xref: /openbmc/qemu/hw/core/loader.c (revision 30b6852c)
1 /*
2  * QEMU Executable loader
3  *
4  * Copyright (c) 2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  *
24  * Gunzip functionality in this file is derived from u-boot:
25  *
26  * (C) Copyright 2008 Semihalf
27  *
28  * (C) Copyright 2000-2005
29  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
30  *
31  * This program is free software; you can redistribute it and/or
32  * modify it under the terms of the GNU General Public License as
33  * published by the Free Software Foundation; either version 2 of
34  * the License, or (at your option) any later version.
35  *
36  * This program is distributed in the hope that it will be useful,
37  * but WITHOUT ANY WARRANTY; without even the implied warranty of
38  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
39  * GNU General Public License for more details.
40  *
41  * You should have received a copy of the GNU General Public License along
42  * with this program; if not, see <http://www.gnu.org/licenses/>.
43  */
44 
45 #include "qemu/osdep.h"
46 #include "qemu-common.h"
47 #include "qemu/datadir.h"
48 #include "qapi/error.h"
49 #include "trace.h"
50 #include "hw/hw.h"
51 #include "disas/disas.h"
52 #include "migration/vmstate.h"
53 #include "monitor/monitor.h"
54 #include "sysemu/reset.h"
55 #include "sysemu/sysemu.h"
56 #include "uboot_image.h"
57 #include "hw/loader.h"
58 #include "hw/nvram/fw_cfg.h"
59 #include "exec/memory.h"
60 #include "hw/boards.h"
61 #include "qemu/cutils.h"
62 #include "sysemu/runstate.h"
63 
64 #include <zlib.h>
65 
66 static int roms_loaded;
67 
68 /* return the size or -1 if error */
69 int64_t get_image_size(const char *filename)
70 {
71     int fd;
72     int64_t size;
73     fd = open(filename, O_RDONLY | O_BINARY);
74     if (fd < 0)
75         return -1;
76     size = lseek(fd, 0, SEEK_END);
77     close(fd);
78     return size;
79 }
80 
81 /* return the size or -1 if error */
82 ssize_t load_image_size(const char *filename, void *addr, size_t size)
83 {
84     int fd;
85     ssize_t actsize, l = 0;
86 
87     fd = open(filename, O_RDONLY | O_BINARY);
88     if (fd < 0) {
89         return -1;
90     }
91 
92     while ((actsize = read(fd, addr + l, size - l)) > 0) {
93         l += actsize;
94     }
95 
96     close(fd);
97 
98     return actsize < 0 ? -1 : l;
99 }
100 
101 /* read()-like version */
102 ssize_t read_targphys(const char *name,
103                       int fd, hwaddr dst_addr, size_t nbytes)
104 {
105     uint8_t *buf;
106     ssize_t did;
107 
108     buf = g_malloc(nbytes);
109     did = read(fd, buf, nbytes);
110     if (did > 0)
111         rom_add_blob_fixed("read", buf, did, dst_addr);
112     g_free(buf);
113     return did;
114 }
115 
116 int load_image_targphys(const char *filename,
117                         hwaddr addr, uint64_t max_sz)
118 {
119     return load_image_targphys_as(filename, addr, max_sz, NULL);
120 }
121 
122 /* return the size or -1 if error */
123 int load_image_targphys_as(const char *filename,
124                            hwaddr addr, uint64_t max_sz, AddressSpace *as)
125 {
126     int size;
127 
128     size = get_image_size(filename);
129     if (size < 0 || size > max_sz) {
130         return -1;
131     }
132     if (size > 0) {
133         if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
134             return -1;
135         }
136     }
137     return size;
138 }
139 
140 int load_image_mr(const char *filename, MemoryRegion *mr)
141 {
142     int size;
143 
144     if (!memory_access_is_direct(mr, false)) {
145         /* Can only load an image into RAM or ROM */
146         return -1;
147     }
148 
149     size = get_image_size(filename);
150 
151     if (size < 0 || size > memory_region_size(mr)) {
152         return -1;
153     }
154     if (size > 0) {
155         if (rom_add_file_mr(filename, mr, -1) < 0) {
156             return -1;
157         }
158     }
159     return size;
160 }
161 
162 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
