *data; 999 1000 basename = strrchr(rom->fw_file, '/'); 1001 if (basename) { 1002 basename++; 1003 } else { 1004 basename = rom->fw_file; 1005 } 1006 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 1007 basename); 1008 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1009 1010 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 1011 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 1012 } else { 1013 data = rom->data; 1014 } 1015 1016 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 1017 } else { 1018 if (mr) { 1019 rom->mr = mr; 1020 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 1021 } else { 1022 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 1023 } 1024 } 1025 1026 add_boot_device_path(bootindex, NULL, devpath); 1027 return 0; 1028 1029 err: 1030 if (fd != -1) 1031 close(fd); 1032 1033 rom_free(rom); 1034 return -1; 1035 } 1036 1037 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1038 size_t max_len, hwaddr addr, const char *fw_file_name, 1039 FWCfgCallback fw_callback, void *callback_opaque, 1040 AddressSpace *as, bool read_only) 1041 { 1042 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1043 Rom *rom; 1044 MemoryRegion *mr = NULL; 1045 1046 rom = g_malloc0(sizeof(*rom)); 1047 rom->name = g_strdup(name); 1048 rom->as = as; 1049 rom->addr = addr; 1050 rom->romsize = max_len ? max_len : len; 1051 rom->datasize = len; 1052 g_assert(rom->romsize >= rom->datasize); 1053 rom->data = g_malloc0(rom->datasize); 1054 memcpy(rom->data, blob, len); 1055 rom_insert(rom); 1056 if (fw_file_name && fw_cfg) { 1057 char devpath[100]; 1058 void *data; 1059 1060 if (read_only) { 1061 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1062 } else { 1063 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1064 } 1065 1066 if (mc->rom_file_has_mr) { 1067 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1068 mr = rom->mr; 1069 } else { 1070 data = rom->data; 1071 } 1072 1073 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1074 fw_callback, NULL, callback_opaque, 1075 data, rom->datasize, read_only); 1076 } 1077 return mr; 1078 } 1079 1080 /* This function is specific for elf program because we don't need to allocate 1081 * all the rom. We just allocate the first part and the rest is just zeros. This 1082 * is why romsize and datasize are different. Also, this function takes its own 1083 * reference to "mapped_file", so we don't have to allocate and copy the buffer. 1084 */ 1085 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, 1086 size_t datasize, size_t romsize, hwaddr addr, 1087 AddressSpace *as) 1088 { 1089 Rom *rom; 1090 1091 rom = g_malloc0(sizeof(*rom)); 1092 rom->name = g_strdup(name); 1093 rom->addr = addr; 1094 rom->datasize = datasize; 1095 rom->romsize = romsize; 1096 rom->data = data; 1097 rom->as = as; 1098 1099 if (mapped_file && data) { 1100 g_mapped_file_ref(mapped_file); 1101 rom->mapped_file = mapped_file; 1102 } 1103 1104 rom_insert(rom); 1105 return 0; 1106 } 1107 1108 int rom_add_vga(const char *file) 1109 { 1110 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1111 } 1112 1113 int rom_add_option(const char *file, int32_t bootindex) 1114 { 1115 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1116 } 1117 1118 static void rom_reset(void *unused) 1119 { 1120 Rom *rom; 1121 1122 QTAILQ_FOREACH(rom, &roms, next) { 1123 if (rom->fw_file) { 1124 continue; 1125 } 1126 /* 1127 * We don't need to fill in the RAM with ROM data because we'll fill 1128 * the data in during the next incoming migration in all cases. Note 1129 * that some of those RAMs can actually be modified by the guest. 1130 */ 1131 if (runstate_check(RUN_STATE_INMIGRATE)) { 1132 if (rom->data && rom->isrom) { 1133 /* 1134 * Free it so that a rom_reset after migration doesn't 1135 * overwrite a potentially modified 'rom'. 