1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qemu-common.h" 47 #include "qemu/datadir.h" 48 #include "qapi/error.h" 49 #include "trace.h" 50 #include "hw/hw.h" 51 #include "disas/disas.h" 52 #include "migration/vmstate.h" 53 #include "monitor/monitor.h" 54 #include "sysemu/reset.h" 55 #include "sysemu/sysemu.h" 56 #include "uboot_image.h" 57 #include "hw/loader.h" 58 #include "hw/nvram/fw_cfg.h" 59 #include "exec/memory.h" 60 #include "hw/boards.h" 61 #include "qemu/cutils.h" 62 #include "sysemu/runstate.h" 63 64 #include <zlib.h> 65 66 static int roms_loaded; 67 68 /* return the size or -1 if error */ 69 int64_t get_image_size(const char *filename) 70 { 71 int fd; 72 int64_t size; 73 fd = open(filename, O_RDONLY | O_BINARY); 74 if (fd < 0) 75 return -1; 76 size = lseek(fd, 0, SEEK_END); 77 close(fd); 78 return size; 79 } 80 81 /* return the size or -1 if error */ 82 ssize_t load_image_size(const char *filename, void *addr, size_t size) 83 { 84 int fd; 85 ssize_t actsize, l = 0; 86 87 fd = open(filename, O_RDONLY | O_BINARY); 88 if (fd < 0) { 89 return -1; 90 } 91 92 while ((actsize = read(fd, addr + l, size - l)) > 0) { 93 l += actsize; 94 } 95 96 close(fd); 97 98 return actsize < 0 ? -1 : l; 99 } 100 101 /* read()-like version */ 102 ssize_t read_targphys(const char *name, 103 int fd, hwaddr dst_addr, size_t nbytes) 104 { 105 uint8_t *buf; 106 ssize_t did; 107 108 buf = g_malloc(nbytes); 109 did = read(fd, buf, nbytes); 110 if (did > 0) 111 rom_add_blob_fixed("read", buf, did, dst_addr); 112 g_free(buf); 113 return did; 114 } 115 116 int load_image_targphys(const char *filename, 117 hwaddr addr, uint64_t max_sz) 118 { 119 return load_image_targphys_as(filename, addr, max_sz, NULL); 120 } 121 122 /* return the size or -1 if error */ 123 int load_image_targphys_as(const char *filename, 124 hwaddr addr, uint64_t max_sz, AddressSpace *as) 125 { 126 int size; 127 128 size = get_image_size(filename); 129 if (size < 0 || size > max_sz) { 130 return -1; 131 } 132 if (size > 0) { 133 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 134 return -1; 135 } 136 } 137 return size; 138 } 139 140 int load_image_mr(const char *filename, MemoryRegion *mr) 141 { 142 int size; 143 144 if (!memory_access_is_direct(mr, false)) { 145 /* Can only load an image into RAM or ROM */ 146 return -1; 147 } 148 149 size = get_image_size(filename); 150 151 if (size < 0 || size > memory_region_size(mr)) { 152 return -1; 153 } 154 if (size > 0) { 155 if (rom_add_file_mr(filename, mr, -1) < 0) { 156 return -1; 157 } 158 } 159 return size; 160 } 161 162 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 163 const char *source) 164 { 165 const char *nulp; 166 char *ptr; 167 168 if (buf_size <= 0) return; 169 nulp = memchr(source, 0, buf_size); 170 if (nulp) { 171 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 172 } else { 173 rom_add_blob_fixed(name, source, buf_size, dest); 174 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 175 *ptr = 0; 176 } 177 } 178 179 /* A.OUT loader */ 180 181 struct exec 182 { 183 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 184 uint32_t a_text; /* length of text, in bytes */ 185 uint32_t a_data; /* length of data, in bytes */ 186 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 187 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 188 uint32_t a_entry; /* start address */ 189 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 190 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 191 }; 192 193 static void bswap_ahdr(struct exec *e) 194 { 195 bswap32s(&e->a_info); 196 bswap32s(&e->a_text); 197 bswap32s(&e->a_data); 198 bswap32s(&e->a_bss); 199 bswap32s(&e->a_syms); 200 bswap32s(&e->a_entry); 201 bswap32s(&e->a_trsize); 202 bswap32s(&e->a_drsize); 203 } 204 205 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 206 #define OMAGIC 0407 207 #define NMAGIC 0410 208 #define ZMAGIC 0413 209 #define QMAGIC 0314 210 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 211 #define N_TXTOFF(x) \ 212 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 213 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 214 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 215 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 216 217 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 218 219 #define N_DATADDR(x, target_page_size) \ 220 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 221 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 222 223 224 int load_aout(const char *filename, hwaddr addr, int max_sz, 225 int bswap_needed, hwaddr target_page_size) 226 { 227 int fd; 228 ssize_t size, ret; 229 struct exec e; 230 uint32_t magic; 231 232 fd = open(filename, O_RDONLY | O_BINARY); 233 if (fd < 0) 234 return -1; 235 236 size = read(fd, &e, sizeof(e)); 237 if (size < 0) 238 goto fail; 239 240 if (bswap_needed) { 241 bswap_ahdr(&e); 242 } 243 244 magic = N_MAGIC(e); 245 switch (magic) { 246 case ZMAGIC: 247 case QMAGIC: 248 case OMAGIC: 249 if (e.a_text + e.a_data > max_sz) 250 goto fail; 251 lseek(fd, N_TXTOFF(e), SEEK_SET); 252 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 253 if (size < 0) 254 goto fail; 255 break; 256 case NMAGIC: 257 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 258 goto fail; 259 lseek(fd, N_TXTOFF(e), SEEK_SET); 260 size = read_targphys(filename, fd, addr, e.a_text); 261 if (size < 0) 262 goto fail; 263 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 264 e.a_data); 265 if (ret < 0) 266 goto fail; 267 size += ret; 268 break; 269 default: 270 goto