163                       const char *source)
164 {
165     const char *nulp;
166     char *ptr;
167 
168     if (buf_size <= 0) return;
169     nulp = memchr(source, 0, buf_size);
170     if (nulp) {
171         rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
172     } else {
173         rom_add_blob_fixed(name, source, buf_size, dest);
174         ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
175         *ptr = 0;
176     }
177 }
178 
179 /* A.OUT loader */
180 
181 struct exec
182 {
183   uint32_t a_info;   /* Use macros N_MAGIC, etc for access */
184   uint32_t a_text;   /* length of text, in bytes */
185   uint32_t a_data;   /* length of data, in bytes */
186   uint32_t a_bss;    /* length of uninitialized data area, in bytes */
187   uint32_t a_syms;   /* length of symbol table data in file, in bytes */
188   uint32_t a_entry;  /* start address */
189   uint32_t a_trsize; /* length of relocation info for text, in bytes */
190   uint32_t a_drsize; /* length of relocation info for data, in bytes */
191 };
192 
193 static void bswap_ahdr(struct exec *e)
194 {
195     bswap32s(&e->a_info);
196     bswap32s(&e->a_text);
197     bswap32s(&e->a_data);
198     bswap32s(&e->a_bss);
199     bswap32s(&e->a_syms);
200     bswap32s(&e->a_entry);
201     bswap32s(&e->a_trsize);
202     bswap32s(&e->a_drsize);
203 }
204 
205 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
206 #define OMAGIC 0407
207 #define NMAGIC 0410
208 #define ZMAGIC 0413
209 #define QMAGIC 0314
210 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
211 #define N_TXTOFF(x)							\
212     (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) :	\
213      (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
214 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
215 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
216 
217 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
218 
219 #define N_DATADDR(x, target_page_size) \
220     (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
221      : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
222 
223 
224 int load_aout(const char *filename, hwaddr addr, int max_sz,
225               int bswap_needed, hwaddr target_page_size)
226 {
227     int fd;
228     ssize_t size, ret;
229     struct exec e;
230     uint32_t magic;
231 
232     fd = open(filename, O_RDONLY | O_BINARY);
233     if (fd < 0)
234         return -1;
235 
236     size = read(fd, &e, sizeof(e));
237     if (size < 0)
238         goto fail;
239 
240     if (bswap_needed) {
241         bswap_ahdr(&e);
242     }
243 
244     magic = N_MAGIC(e);
245     switch (magic) {
246     case ZMAGIC:
247     case QMAGIC:
248     case OMAGIC:
249         if (e.a_text + e.a_data > max_sz)
250             goto fail;
251         lseek(fd, N_TXTOFF(e), SEEK_SET);
252         size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
253         if (size < 0)
254             goto fail;
255         break;
256     case NMAGIC:
257         if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
258             goto fail;
259         lseek(fd, N_TXTOFF(e), SEEK_SET);
260         size = read_targphys(filename, fd, addr, e.a_text);
261         if (size < 0)
262             goto fail;
263         ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
264                             e.a_data);
265         if (ret < 0)
266             goto fail;
267         size += ret;
268         break;
269     default:
270         goto fail;
271     }
272     close(fd);
273     return size;
274  fail:
275     close(fd);
276     return -1;
277 }
278 
279 /* ELF loader */
280 
281 static void *load_at(int fd, off_t offset, size_t size)
282 {
283     void *ptr;
284     if (lseek(fd, offset, SEEK_SET) < 0)
285         return NULL;
286     ptr = g_malloc(size);
287     if (read(fd, ptr, size) != size) {
288         g_free(ptr);
289         return NULL;
290     }
291     return ptr;
292 }
293 
294 #ifdef ELF_CLASS
295 #undef ELF_CLASS
296 #endif
297 
298 #define ELF_CLASS   ELFCLASS32
299 #include "elf.h"
300 
301 #define SZ		32