1136 */ 1137 rom_free_data(rom); 1138 } 1139 continue; 1140 } 1141 1142 if (rom->data == NULL) { 1143 continue; 1144 } 1145 if (rom->mr) { 1146 void *host = memory_region_get_ram_ptr(rom->mr); 1147 memcpy(host, rom->data, rom->datasize); 1148 } else { 1149 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1150 rom->data, rom->datasize); 1151 } 1152 if (rom->isrom) { 1153 /* rom needs to be written only once */ 1154 rom_free_data(rom); 1155 } 1156 /* 1157 * The rom loader is really on the same level as firmware in the guest 1158 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1159 * that the instruction cache for that new region is clear, so that the 1160 * CPU definitely fetches its instructions from the just written data. 1161 */ 1162 cpu_flush_icache_range(rom->addr, rom->datasize); 1163 1164 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom); 1165 } 1166 } 1167 1168 /* Return true if two consecutive ROMs in the ROM list overlap */ 1169 static bool roms_overlap(Rom *last_rom, Rom *this_rom) 1170 { 1171 if (!last_rom) { 1172 return false; 1173 } 1174 return last_rom->as == this_rom->as && 1175 last_rom->addr + last_rom->romsize > this_rom->addr; 1176 } 1177 1178 static const char *rom_as_name(Rom *rom) 1179 { 1180 const char *name = rom->as ? rom->as->name : NULL; 1181 return name ?: "anonymous"; 1182 } 1183 1184 static void rom_print_overlap_error_header(void) 1185 { 1186 error_report("Some ROM regions are overlapping"); 1187 error_printf( 1188 "These ROM regions might have been loaded by " 1189 "direct user request or by default.\n" 1190 "They could be BIOS/firmware images, a guest kernel, " 1191 "initrd or some other file loaded into guest memory.\n" 1192 "Check whether you intended to load all this guest code, and " 1193 "whether it has been built to load to the correct addresses.\n"); 1194 } 1195 1196 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom) 1197 { 1198 error_printf( 1199 "\nThe following two regions overlap (in the %s address space):\n", 1200 rom_as_name(rom)); 1201 error_printf( 1202 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n", 1203 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize); 1204 error_printf( 1205 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n", 1206 rom->name, rom->addr, rom->addr + rom->romsize); 1207 } 1208 1209 int rom_check_and_register_reset(void) 1210 { 1211 MemoryRegionSection section; 1212 Rom *rom, *last_rom = NULL; 1213 bool found_overlap = false; 1214 1215 QTAILQ_FOREACH(rom, &roms, next) { 1216 if (rom->fw_file) { 1217 continue; 1218 } 1219 if (!rom->mr) { 1220 if (roms_overlap(last_rom, rom)) { 1221 if (!found_overlap) { 1222 found_overlap = true; 1223 rom_print_overlap_error_header(); 1224 } 1225 rom_print_one_overlap_error(last_rom, rom); 1226 /* Keep going through the list so we report all overlaps */ 1227 } 1228 last_rom = rom; 1229 } 1230 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1231 rom->addr, 1); 1232 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1233 memory_region_unref(section.mr); 1234 } 1235 if (found_overlap) { 1236 return -1; 1237 } 1238 1239 qemu_register_reset(rom_reset, NULL); 1240 roms_loaded = 1; 1241 return 0; 1242 } 1243 1244 void rom_set_fw(FWCfgState *f) 1245 { 1246 fw_cfg = f; 1247 } 1248 1249 void rom_set_order_override(int order) 1250 { 1251 if (!fw_cfg) 1252 return; 1253 fw_cfg_set_order_override(fw_cfg, order); 1254 } 1255 1256 void rom_reset_order_override(void) 1257 { 1258 if (!fw_cfg) 1259 return; 1260 fw_cfg_reset_order_override(fw_cfg); 1261 } 1262 1263 void rom_transaction_begin(void) 1264 { 1265 Rom *rom; 1266 1267 /* Ignore ROMs added without the transaction API */ 1268 QTAILQ_FOREACH(rom, &roms, next) { 1269 rom->committed = true; 1270 } 1271 } 1272 1273 void rom_transaction_end(bool commit) 1274 { 1275 Rom *rom; 1276 Rom *tmp; 1277 1278 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1279 if (rom->committed) { 1280 continue; 1281 } 1282 if (commit) { 1283 rom->committed = true; 1284 } else { 1285 QTAILQ_REMOVE(&roms, rom, next); 1286 rom_free(rom); 1287 } 1288 } 1289 } 1290 1291 static Rom *find_rom(hwaddr addr, size_t size) 1292 { 1293 Rom *rom; 1294 1295 QTAILQ_FOREACH(rom, &roms, next) { 1296 if (rom->fw_file) { 1297 continue; 1298 } 1299 if (rom->mr) { 1300 continue; 1301 } 1302 if (rom->addr > addr) { 1303 continue; 1304 } 1305 if (rom->addr + rom->romsize < addr + size) { 1306 continue; 1307 } 1308 return rom; 1309 } 1310 return NULL; 1311 } 1312 1313 /* 1314 * Copies memory from registered ROMs to dest. Any memory that is contained in 1315 * a ROM between addr and addr + size is copied. Note that this can involve 1316 * multiple ROMs, which need not start at addr and need not end at addr + size. 1317 */ 1318 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1319 { 1320 hwaddr end = addr + size; 1321 uint8_t *s, *d = dest; 1322 size_t l = 0; 1323 Rom *rom; 1324 1325 QTAILQ_FOREACH(rom, &roms, next) { 1326 if (rom->fw_file) { 1327 continue; 1328 } 1329 if (rom->mr) { 1330 continue; 1331 } 1332 if (rom->addr + rom->romsize < addr) { 1333 continue; 1334 } 1335 if (rom->addr > end || rom->addr < addr) { 1336 break; 1337 } 1338 1339 d = dest + (rom->addr - addr); 1340 s = rom->data; 1341 l = rom->datasize; 1342 1343 if ((d + l) > (dest + size)) { 1344 l = dest - d; 1345 } 1346 1347 if (l > 0) { 1348 memcpy(d, s, l); 1349 } 1350 1351 if (rom->romsize > rom->datasize) { 1352 /* If datasize is less than romsize, it means that we didn't 1353 * allocate all the ROM because the trailing data are only zeros. 1354 */ 1355 1356 d += l; 1357 l = rom->romsize - rom->datasize; 1358 1359 if ((d + l) > (dest + size)) { 1360 /* Rom size doesn't fit in the destination area. Adjust to avoid 1361 * overflow. 1362 */ 1363 l = dest - d; 1364 } 1365 1366 if (l > 0) { 1367 memset(d, 0x0, l); 1368 } 1369 } 1370 } 1371 1372 return (d + l) - dest; 1373 } 1374 1375 void *rom_ptr(hwaddr addr, size_t size) 1376 { 1377 Rom *rom; 1378 1379 rom = find_rom(addr, size); 1380 if (!rom || !rom->data) 1381 return NULL; 1382 return rom->data + (addr - rom->addr); 1383 } 1384 1385 typedef struct FindRomCBData { 1386 size_t size; /* Amount of data we want from ROM, in bytes */ 1387 MemoryRegion *mr; /* MR at the unaliased guest addr */ 1388 hwaddr xlat; /* Offset of addr within mr */ 1389 void *rom; /* Output: rom data pointer, if found */ 1390 } FindRomCBData; 1391 1392 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr, 1393 hwaddr offset_in_region, void *opaque) 1394 { 1395 FindRomCBData *cbdata = opaque; 1396 hwaddr alias_addr; 1397 1398 if (mr != cbdata->mr) { 1399 return false; 1400 } 1401 1402 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region; 1403 cbdata->rom = rom_ptr(alias_addr, cbdata->size); 1404 if (!cbdata->rom) { 1405 return false; 1406 } 1407 /* Found a match, stop iterating */ 1408 return true; 1409 } 1410 1411 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size) 1412 { 1413 /* 1414 * Find any ROM data for the given guest address range. If there 1415 * is a ROM blob then return a pointer to the host memory 1416 * corresponding to 'addr'; otherwise return NULL. 1417 * 1418 * We look not only for ROM blobs that were loaded directly to 1419 * addr, but also for ROM blobs that were loaded to aliases of 1420 * that memory at other addresses within the AddressSpace. 1421 * 1422 * Note that we do not check @as against the 'as' member in the 1423 * 'struct Rom' returned by rom_ptr(). The Rom::as is the 1424 * AddressSpace which the rom blob should be written to, whereas 1425 * our @as argument is the AddressSpace which we are (effectively) 1426 * reading from, and the same underlying RAM will often be visible 1427 * in multiple AddressSpaces. (A common example is a ROM blob 1428 * written to the 'system' address space but then read back via a 1429 * CPU's cpu->as pointer.) This does mean we might potentially 1430 * return a false-positive match if a ROM blob was loaded into an 1431 * AS which is entirely separate and distinct from the one we're 1432 * querying, but this issue exists also for rom_ptr() and hasn't 1433 * caused any problems in practice. 