fail; 271 } 272 close(fd); 273 return size; 274 fail: 275 close(fd); 276 return -1; 277 } 278 279 /* ELF loader */ 280 281 static void *load_at(int fd, off_t offset, size_t size) 282 { 283 void *ptr; 284 if (lseek(fd, offset, SEEK_SET) < 0) 285 return NULL; 286 ptr = g_malloc(size); 287 if (read(fd, ptr, size) != size) { 288 g_free(ptr); 289 return NULL; 290 } 291 return ptr; 292 } 293 294 #ifdef ELF_CLASS 295 #undef ELF_CLASS 296 #endif 297 298 #define ELF_CLASS ELFCLASS32 299 #include "elf.h" 300 301 #define SZ 32 302 #define elf_word uint32_t 303 #define elf_sword int32_t 304 #define bswapSZs bswap32s 305 #include "hw/elf_ops.h" 306 307 #undef elfhdr 308 #undef elf_phdr 309 #undef elf_shdr 310 #undef elf_sym 311 #undef elf_rela 312 #undef elf_note 313 #undef elf_word 314 #undef elf_sword 315 #undef bswapSZs 316 #undef SZ 317 #define elfhdr elf64_hdr 318 #define elf_phdr elf64_phdr 319 #define elf_note elf64_note 320 #define elf_shdr elf64_shdr 321 #define elf_sym elf64_sym 322 #define elf_rela elf64_rela 323 #define elf_word uint64_t 324 #define elf_sword int64_t 325 #define bswapSZs bswap64s 326 #define SZ 64 327 #include "hw/elf_ops.h" 328 329 const char *load_elf_strerror(ssize_t error) 330 { 331 switch (error) { 332 case 0: 333 return "No error"; 334 case ELF_LOAD_FAILED: 335 return "Failed to load ELF"; 336 case ELF_LOAD_NOT_ELF: 337 return "The image is not ELF"; 338 case ELF_LOAD_WRONG_ARCH: 339 return "The image is from incompatible architecture"; 340 case ELF_LOAD_WRONG_ENDIAN: 341 return "The image has incorrect endianness"; 342 case ELF_LOAD_TOO_BIG: 343 return "The image segments are too big to load"; 344 default: 345 return "Unknown error"; 346 } 347 } 348 349 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 350 { 351 int fd; 352 uint8_t e_ident_local[EI_NIDENT]; 353 uint8_t *e_ident; 354 size_t hdr_size, off; 355 bool is64l; 356 357 if (!hdr) { 358 hdr = e_ident_local; 359 } 360 e_ident = hdr; 361 362 fd = open(filename, O_RDONLY | O_BINARY); 363 if (fd < 0) { 364 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 365 return; 366 } 367 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 368 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 369 goto fail; 370 } 371 if (e_ident[0] != ELFMAG0 || 372 e_ident[1] != ELFMAG1 || 373 e_ident[2] != ELFMAG2 || 374 e_ident[3] != ELFMAG3) { 375 error_setg(errp, "Bad ELF magic"); 376 goto fail; 377 } 378 379 is64l = e_ident[EI_CLASS] == ELFCLASS64; 380 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 381 if (is64) { 382 *is64 = is64l; 383 } 384 385 off = EI_NIDENT; 386 while (hdr != e_ident_local && off < hdr_size) { 387 size_t br = read(fd, hdr + off, hdr_size - off); 388 switch (br) { 389 case 0: 390 error_setg(errp, "File too short: %s", filename); 391 goto fail; 392 case -1: 393 error_setg_errno(errp, errno, "Failed to read file: %s", 394 filename); 395 goto fail; 396 } 397 off += br; 398 } 399 400 fail: 401 close(fd); 402 } 403 404 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 405 ssize_t load_elf(const char *filename, 406 uint64_t (*elf_note_fn)(void *, void *, bool), 407 uint64_t (*translate_fn)(void *, uint64_t), 408 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 409 uint64_t *highaddr, uint32_t *pflags, int big_endian, 410 int elf_machine, int clear_lsb, int data_swab) 411 { 412 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 413 pentry, lowaddr, highaddr, pflags, big_endian, 414 elf_machine, clear_lsb, data_swab, NULL); 415 } 416 417 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 418 ssize_t load_elf_as(const char *filename, 419 uint64_t (*elf_note_fn)(void *, void *, bool), 420 uint64_t (*translate_fn)(void *, uint64_t), 421 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 422 uint64_t *highaddr, uint32_t *pflags, int big_endian, 423 int elf_machine, int clear_lsb, int data_swab, 424 AddressSpace *as) 425 { 426 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque, 427 pentry, lowaddr, highaddr, pflags, big_endian, 428 elf_machine, clear_lsb, data_swab, as, true); 429 } 430 431 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 432 ssize_t load_elf_ram(const char *filename, 433 uint64_t (*elf_note_fn)(void *, void *, bool), 434 uint64_t (*translate_fn)(void *, uint64_t), 435 void *translate_opaque, uint64_t *pentry, 436 uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags, 437 int big_endian, int elf_machine, int clear_lsb, 438 int data_swab, AddressSpace *as, bool load_rom) 439 { 440 return load_elf_ram_sym(filename, elf_note_fn, 441 translate_fn, translate_opaque, 442 pentry, lowaddr, highaddr, pflags, big_endian, 443 elf_machine, clear_lsb, data_swab, as, 444 load_rom, NULL); 445 } 446 447 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 448 ssize_t load_elf_ram_sym(const char *filename, 449 uint64_t (*elf_note_fn)(void *, void *, bool), 450 uint64_t (*translate_fn)(void *, uint64_t), 451 void *translate_opaque, uint64_t *pentry, 452 uint64_t *lowaddr, uint64_t *highaddr, 453 uint32_t *pflags, int big_endian, int elf_machine, 454 int clear_lsb, int data_swab, 455 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 456 { 457 int fd, data_order, target_data_order, must_swab; 458 ssize_t ret = ELF_LOAD_FAILED; 459 uint8_t e_ident[EI_NIDENT]; 460 461 fd = open(filename, O_RDONLY | O_BINARY); 462 if (fd < 0) { 463 perror(filename); 464 return -1; 465 } 466 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 467 goto fail; 468 if (e_ident[0] != ELFMAG0 || 469 e_ident[1] != ELFMAG1 || 470 e_ident[2] != ELFMAG2 || 471 e_ident[3] != ELFMAG3) { 472 ret = ELF_LOAD_NOT_ELF; 473 goto fail; 474 } 475 #ifdef HOST_WORDS_BIGENDIAN 476 data_order = ELFDATA2MSB; 477 #else 478 data_order = ELFDATA2LSB; 479 #endif 480 must_swab = data_order != e_ident[EI_DATA]; 481 if (big_endian) { 482 target_data_order = ELFDATA2MSB; 483 } else { 484 target_data_order = ELFDATA2LSB; 485 } 486 487 if (target_data_order != e_ident[EI_DATA]) { 488 ret = ELF_LOAD_WRONG_ENDIAN; 489 goto fail; 490 } 491 492 lseek(fd, 0, SEEK_SET); 493 if (e_ident[EI_CLASS] == ELFCLASS64) { 494 ret = load_elf64(filename, fd, elf_note_fn, 495 translate_fn, translate_opaque, must_swab, 496 pentry, lowaddr, highaddr, pflags, elf_machine, 497 clear_lsb, data_swab, as, load_rom, sym_cb); 498 } else { 499 ret = load_elf32(filename, fd, elf_note_fn, 500 translate_fn, translate_opaque, must_swab, 501 pentry, lowaddr, highaddr, pflags, elf_machine, 502 clear_lsb, data_swab, as, load_rom, sym_cb); 503 } 504 505 fail: 506 close(fd); 507 return ret; 508 } 509 510 static void bswap_uboot_header(uboot_image_header_t *hdr) 511 { 512 #ifndef HOST_WORDS_BIGENDIAN 513 bswap32s(&hdr->ih_magic); 514 bswap32s(&hdr->ih_hcrc); 515 bswap32s(&hdr->ih_time); 516 bswap32s(&hdr->ih_size); 517 bswap32s(&hdr->ih_load); 518 bswap32s(&hdr->ih_ep); 519 bswap32s(&hdr->ih_dcrc); 520 #endif 521 } 522 523 524 #define ZALLOC_ALIGNMENT 16 525 526 static void *zalloc(void *x, unsigned items, unsigned size) 527 { 528 void *p; 529 530 size *= items; 531 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 532 533 p = g_malloc(size); 534 535 return (p); 536 } 537 538 static void zfree(void *x, void *addr) 539 { 540 g_free(addr); 541 } 542 543 544 #define HEAD_CRC 2 545 #define EXTRA_FIELD 4 546 #define ORIG_NAME 8 547 #define COMMENT 0x10 548 #define RESERVED 0xe0 549 550 #define DEFLATED 8 551 552 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 553 { 554 z_stream s; 555 ssize_t dstbytes; 556 int r, i, flags; 557 558 /* skip header */ 559 i = 10; 560 if (srclen < 4) { 561 goto toosmall; 562 } 563 flags = src[3]; 564 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 565 puts ("Error: Bad gzipped data\n"); 566 return -1; 567 } 568 if ((flags & EXTRA_FIELD) != 0) { 569 if (srclen < 12) { 570 goto toosmall; 571 } 572 i = 12 + src[10] + (src[11] << 8); 573 } 574 if ((flags & ORIG_NAME) != 0) { 575 while (i < srclen && src[i++] != 0) { 576 /* do nothing */ 577 } 578 } 579 if ((flags & COMMENT) != 0) { 580 while (i < srclen && src[i++] != 0) { 581 /* do nothing */ 582 } 583 } 584 if ((flags & HEAD_CRC) != 0) { 585 i += 2; 586 } 587 if (i >= srclen) { 588 goto toosmall; 589 } 590 591 s.zalloc = zalloc; 592 s.zfree = zfree; 593 594 r = inflateInit2(&s, -MAX_WBITS); 595 if (r != Z_OK) { 596 printf ("Error: inflateInit2() returned %d\n", r); 597 return (-1); 598 } 599 s.next_in = src + i; 600 s.avail_in = srclen - i; 601 s.next_out = dst; 602 s.avail_out = dstlen; 603 r = inflate(&s, Z_FINISH); 604 if (r != Z_OK && r != Z_STREAM_END) { 605 printf ("Error: inflate() returned %d\n", r); 606 return -1; 607 } 608 dstbytes = s.next_out - (unsigned char *) dst; 609 inflateEnd(&s); 610 611 return dstbytes; 612 613 toosmall: 614 puts("Error: gunzip out of data in header\n"); 615 return -1; 616 } 617 618 /* Load a U-Boot image. */ 619 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 620 int *is_linux, uint8_t image_type, 621 uint64_t (*translate_fn)(void *, uint64_t), 622 void *translate_opaque, AddressSpace *as) 623 { 624 int fd; 625 int size; 626 hwaddr address; 627 uboot_image_header_t h; 628 uboot_image_header_t *hdr = &h; 629 uint8_t *data = NULL; 630 int ret = -1; 631 int do_uncompress = 0; 632 633 fd = open(filename, O_RDONLY | O_BINARY); 634 if (fd < 0) 635 return -1; 636 637 size = read(fd, hdr, sizeof(uboot_image_header_t)); 638 if (size < sizeof(uboot_image_header_t)) { 639 goto out; 640 } 641 642 bswap_uboot_header(hdr); 643 644 if (hdr->ih_magic != IH_MAGIC) 645 goto out; 646 647 if (hdr->ih_type != image_type) { 648 if (!(image_type == IH_TYPE_KERNEL && 649 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 650 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 651 image_type); 652 goto out; 653 } 654 } 655 656 /* TODO: Implement other image types. */ 657 switch (hdr->ih_type) { 658 case IH_TYPE_KERNEL_NOLOAD: 659 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 660 fprintf(stderr, "this image format (kernel_noload) cannot be " 661 "loaded on this machine type"); 662 goto out; 663 } 664 665 hdr->ih_load = *loadaddr + sizeof(*hdr); 666 hdr->ih_ep += hdr->ih_load; 667 /* fall through */ 668 case IH_TYPE_KERNEL: 669 address = hdr->ih_load; 670 if (translate_fn) { 671 address = translate_fn(translate_opaque, address); 672 } 673 if (loadaddr) { 674 *loadaddr = hdr->ih_load; 675 } 676 677 switch (hdr->ih_comp) { 678 case IH_COMP_NONE: 679 break; 680 case IH_COMP_GZIP: 681 do_uncompress = 1; 682 break; 683 default: 684 fprintf(stderr, 685 "Unable to load u-boot images with compression type %d\n", 686 hdr->ih_comp); 687 goto out; 688 } 689 690 if (ep) { 691 *ep = hdr->ih_ep; 692 } 693 694 /* TODO: Check CPU type. */ 695 if (is_linux) { 696 if (hdr->ih_os == IH_OS_LINUX) { 697 *is_linux = 1; 698 } else { 699 *is_linux = 0; 700 } 701 } 702 703 break; 704 case IH_TYPE_RAMDISK: 705 address = *loadaddr; 706 break; 707 default: 708 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 709 goto out; 710 } 711 712 data = g_malloc(hdr->ih_size); 713 714 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 715 fprintf(stderr, "Error reading file\n"); 716 goto out; 717 } 718 719 if (do_uncompress) { 720 uint8_t *compressed_data; 721 size_t max_bytes; 722 ssize_t bytes; 723 724 compressed_data = data; 725 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 726 data = g_malloc(max_bytes); 727 728 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 729 g_free(compressed_data); 730 if (bytes < 0) { 731 fprintf(stderr, "Unable to decompress gzipped image!