302 #define elf_word        uint32_t
303 #define elf_sword        int32_t
304 #define bswapSZs	bswap32s
305 #include "hw/elf_ops.h"
306 
307 #undef elfhdr
308 #undef elf_phdr
309 #undef elf_shdr
310 #undef elf_sym
311 #undef elf_rela
312 #undef elf_note
313 #undef elf_word
314 #undef elf_sword
315 #undef bswapSZs
316 #undef SZ
317 #define elfhdr		elf64_hdr
318 #define elf_phdr	elf64_phdr
319 #define elf_note	elf64_note
320 #define elf_shdr	elf64_shdr
321 #define elf_sym		elf64_sym
322 #define elf_rela        elf64_rela
323 #define elf_word        uint64_t
324 #define elf_sword        int64_t
325 #define bswapSZs	bswap64s
326 #define SZ		64
327 #include "hw/elf_ops.h"
328 
329 const char *load_elf_strerror(int error)
330 {
331     switch (error) {
332     case 0:
333         return "No error";
334     case ELF_LOAD_FAILED:
335         return "Failed to load ELF";
336     case ELF_LOAD_NOT_ELF:
337         return "The image is not ELF";
338     case ELF_LOAD_WRONG_ARCH:
339         return "The image is from incompatible architecture";
340     case ELF_LOAD_WRONG_ENDIAN:
341         return "The image has incorrect endianness";
342     case ELF_LOAD_TOO_BIG:
343         return "The image segments are too big to load";
344     default:
345         return "Unknown error";
346     }
347 }
348 
349 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
350 {
351     int fd;
352     uint8_t e_ident_local[EI_NIDENT];
353     uint8_t *e_ident;
354     size_t hdr_size, off;
355     bool is64l;
356 
357     if (!hdr) {
358         hdr = e_ident_local;
359     }
360     e_ident = hdr;
361 
362     fd = open(filename, O_RDONLY | O_BINARY);
363     if (fd < 0) {
364         error_setg_errno(errp, errno, "Failed to open file: %s", filename);
365         return;
366     }
367     if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
368         error_setg_errno(errp, errno, "Failed to read file: %s", filename);
369         goto fail;
370     }
371     if (e_ident[0] != ELFMAG0 ||
372         e_ident[1] != ELFMAG1 ||
373         e_ident[2] != ELFMAG2 ||
374         e_ident[3] != ELFMAG3) {
375         error_setg(errp, "Bad ELF magic");
376         goto fail;
377     }
378 
379     is64l = e_ident[EI_CLASS] == ELFCLASS64;
380     hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
381     if (is64) {
382         *is64 = is64l;
383     }
384 
385     off = EI_NIDENT;
386     while (hdr != e_ident_local && off < hdr_size) {
387         size_t br = read(fd, hdr + off, hdr_size - off);
388         switch (br) {
389         case 0:
390             error_setg(errp, "File too short: %s", filename);
391             goto fail;
392         case -1:
393             error_setg_errno(errp, errno, "Failed to read file: %s",
394                              filename);
395             goto fail;
396         }
397         off += br;
398     }
399 
400 fail:
401     close(fd);
402 }
403 
404 /* return < 0 if error, otherwise the number of bytes loaded in memory */
405 int load_elf(const char *filename,
406              uint64_t (*elf_note_fn)(void *, void *, bool),
407              uint64_t (*translate_fn)(void *, uint64_t),
408              void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
409              uint64_t *highaddr, uint32_t *pflags, int big_endian,
410              int elf_machine, int clear_lsb, int data_swab)
411 {
412     return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
413                        pentry, lowaddr, highaddr, pflags, big_endian,
414                        elf_machine, clear_lsb, data_swab, NULL);
415 }
416 
417 /* return < 0 if error, otherwise the number of bytes loaded in memory */
418 int load_elf_as(const char *filename,
419                 uint64_t (*elf_note_fn)(void *, void *, bool),
420                 uint64_t (*translate_fn)(void *, uint64_t),
421                 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
422                 uint64_t *highaddr, uint32_t *pflags, int big_endian,
423                 int elf_machine, int clear_lsb, int data_swab, AddressSpace *as)