1434 */ 1435 FlatView *fv; 1436 void *rom; 1437 hwaddr len_unused; 1438 FindRomCBData cbdata = {}; 1439 1440 /* Easy case: there's data at the actual address */ 1441 rom = rom_ptr(addr, size); 1442 if (rom) { 1443 return rom; 1444 } 1445 1446 RCU_READ_LOCK_GUARD(); 1447 1448 fv = address_space_to_flatview(as); 1449 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused, 1450 false, MEMTXATTRS_UNSPECIFIED); 1451 if (!cbdata.mr) { 1452 /* Nothing at this address, so there can't be any aliasing */ 1453 return NULL; 1454 } 1455 cbdata.size = size; 1456 flatview_for_each_range(fv, find_rom_cb, &cbdata); 1457 return cbdata.rom; 1458 } 1459 1460 void hmp_info_roms(Monitor *mon, const QDict *qdict) 1461 { 1462 Rom *rom; 1463 1464 QTAILQ_FOREACH(rom, &roms, next) { 1465 if (rom->mr) { 1466 monitor_printf(mon, "%s" 1467 " size=0x%06zx name=\"%s\"\n", 1468 memory_region_name(rom->mr), 1469 rom->romsize, 1470 rom->name); 1471 } else if (!rom->fw_file) { 1472 monitor_printf(mon, "addr=" TARGET_FMT_plx 1473 " size=0x%06zx mem=%s name=\"%s\"\n", 1474 rom->addr, rom->romsize, 1475 rom->isrom ? "rom" : "ram", 1476 rom->name); 1477 } else { 1478 monitor_printf(mon, "fw=%s/%s" 1479 " size=0x%06zx name=\"%s\"\n", 1480 rom->fw_dir, 1481 rom->fw_file, 1482 rom->romsize, 1483 rom->name); 1484 } 1485 } 1486 } 1487 1488 typedef enum HexRecord HexRecord; 1489 enum HexRecord { 1490 DATA_RECORD = 0, 1491 EOF_RECORD, 1492 EXT_SEG_ADDR_RECORD, 1493 START_SEG_ADDR_RECORD, 1494 EXT_LINEAR_ADDR_RECORD, 1495 START_LINEAR_ADDR_RECORD, 1496 }; 1497 1498 /* Each record contains a 16-bit address which is combined with the upper 16 1499 * bits of the implicit "next address" to form a 32-bit address. 1500 */ 1501 #define NEXT_ADDR_MASK 0xffff0000 1502 1503 #define DATA_FIELD_MAX_LEN 0xff 1504 #define LEN_EXCEPT_DATA 0x5 1505 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1506 * sizeof(checksum) */ 1507 typedef struct { 1508 uint8_t byte_count; 1509 uint16_t address; 1510 uint8_t record_type; 1511 uint8_t data[DATA_FIELD_MAX_LEN]; 1512 uint8_t checksum; 1513 } HexLine; 1514 1515 /* return 0 or -1 if error */ 1516 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1517 uint32_t *index, const bool in_process) 1518 { 1519 /* +-------+---------------+-------+---------------------+--------+ 1520 * | byte | |record | | | 1521 * | count | address | type | data |checksum| 1522 * +-------+---------------+-------+---------------------+--------+ 1523 * ^ ^ ^ ^ ^ ^ 1524 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1525 */ 1526 uint8_t value = 0; 1527 uint32_t idx = *index; 1528 /* ignore space */ 1529 if (g_ascii_isspace(c)) { 1530 return true; 1531 } 1532 if (!g_ascii_isxdigit(c) || !in_process) { 1533 return false; 1534 } 1535 value = g_ascii_xdigit_value(c); 1536 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1537 if (idx < 2) { 1538 line->byte_count |= value; 1539 } else if (2 <= idx && idx < 6) { 1540 line->address <<= 4; 1541 line->address += g_ascii_xdigit_value(c); 1542 } else if (6 <= idx && idx < 8) { 1543 line->record_type |= value; 1544 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1545 line->data[(idx - 8) >> 1] |= value; 1546 } else if (8 + 2 * line->byte_count <= idx && 1547 idx < 10 + 2 * line->byte_count) { 1548 line->checksum |= value; 1549 } else { 1550 return false; 1551 } 1552 *our_checksum += value; 1553 ++(*index); 1554 return true; 1555 } 1556 1557 typedef struct { 1558 const char *filename; 1559 HexLine line; 1560 uint8_t *bin_buf; 1561 hwaddr *start_addr; 1562 int total_size; 1563 uint32_t next_address_to_write; 1564 uint32_t current_address; 1565 uint32_t current_rom_index; 1566 uint32_t rom_start_address; 1567 AddressSpace *as; 1568 bool complete; 1569 } HexParser; 1570 1571 /* return size or -1 if error */ 1572 static int handle_record_type(HexParser *parser) 1573 { 1574 HexLine *line = &(parser->line); 1575 switch (line->record_type) { 1576 case DATA_RECORD: 1577 parser->current_address = 1578 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1579 /* verify this is a contiguous block of memory */ 1580 if (parser->current_address != parser->next_address_to_write) { 1581 if (parser->current_rom_index != 0) { 1582 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1583 parser->current_rom_index, 