\n"); 732 goto out; 733 } 734 hdr->ih_size = bytes; 735 } 736 737 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 738 739 ret = hdr->ih_size; 740 741 out: 742 g_free(data); 743 close(fd); 744 return ret; 745 } 746 747 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 748 int *is_linux, 749 uint64_t (*translate_fn)(void *, uint64_t), 750 void *translate_opaque) 751 { 752 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 753 translate_fn, translate_opaque, NULL); 754 } 755 756 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 757 int *is_linux, 758 uint64_t (*translate_fn)(void *, uint64_t), 759 void *translate_opaque, AddressSpace *as) 760 { 761 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 762 translate_fn, translate_opaque, as); 763 } 764 765 /* Load a ramdisk. */ 766 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 767 { 768 return load_ramdisk_as(filename, addr, max_sz, NULL); 769 } 770 771 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 772 AddressSpace *as) 773 { 774 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 775 NULL, NULL, as); 776 } 777 778 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 779 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 780 uint8_t **buffer) 781 { 782 uint8_t *compressed_data = NULL; 783 uint8_t *data = NULL; 784 gsize len; 785 ssize_t bytes; 786 int ret = -1; 787 788 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 789 NULL)) { 790 goto out; 791 } 792 793 /* Is it a gzip-compressed file? */ 794 if (len < 2 || 795 compressed_data[0] != 0x1f || 796 compressed_data[1] != 0x8b) { 797 goto out; 798 } 799 800 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 801 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 802 } 803 804 data = g_malloc(max_sz); 805 bytes = gunzip(data, max_sz, compressed_data, len); 806 if (bytes < 0) { 807 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 808 filename); 809 goto out; 810 } 811 812 /* trim to actual size and return to caller */ 813 *buffer = g_realloc(data, bytes); 814 ret = bytes; 815 /* ownership has been transferred to caller */ 816 data = NULL; 817 818 out: 819 g_free(compressed_data); 820 g_free(data); 821 return ret; 822 } 823 824 /* Load a gzip-compressed kernel. */ 825 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 826 { 827 int bytes; 828 uint8_t *data; 829 830 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 831 if (bytes != -1) { 832 rom_add_blob_fixed(filename, data, bytes, addr); 833 g_free(data); 834 } 835 return bytes; 836 } 837 838 /* 839 * Functions for reboot-persistent memory regions. 840 * - used for vga bios and option roms. 841 * - also linux kernel (-kernel / -initrd). 842 */ 843 844 typedef struct Rom Rom; 845 846 struct Rom { 847 char *name; 848 char *path; 849 850 /* datasize is the amount of memory allocated in "data". If datasize is less 851 * than romsize, it means that the area from datasize to romsize is filled 852 * with zeros. 853 */ 854 size_t romsize; 855 size_t datasize; 856 857 uint8_t *data; 858 MemoryRegion *mr; 859 AddressSpace *as; 860 int isrom; 861 char *fw_dir; 862 char *fw_file; 863 GMappedFile *mapped_file; 864 865 bool committed; 866 867 hwaddr addr; 868 QTAILQ_ENTRY(Rom) next; 869 }; 870 871 static FWCfgState *fw_cfg; 872 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 873 874 /* 875 * rom->data can be heap-allocated or memory-mapped (e.g. when added with 876 * rom_add_elf_program()) 877 */ 878 static void rom_free_data(Rom *rom) 879 { 880 if (rom->mapped_file) { 881 g_mapped_file_unref(rom->mapped_file); 882 rom->mapped_file = NULL; 883 } else { 884 g_free(rom->data); 885 } 886 887 rom->data = NULL; 888 } 889 890 static void rom_free(Rom *rom) 891 { 892 rom_free_data(rom); 893 g_free(rom->path); 894 g_free(rom->name); 895 g_free(rom->fw_dir); 896 g_free(rom->fw_file); 897 g_free(rom); 898 } 899 900 static inline bool rom_order_compare(Rom *rom, Rom *item) 901 { 902 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 903 (rom->as == item->as && rom->addr >= item->addr); 904 } 905 906 static void rom_insert(Rom *rom) 907 { 908 Rom *item; 909 910 if (roms_loaded) { 911 hw_error ("ROM images must be loaded at startup\n"); 912 } 913 914 /* The user didn't specify an address space, this is the default */ 915 if (!rom->as) { 916 rom->as = &address_space_memory; 917 } 918 919 rom->committed = false; 920 921 /* List is ordered by load address in the same address space */ 922 QTAILQ_FOREACH(item, &roms, next) { 923 if (rom_order_compare(rom, item)) { 924 continue; 925 } 926 QTAILQ_INSERT_BEFORE(item, rom, next); 927 return; 928 } 929 QTAILQ_INSERT_TAIL(&roms, rom, next); 930 } 931 932 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 933 { 934 if (fw_cfg) { 935 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 936 } 937 } 938 939 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 940 { 941 void *data; 942 943 rom->mr = g_malloc(sizeof(*rom->mr)); 944 memory_region_init_resizeable_ram(rom->mr, owner, name, 945 rom->datasize, rom->romsize, 946 fw_cfg_resized, 947 &error_fatal); 948 memory_region_set_readonly(rom->mr, ro); 