424 {
425     return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
426                         pentry, lowaddr, highaddr, pflags, big_endian,
427                         elf_machine, clear_lsb, data_swab, as, true);
428 }
429 
430 /* return < 0 if error, otherwise the number of bytes loaded in memory */
431 int load_elf_ram(const char *filename,
432                  uint64_t (*elf_note_fn)(void *, void *, bool),
433                  uint64_t (*translate_fn)(void *, uint64_t),
434                  void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
435                  uint64_t *highaddr, uint32_t *pflags, int big_endian,
436                  int elf_machine, int clear_lsb, int data_swab,
437                  AddressSpace *as, bool load_rom)
438 {
439     return load_elf_ram_sym(filename, elf_note_fn,
440                             translate_fn, translate_opaque,
441                             pentry, lowaddr, highaddr, pflags, big_endian,
442                             elf_machine, clear_lsb, data_swab, as,
443                             load_rom, NULL);
444 }
445 
446 /* return < 0 if error, otherwise the number of bytes loaded in memory */
447 int load_elf_ram_sym(const char *filename,
448                      uint64_t (*elf_note_fn)(void *, void *, bool),
449                      uint64_t (*translate_fn)(void *, uint64_t),
450                      void *translate_opaque, uint64_t *pentry,
451                      uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags,
452                      int big_endian, int elf_machine,
453                      int clear_lsb, int data_swab,
454                      AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
455 {
456     int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED;
457     uint8_t e_ident[EI_NIDENT];
458 
459     fd = open(filename, O_RDONLY | O_BINARY);
460     if (fd < 0) {
461         perror(filename);
462         return -1;
463     }
464     if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
465         goto fail;
466     if (e_ident[0] != ELFMAG0 ||
467         e_ident[1] != ELFMAG1 ||
468         e_ident[2] != ELFMAG2 ||
469         e_ident[3] != ELFMAG3) {
470         ret = ELF_LOAD_NOT_ELF;
471         goto fail;
472     }
473 #ifdef HOST_WORDS_BIGENDIAN
474     data_order = ELFDATA2MSB;
475 #else
476     data_order = ELFDATA2LSB;
477 #endif
478     must_swab = data_order != e_ident[EI_DATA];
479     if (big_endian) {
480         target_data_order = ELFDATA2MSB;
481     } else {
482         target_data_order = ELFDATA2LSB;
483     }
484 
485     if (target_data_order != e_ident[EI_DATA]) {
486         ret = ELF_LOAD_WRONG_ENDIAN;
487         goto fail;
488     }
489 
490     lseek(fd, 0, SEEK_SET);
491     if (e_ident[EI_CLASS] == ELFCLASS64) {
492         ret = load_elf64(filename, fd, elf_note_fn,
493                          translate_fn, translate_opaque, must_swab,
494                          pentry, lowaddr, highaddr, pflags, elf_machine,
495                          clear_lsb, data_swab, as, load_rom, sym_cb);
496     } else {
497         ret = load_elf32(filename, fd, elf_note_fn,
498                          translate_fn, translate_opaque, must_swab,
499                          pentry, lowaddr, highaddr, pflags, elf_machine,
500                          clear_lsb, data_swab, as, load_rom, sym_cb);
501     }
502 
503  fail:
504     close(fd);
505     return ret;
506 }
507 
508 static void bswap_uboot_header(uboot_image_header_t *hdr)
509 {
510 #ifndef HOST_WORDS_BIGENDIAN
511     bswap32s(&hdr->ih_magic);
512     bswap32s(&hdr->ih_hcrc);
513     bswap32s(&hdr->ih_time);
514     bswap32s(&hdr->ih_size);
515     bswap32s(&hdr->ih_load);
516     bswap32s(&hdr->ih_ep);
517     bswap32s(&hdr->ih_dcrc);
518 #endif
519 }
520 
521 
522 #define ZALLOC_ALIGNMENT	16
523 
524 static void *zalloc(void *x, unsigned items, unsigned size)
525 {
526     void *p;
527 
528     size *= items;
529     size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
530 
531     p = g_malloc(size);
532 