1584 parser->rom_start_address, parser->as); 1585 } 1586 parser->rom_start_address = parser->current_address; 1587 parser->current_rom_index = 0; 1588 } 1589 1590 /* copy from line buffer to output bin_buf */ 1591 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1592 line->byte_count); 1593 parser->current_rom_index += line->byte_count; 1594 parser->total_size += line->byte_count; 1595 /* save next address to write */ 1596 parser->next_address_to_write = 1597 parser->current_address + line->byte_count; 1598 break; 1599 1600 case EOF_RECORD: 1601 if (parser->current_rom_index != 0) { 1602 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1603 parser->current_rom_index, 1604 parser->rom_start_address, parser->as); 1605 } 1606 parser->complete = true; 1607 return parser->total_size; 1608 case EXT_SEG_ADDR_RECORD: 1609 case EXT_LINEAR_ADDR_RECORD: 1610 if (line->byte_count != 2 && line->address != 0) { 1611 return -1; 1612 } 1613 1614 if (parser->current_rom_index != 0) { 1615 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1616 parser->current_rom_index, 1617 parser->rom_start_address, parser->as); 1618 } 1619 1620 /* save next address to write, 1621 * in case of non-contiguous block of memory */ 1622 parser->next_address_to_write = (line->data[0] << 12) | 1623 (line->data[1] << 4); 1624 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1625 parser->next_address_to_write <<= 12; 1626 } 1627 1628 parser->rom_start_address = parser->next_address_to_write; 1629 parser->current_rom_index = 0; 1630 break; 1631 1632 case START_SEG_ADDR_RECORD: 1633 if (line->byte_count != 4 && line->address != 0) { 1634 return -1; 1635 } 1636 1637 /* x86 16-bit CS:IP segmented addressing */ 1638 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1639 ((line->data[2] << 8) | line->data[3]); 1640 break; 1641 1642 case START_LINEAR_ADDR_RECORD: 1643 if (line->byte_count != 4 && line->address != 0) { 1644 return -1; 1645 } 1646 1647 *(parser->start_addr) = ldl_be_p(line->data); 1648 break; 1649 1650 default: 1651 return -1; 1652 } 1653 1654 return parser->total_size; 1655 } 1656 1657 /* return size or -1 if error */ 1658 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1659 size_t hex_blob_size, AddressSpace *as) 1660 { 1661 bool in_process = false; /* avoid re-enter and 1662 * check whether record begin with ':' */ 1663 uint8_t *end = hex_blob + hex_blob_size; 1664 uint8_t our_checksum = 0; 1665 uint32_t record_index = 0; 1666 HexParser parser = { 1667 .filename = filename, 1668 .bin_buf = g_malloc(hex_blob_size), 1669 .start_addr = addr, 1670 .as = as, 1671 .complete = false 1672 }; 1673 1674 rom_transaction_begin(); 1675 1676 for (; hex_blob < end && !parser.complete; ++hex_blob) { 1677 switch (*hex_blob) { 1678 case '\r': 1679 case '\n': 1680 if (!in_process) { 1681 break; 1682 } 1683 1684 in_process = false; 1685 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1686 record_index || 1687 our_checksum != 0) { 1688 parser.total_size = -1; 1689 goto out; 1690 } 1691 1692 if (handle_record_type(&parser) == -1) { 1693 parser.total_size = -1; 1694 goto out; 1695 } 1696 break; 1697 1698 /* start of a new record. */ 1699 case ':': 1700 memset(&parser.line, 0, sizeof(HexLine)); 1701 in_process = true; 1702 record_index = 0; 1703 break; 1704 1705 /* decoding lines */ 1706 default: 1707 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1708 &record_index, in_process)) { 1709 parser.total_size = -1; 1710 goto out; 1711 } 1712 break; 1713 } 1714 } 1715 1716 out: 1717 g_free(parser.bin_buf); 1718 rom_transaction_end(parser.total_size != -1); 1719 return parser.total_size; 1720 } 1721 1722 /* return size or -1 if error */ 1723 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as) 1724 { 1725 gsize hex_blob_size; 1726 gchar *hex_blob; 1727 int total_size = 0; 1728 1729 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1730 return -1; 1731 } 1732 1733 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1734 hex_blob_size, as); 1735 1736 g_free(hex_blob); 1737 return total_size; 1738 } 1739