949 vmstate_register_ram_global(rom->mr); 950 951 data = memory_region_get_ram_ptr(rom->mr); 952 memcpy(data, rom->data, rom->datasize); 953 954 return data; 955 } 956 957 int rom_add_file(const char *file, const char *fw_dir, 958 hwaddr addr, int32_t bootindex, 959 bool option_rom, MemoryRegion *mr, 960 AddressSpace *as) 961 { 962 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 963 Rom *rom; 964 int rc, fd = -1; 965 char devpath[100]; 966 967 if (as && mr) { 968 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 969 "not valid when loading a rom\n"); 970 /* We haven't allocated anything so we don't need any cleanup */ 971 return -1; 972 } 973 974 rom = g_malloc0(sizeof(*rom)); 975 rom->name = g_strdup(file); 976 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 977 rom->as = as; 978 if (rom->path == NULL) { 979 rom->path = g_strdup(file); 980 } 981 982 fd = open(rom->path, O_RDONLY | O_BINARY); 983 if (fd == -1) { 984 fprintf(stderr, "Could not open option rom '%s': %s\n", 985 rom->path, strerror(errno)); 986 goto err; 987 } 988 989 if (fw_dir) { 990 rom->fw_dir = g_strdup(fw_dir); 991 rom->fw_file = g_strdup(file); 992 } 993 rom->addr = addr; 994 rom->romsize = lseek(fd, 0, SEEK_END); 995 if (rom->romsize == -1) { 996 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 997 rom->name, strerror(errno)); 998 goto err; 999 } 1000 1001 rom->datasize = rom->romsize; 1002 rom->data = g_malloc0(rom->datasize); 1003 lseek(fd, 0, SEEK_SET); 1004 rc = read(fd, rom->data, rom->datasize); 1005 if (rc != rom->datasize) { 1006 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 1007 rom->name, rc, rom->datasize); 1008 goto err; 1009 } 1010 close(fd); 1011 rom_insert(rom); 1012 if (rom->fw_file && fw_cfg) { 1013 const char *basename; 1014 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 1015 void *data; 1016 1017 basename = strrchr(rom->fw_file, '/'); 1018 if (basename) { 1019 basename++; 1020 } else { 1021 basename = rom->fw_file; 1022 } 1023 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 1024 basename); 1025 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1026 1027 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 1028 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 1029 } else { 1030 data = rom->data; 1031 } 1032 1033 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 1034 } else { 1035 if (mr) { 1036 rom->mr = mr; 1037 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 1038 } else { 1039 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 1040 } 1041 } 1042 1043 add_boot_device_path(bootindex, NULL, devpath); 1044 return 0; 1045 1046 err: 1047 if (fd != -1) 1048 close(fd); 1049 1050 rom_free(rom); 1051 return -1; 1052 } 1053 1054 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1055 size_t max_len, hwaddr addr, const char *fw_file_name, 1056 FWCfgCallback fw_callback, void *callback_opaque, 1057 AddressSpace *as, bool read_only) 1058 { 1059 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1060 Rom *rom; 1061 MemoryRegion *mr = NULL; 1062 1063 rom = g_malloc0(sizeof(*rom)); 1064 rom->name = g_strdup(name); 1065 rom->as = as; 1066 rom->addr = addr; 1067 rom->romsize = max_len ? max_len : len; 1068 rom->datasize = len; 1069 g_assert(rom->romsize >= rom->datasize); 1070 rom->data = g_malloc0(rom->datasize); 1071 memcpy(rom->data, blob, len); 1072 rom_insert(rom); 1073 if (fw_file_name && fw_cfg) { 1074 char devpath[100]; 1075 void *data; 1076 1077 if (read_only) { 1078 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1079 } else { 1080 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1081 } 1082 1083 if (mc->rom_file_has_mr) { 1084 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1085 mr = rom->mr; 1086 } else { 1087 data = rom->data; 1088 } 1089 1090 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1091 fw_callback, NULL, callback_opaque, 1092 data, rom->datasize, read_only); 1093 } 1094 return mr; 1095 } 1096 1097 /* This function is specific for elf program because we don't need to allocate 1098 * all the rom. We just allocate the first part and the rest is just zeros. This 1099 * is why romsize and datasize are different. Also, this function takes its own 1100 * reference to "mapped_file", so we don't have to allocate and copy the buffer. 1101 */ 1102 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, 1103 size_t datasize, size_t romsize, hwaddr addr, 1104 AddressSpace *as) 1105 { 1106 Rom *rom; 1107 1108 rom = g_malloc0(sizeof(*rom)); 1109 rom->name = g_strdup(name); 1110 rom->addr = addr; 1111 rom->datasize = datasize; 1112 rom->romsize = romsize; 1113 rom->data = data; 1114 rom->as = as; 1115 1116 if (mapped_file && data) { 1117 g_mapped_file_ref(mapped_file); 1118 rom->mapped_file = mapped_file; 1119 } 1120 1121 rom_insert(rom); 1122 return 0; 1123 } 1124 1125 int rom_add_vga(const char *file) 1126 { 1127 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1128 } 1129 1130 int rom_add_option(const char *file, int32_t bootindex) 1131 { 1132 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1133 } 1134 1135 static void rom_reset(void *unused) 1136 { 1137 Rom *rom; 1138 1139 QTAILQ_FOREACH(rom, &roms, next) { 1140 if (rom->fw_file) { 1141 continue; 1142 } 1143 /* 1144 * We don't need to fill in the RAM with ROM data because we'll fill 1145 * the data in during the next incoming migration in all cases. Note 1146 * that some of those RAMs can actually be modified by the guest. 1147 */ 1148 if (runstate_check(RUN_STATE_INMIGRATE)) { 1149 if (rom->data && rom->isrom) { 1150 /* 1151 * Free it so that a rom_reset after migration doesn't 1152 * overwrite a potentially modified 'rom'. 1153 */ 1154 rom_free_data(rom); 1155 } 1156 continue; 1157 } 1158 1159 if (rom->data == NULL) { 1160 continue; 1161 } 1162 if (rom->mr) { 1163 void *host = memory_region_get_ram_ptr(rom->mr); 1164 memcpy(host, rom->data, rom->datasize); 1165 } else { 1166 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1167 rom->data, rom->datasize); 1168 } 1169 if (rom->isrom) { 1170 /* rom needs to be written only once */ 1171 rom_free_data(rom); 1172 } 1173 /* 1174 * The rom loader is really on the same level as firmware in the guest 1175 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1176 * that the instruction cache for that new region is clear, so that the 1177 * CPU definitely fetches its instructions from the just written data. 1178 */ 1179 cpu_flush_icache_range(rom->addr, rom->datasize); 1180 1181 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom); 1182 } 1183 } 1184 1185 /* Return true if two consecutive ROMs in the ROM list overlap */ 1186 static bool roms_overlap(Rom *last_rom, Rom *this_rom) 1187 { 1188 if (!last_rom) { 1189 return false; 1190 } 1191 return last_rom->as == this_rom->as && 1192 last_rom->addr + last_rom->romsize > this_rom->addr; 1193 } 1194 1195 static const char *rom_as_name(Rom *rom) 1196 { 1197 const char *name = rom->as ? rom->as->name : NULL; 1198 return name ?: "anonymous"; 1199 } 1200 1201 static void rom_print_overlap_error_header(void) 1202 { 1203 error_report("Some ROM regions are overlapping"); 1204 error_printf( 1205 "These ROM regions might have been loaded by " 1206 "direct user request or by default.\n" 1207 "They could be BIOS/firmware images, a guest kernel, " 1208 "initrd or some other file loaded into guest memory.\n" 1209 "Check whether you intended to load all this guest code, and " 1210 "whether it has been built to load to the correct addresses.\n"); 1211 } 1212 1213 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom) 1214 { 1215 error_printf( 1216 "\nThe following two regions overlap (in the %s address space):\n", 1217 rom_as_name(rom)); 1218 error_printf( 1219 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n", 1220 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize); 1221 error_printf( 1222 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n", 1223 rom->name, rom->addr, rom->addr + rom->romsize); 1224 } 1225 1226 int rom_check_and_register_reset(void) 1227 { 1228 MemoryRegionSection section; 1229 Rom *rom, *last_rom = NULL; 1230 bool found_overlap = false; 1231 1232 QTAILQ_FOREACH(rom, &roms, next) { 1233 if (rom->fw_file) { 1234 continue; 1235 } 1236 if (!rom->mr) { 1237 if (roms_overlap(last_rom, rom)) { 1238 if (!found_overlap) { 1239 found_overlap = true; 1240 rom_print_overlap_error_header(); 1241 } 1242 rom_print_one_overlap_error(last_rom, rom); 1243 /* Keep going through the list so we report all overlaps */ 1244 } 1245 last_rom = rom; 1246 } 1247 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1248 rom->addr, 1); 1249 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1250 memory_region_unref(section.mr); 1251 } 1252 if (found_overlap) { 1253 return -1; 1254 } 1255 1256 qemu_register_reset(rom_reset, NULL); 1257 roms_loaded = 1; 1258 return 0; 1259 } 1260 1261 void rom_set_fw(FWCfgState *f) 1262 { 1263 fw_cfg = f; 1264 } 1265 1266 void rom_set_order_override(int order) 1267 { 1268 if (!fw_cfg) 1269 return; 1270 fw_cfg_set_order_override(fw_cfg, order); 1271 } 1272 1273 void rom_reset_order_override(void) 1274 { 1275 if (!fw_cfg) 1276 return; 1277 fw_cfg_reset_order_override(fw_cfg); 1278 } 1279 1280 void rom_transaction_begin(void) 1281 { 1282 Rom *rom; 1283 1284 /* Ignore ROMs added without the transaction API */ 1285 QTAILQ_FOREACH(rom, &roms, next) { 1286 rom->committed = true; 1287 } 1288 } 1289 1290 void rom_transaction_end(bool commit) 1291 { 1292 Rom *rom; 1293 Rom *tmp; 1294 1295 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1296 if (rom->committed) { 1297 continue; 1298 } 1299 if (commit) { 1300 rom->committed = true; 1301 } else { 1302 QTAILQ_REMOVE(&roms, rom, next); 1303 rom_free(rom); 1304 } 1305 } 1306 } 1307 1308 static Rom *find_rom(hwaddr addr, size_t size) 1309 { 1310 Rom *rom; 1311 1312 QTAILQ_FOREACH(rom, &roms, next) { 1313 if (rom->fw_file) { 1314 continue; 1315 } 1316 if (rom->mr) { 1317 continue; 1318 } 1319 if (rom->addr > addr) { 1320 continue; 1321 } 1322 if (rom->addr + rom->romsize < addr + size) { 1323 continue; 1324 } 1325 return rom; 1326 } 1327 return NULL; 1328 } 1329 1330 /* 1331 * Copies memory from registered ROMs to dest. Any memory that is contained in 1332 * a ROM between addr and addr + size is copied. Note that this can involve 1333 * multiple ROMs, which need not start at addr and need not end at addr + size. 1334 */ 1335 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1336 { 1337 hwaddr end = addr + size; 1338 uint8_t *s, *d = dest; 1339 size_t l = 0; 1340 Rom *rom; 1341 1342 QTAILQ_FOREACH(rom, &roms, next) { 1343 if (rom->fw_file) { 1344 continue; 1345 } 1346 if (rom->mr) { 1347 continue; 1348 } 1349 if (rom->addr + rom->romsize < addr) { 1350 continue; 1351 } 1352 if (rom->addr > end || rom->addr < addr) { 1353 break; 1354 } 1355 1356 d = dest + (rom->addr - addr); 1357 s = rom->data; 1358 l = rom->datasize; 1359 1360 if ((d + l) > (dest + size)) { 1361 l = dest - d; 1362 } 1363 1364 if (l > 0) { 1365 memcpy(d, s, l); 1366 } 1367 1368 if (rom->romsize > rom->datasize) { 1369 /* If datasize is less than romsize, it means that we didn't 1370 * allocate all the ROM because the trailing data are only zeros. 1371 */ 1372 1373 d += l; 1374 l = rom->romsize - rom->datasize; 1375 1376 if ((d + l) > (dest + size)) { 1377 /* Rom size doesn't fit in the destination area. Adjust to avoid 1378 * overflow. 1379 */ 1380 l = dest - d; 1381 } 1382 1383 if (l > 0) { 1384 memset(d, 0x0, l); 1385 } 1386 } 1387 } 1388 1389 return (d + l) - dest; 1390 } 1391 1392 void *rom_ptr(hwaddr addr, size_t size) 1393 { 1394 Rom *rom; 1395 1396 rom = find_rom(addr, size); 1397 if (!rom || !rom->data) 1398 return NULL; 1399 return rom->data + (addr - rom->addr); 1400 } 1401 1402 typedef struct FindRomCBData { 1403 size_t size; /* Amount of data we want from ROM, in bytes */ 1404 MemoryRegion *mr; /* MR at the unaliased guest addr */ 1405 hwaddr xlat; /* Offset of addr within mr */ 1406 void *rom; /* Output: rom data pointer, if found */ 1407 } FindRomCBData; 1408 1409 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr, 1410 hwaddr offset_in_region, void *opaque) 1411 { 1412 FindRomCBData *cbdata = opaque; 1413 hwaddr alias_addr; 1414 1415 if (mr != cbdata->mr) { 1416 return false; 1417 } 1418 1419 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region; 1420 cbdata->rom = rom_ptr(alias_addr, cbdata->size); 1421 if (!cbdata->rom) { 1422 return false; 1423 } 1424 /* Found a match, stop iterating */ 1425 return true; 1426 } 1427 1428 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size) 1429 { 1430 /* 1431 * Find any ROM data for the given guest address range. If there 1432 * is a ROM blob then return a pointer to the host memory 1433 * corresponding to 'addr'; otherwise return NULL. 1434 * 1435 * We look not only for ROM blobs that were loaded directly to 1436 * addr, but also for ROM blobs that were loaded to aliases of 1437 * that memory at other addresses within the AddressSpace. 1438 * 1439 * Note that we do not check @as against the 'as' member in the 1440 * 'struct Rom' returned by rom_ptr(). The Rom::as is the 1441 * AddressSpace which the rom blob should be written to, whereas 1442 * our @as argument is the AddressSpace which we are (effectively) 1443 * reading from, and the same underlying RAM will often be visible 1444 * in multiple AddressSpaces. (A common example is a ROM blob 1445 * written to the 'system' address space but then read back via a 1446 * CPU's cpu->as pointer.) This does mean we might potentially 1447 * return a false-positive match if a ROM blob was loaded into an 1448 * AS which is entirely separate and distinct from the one we're 1449 * querying, but this issue exists also for rom_ptr() and hasn't 1450 * caused any problems in practice. 1451 */ 1452 FlatView *fv; 1453 void *rom; 1454 hwaddr len_unused; 1455 FindRomCBData cbdata = {}; 1456 1457 /* Easy case: there's data at the actual address */ 1458 rom = rom_ptr(addr, size); 1459 if (rom) { 1460 return rom; 1461 } 1462 1463 RCU_READ_LOCK_GUARD(); 1464 1465 fv = address_space_to_flatview(as); 1466 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused, 1467 false, MEMTXATTRS_UNSPECIFIED); 1468 if (!cbdata.mr) { 1469 /* Nothing at this address, so there can't be any aliasing */ 1470 return NULL; 1471 } 1472 cbdata.size = size; 1473 flatview_for_each_range(fv, find_rom_cb, &cbdata); 1474 return cbdata.rom; 1475 } 1476 1477 void hmp_info_roms(Monitor *mon, const QDict *qdict) 1478 { 1479 Rom *rom; 1480 1481 QTAILQ_FOREACH(rom, &roms, next) { 1482 if (rom->mr) { 1483 monitor_printf(mon, "%s" 1484 " size=0x%06zx name=\"%s\"\n", 1485 memory_region_name(rom->mr), 1486 rom->romsize, 1487 rom->name); 1488 } else if (!rom->fw_file) { 1489 monitor_printf(mon, "addr=" TARGET_FMT_plx 1490 " size=0x%06zx mem=%s name=\"%s\"\n", 1491 rom->addr, rom->romsize, 1492 rom->isrom ? "rom" : "ram", 1493 rom->name); 1494 } else { 1495 monitor_printf(mon, "fw=%s/%s" 1496 " size=0x%06zx name=\"%s\"\n", 1497 rom->fw_dir, 1498 rom->fw_file, 1499 rom->romsize, 1500 rom->name); 1501 } 1502 } 1503 } 1504 1505 typedef enum HexRecord HexRecord; 1506 enum HexRecord { 1507 DATA_RECORD = 0, 1508 EOF_RECORD, 1509 EXT_SEG_ADDR_RECORD, 1510 START_SEG_ADDR_RECORD, 1511 EXT_LINEAR_ADDR_RECORD, 1512 START_LINEAR_ADDR_RECORD, 1513 }; 1514 1515 /* Each record contains a 16-bit address which is combined with the upper 16 1516 * bits of the implicit "next address" to form a 32-bit address. 1517 */ 1518 #define NEXT_ADDR_MASK 0xffff0000 1519 1520 #define DATA_FIELD_MAX_LEN 0xff 1521 #define LEN_EXCEPT_DATA 0x5 1522 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1523 * sizeof(checksum) */ 1524 typedef struct { 1525 uint8_t byte_count; 1526 uint16_t address; 1527 uint8_t record_type; 1528 uint8_t data[DATA_FIELD_MAX_LEN]; 1529 uint8_t checksum; 1530 } HexLine; 1531 1532 /* return 0 or -1 if error */ 1533 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1534 uint32_t *index, const bool in_process) 1535 { 1536 /* +-------+---------------+-------+---------------------+--------+ 1537 * | byte | |record | | | 1538 * | count | address | type | data |checksum| 1539 * +-------+---------------+-------+---------------------+--------+ 1540 * ^ ^ ^ ^ ^ ^ 1541 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1542 */ 1543 uint8_t value = 0; 1544 uint32_t idx = *index; 1545 /* ignore space */ 1546 if (g_ascii_isspace(c)) { 1547 return true; 1548 } 1549 if (!g_ascii_isxdigit(c) || !in_process) { 1550 return false; 1551 } 1552 value = g_ascii_xdigit_value(c); 1553 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1554 if (idx < 2) { 1555 line->byte_count |= value; 1556 } else if (2 <= idx && idx < 6) { 1557 line->address <<= 4; 1558 line->address += g_ascii_xdigit_value(c); 1559 } else if (6 <= idx && idx < 8) { 1560 line->record_type |= value; 1561 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1562 line->data[(idx - 8) >> 1] |= value; 1563 } else if (8 + 2 * line->byte_count <= idx && 1564 idx < 10 + 2 * line->byte_count) { 1565 line->checksum |= value; 1566 } else { 1567 return false; 1568 } 1569 *our_checksum += value; 1570 ++(*index); 1571 return true; 1572 } 1573 1574 typedef struct { 1575 const char *filename; 1576 HexLine line; 1577 uint8_t *bin_buf; 1578 hwaddr *start_addr; 1579 int total_size; 1580 uint32_t next_address_to_write; 1581 uint32_t current_address; 1582 uint32_t current_rom_index; 1583 uint32_t rom_start_address; 1584 AddressSpace *as; 1585 bool complete; 1586 } HexParser; 1587 1588 /* return size or -1 if error */ 1589 static int handle_record_type(HexParser *parser) 1590 { 1591 HexLine *line = &(parser->line); 1592 switch (line->record_type) { 1593 case DATA_RECORD: 1594 parser->current_address = 1595 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1596 /* verify this is a contiguous block of memory */ 1597 if (parser->current_address != parser->next_address_to_write) { 1598 if (parser->current_rom_index != 0) { 1599 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1600 parser->current_rom_index, 1601 parser->rom_start_address, parser->as); 1602 } 1603 parser->rom_start_address = parser->current_address; 1604 parser->current_rom_index = 0; 1605 } 1606 1607 /* copy from line buffer to output bin_buf */ 1608 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1609 line->byte_count); 1610 parser->current_rom_index += line->byte_count; 1611 parser->total_size += line->byte_count; 1612 /* save next address to write */ 1613 parser->next_address_to_write = 1614 parser->current_address + line->byte_count; 1615 break; 1616 1617 case EOF_RECORD: 1618 if (parser->current_rom_index != 0) { 1619 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1620 parser->current_rom_index, 1621 parser->rom_start_address, parser->as); 1622 } 1623 parser->complete = true; 1624 return parser->total_size; 1625 case EXT_SEG_ADDR_RECORD: 1626 case EXT_LINEAR_ADDR_RECORD: 1627 if (line->byte_count != 2 && line->address != 0) { 1628 return -1; 1629 } 1630 1631 if (parser->current_rom_index != 0) { 1632 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1633 parser->current_rom_index, 1634 parser->rom_start_address, parser->as); 1635 } 1636 1637 /* save next address to write, 1638 * in case of non-contiguous block of memory */ 1639 parser->next_address_to_write = (line->data[0] << 12) | 1640 (line->data[1] << 4); 1641 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1642 parser->next_address_to_write <<= 12; 1643 } 1644 1645 parser->rom_start_address = parser->next_address_to_write; 1646 parser->current_rom_index = 0; 1647 break; 1648 1649 case START_SEG_ADDR_RECORD: 1650 if (line->byte_count != 4 && line->address != 0) { 1651 return -1; 1652 } 1653 1654 /* x86 16-bit CS:IP segmented addressing */ 1655 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1656 ((line->data[2] << 8) | line->data[3]); 1657 break; 1658 1659 case START_LINEAR_ADDR_RECORD: 1660 if (line->byte_count != 4 && line->address != 0) { 1661 return -1; 1662 } 1663 1664 *(parser->start_addr) = ldl_be_p(line->data); 1665 break; 1666 1667 default: 1668 return -1; 1669 } 1670 1671 return parser->total_size; 1672 } 1673 1674 /* return size or -1 if error */ 1675 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1676 size_t hex_blob_size, AddressSpace *as) 1677 { 1678 bool in_process = false; /* avoid re-enter and 1679 * check whether record begin with ':' */ 1680 uint8_t *end = hex_blob + hex_blob_size; 1681 uint8_t our_checksum = 0; 1682 uint32_t record_index = 0; 1683 HexParser parser = { 1684 .filename = filename, 1685 .bin_buf = g_malloc(hex_blob_size), 1686 .start_addr = addr, 1687 .as = as, 1688 .complete = false 1689 }; 1690 1691 rom_transaction_begin(); 1692 1693 for (; hex_blob < end && !parser.complete; ++hex_blob) { 1694 switch (*hex_blob) { 1695 case '\r': 1696 case '\n': 1697 if (!in_process) { 1698 break; 1699 } 1700 1701 in_process = false; 1702 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1703 record_index || 1704 our_checksum != 0) { 1705 parser.total_size = -1; 1706 goto out; 1707 } 1708 1709 if (handle_record_type(&parser) == -1) { 1710 parser.total_size = -1; 1711 goto out; 1712 } 1713 break; 1714 1715 /* start of a new record. */ 1716 case ':': 1717 memset(&parser.line, 0, sizeof(HexLine)); 1718 in_process = true; 1719 record_index = 0; 1720 break; 1721 1722 /* decoding lines */ 1723 default: 1724 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1725 &record_index, in_process)) { 1726 parser.total_size = -1; 1727 goto out; 1728 } 1729 break; 1730 } 1731 } 1732 1733 out: 1734 g_free(parser.bin_buf); 1735 rom_transaction_end(parser.total_size != -1); 1736 return parser.total_size; 1737 } 1738 1739 /* return size or -1 if error */ 1740 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as) 1741 { 1742 gsize hex_blob_size; 1743 gchar *hex_blob; 1744 int total_size = 0; 1745 1746 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1747 return -1; 1748 } 1749 1750 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1751 hex_blob_size, as); 1752 1753 g_free(hex_blob); 1754 return total_size; 1755 } 1756