533     return (p);
534 }
535 
536 static void zfree(void *x, void *addr)
537 {
538     g_free(addr);
539 }
540 
541 
542 #define HEAD_CRC	2
543 #define EXTRA_FIELD	4
544 #define ORIG_NAME	8
545 #define COMMENT		0x10
546 #define RESERVED	0xe0
547 
548 #define DEFLATED	8
549 
550 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
551 {
552     z_stream s;
553     ssize_t dstbytes;
554     int r, i, flags;
555 
556     /* skip header */
557     i = 10;
558     if (srclen < 4) {
559         goto toosmall;
560     }
561     flags = src[3];
562     if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
563         puts ("Error: Bad gzipped data\n");
564         return -1;
565     }
566     if ((flags & EXTRA_FIELD) != 0) {
567         if (srclen < 12) {
568             goto toosmall;
569         }
570         i = 12 + src[10] + (src[11] << 8);
571     }
572     if ((flags & ORIG_NAME) != 0) {
573         while (i < srclen && src[i++] != 0) {
574             /* do nothing */
575         }
576     }
577     if ((flags & COMMENT) != 0) {
578         while (i < srclen && src[i++] != 0) {
579             /* do nothing */
580         }
581     }
582     if ((flags & HEAD_CRC) != 0) {
583         i += 2;
584     }
585     if (i >= srclen) {
586         goto toosmall;
587     }
588 
589     s.zalloc = zalloc;
590     s.zfree = zfree;
591 
592     r = inflateInit2(&s, -MAX_WBITS);
593     if (r != Z_OK) {
594         printf ("Error: inflateInit2() returned %d\n", r);
595         return (-1);
596     }
597     s.next_in = src + i;
598     s.avail_in = srclen - i;
599     s.next_out = dst;
600     s.avail_out = dstlen;
601     r = inflate(&s, Z_FINISH);
602     if (r != Z_OK && r != Z_STREAM_END) {
603         printf ("Error: inflate() returned %d\n", r);
604         return -1;
605     }
606     dstbytes = s.next_out - (unsigned char *) dst;
607     inflateEnd(&s);
608 
609     return dstbytes;
610 
611 toosmall:
612     puts("Error: gunzip out of data in header\n");
613     return -1;
614 }
615 
616 /* Load a U-Boot image.  */
617 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
618                             int *is_linux, uint8_t image_type,
619                             uint64_t (*translate_fn)(void *, uint64_t),
620                             void *translate_opaque, AddressSpace *as)
621 {
622     int fd;
623     int size;
624     hwaddr address;
625     uboot_image_header_t h;
626     uboot_image_header_t *hdr = &h;
627     uint8_t *data = NULL;
628     int ret = -1;
629     int do_uncompress = 0;
630 
631     fd = open(filename, O_RDONLY | O_BINARY);
632     if (fd < 0)
633         return -1;
634 
635     size = read(fd, hdr, sizeof(uboot_image_header_t));
636     if (size < sizeof(uboot_image_header_t)) {
637         goto out;
638     }
639 
640     bswap_uboot_header(hdr);
641 
642     if (hdr->ih_magic != IH_MAGIC)
643         goto out;
644 
645     if (hdr->ih_type != image_type) {
646         if (!(image_type == IH_TYPE_KERNEL &&
647             hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
648             fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
649                     image_type);
650             goto out;
651         }
652     }
653 
654     /* TODO: Implement other image types.  */
655     switch (hdr->ih_type) {
656     case IH_TYPE_KERNEL_NOLOAD:
657         if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
658             fprintf(stderr, "this image format (kernel_noload) cannot be "
659                     "loaded on this machine type");
660             goto out;
661         }
662 
663         hdr->ih_load = *loadaddr + sizeof(*hdr);
664         hdr->ih_ep += hdr->ih_load;
665         /* fall through */
666     case IH_TYPE_KERNEL:
667         address = hdr->ih_load;
668         if (translate_fn) {
669             address = translate_fn(translate_opaque, address);
670         }
671         if (loadaddr) {
672             *loadaddr = hdr->ih_load;
673         }
674 
675         switch (hdr->ih_comp) {
676         case IH_COMP_NONE:
677             break;
678         case IH_COMP_GZIP:
679             do_uncompress = 1;
680             break;
681         default:
682             fprintf(stderr,
683                     "Unable to load u-boot images with compression type %d\n",
684                     hdr->ih_comp);
685             goto out;
686         }
687 
688         if (ep) {
689             *ep = hdr->ih_ep;
690         }
691 
692         /* TODO: Check CPU type.  */
693         if (is_linux) {
694             if (hdr->ih_os == IH_OS_LINUX) {
695                 *is_linux = 1;
696             } else {
697                 *is_linux = 0;
698             }
699         }
700 
701         break;
702     case IH_TYPE_RAMDISK:
703         address = *loadaddr;
704         break;
705     default:
706         fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
707         goto out;
708     }
709 
710     data = g_malloc(hdr->ih_size);
711 
712     if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
713         fprintf(stderr, "Error reading file\n");
714         goto out;
715     }
716 
717     if (do_uncompress) {
718         uint8_t *compressed_data;
719         size_t max_bytes;
720         ssize_t bytes;
721 
722         compressed_data = data;
723         max_bytes = UBOOT_MAX_GUNZIP_BYTES;
724         data = g_malloc(max_bytes);
725 
726         bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
727         g_free(compressed_data);
728         if (bytes < 0) {
729             fprintf(stderr, "Unable to decompress gzipped image!\n");
730             goto out;
731         }
732         hdr->ih_size = bytes;
733     }
734 
735     rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
736 
737     ret = hdr->ih_size;
738 
739 out:
740     g_free(data);
741     close(fd);
742     return ret;
743 }
744 
745 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
746                 int *is_linux,
747                 uint64_t (*translate_fn)(void *, uint64_t),
748                 void *translate_opaque)
749 {
750     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
751                             translate_fn, translate_opaque, NULL);
752 }
753 
754 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
755                    int *is_linux,
756                    uint64_t (*translate_fn)(void *, uint64_t),
757                    void *translate_opaque, AddressSpace *as)
758 {
759     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
760                             translate_fn, translate_opaque, as);
761 }
762 
763 /* Load a ramdisk.  */
764 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
765 {
766     return load_ramdisk_as(filename, addr, max_sz, NULL);
767 }
768 
769 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
770                     AddressSpace *as)
771 {
772     return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
773                             NULL, NULL, as);
774 }
775 
776 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
777 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
778                               uint8_t **buffer)
779 {
780     uint8_t *compressed_data = NULL;
781     uint8_t *data = NULL;
782     gsize len;
783     ssize_t bytes;
784     int ret = -1;
785 
786     if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
787                              NULL)) {
788         goto out;
789     }
790 
791     /* Is it a gzip-compressed file? */
792     if (len < 2 ||
793         compressed_data[0] != 0x1f ||
794         compressed_data[1] != 0x8b) {
795         goto out;
796     }
797 
798     if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
799         max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
800     }
801 
802     data = g_malloc(max_sz);
803     bytes = gunzip(data, max_sz, compressed_data, len);
804     if (bytes < 0) {
805         fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
806                 filename);
807         goto out;
808     }
809 
810     /* trim to actual size and return to caller */
811     *buffer = g_realloc(data, bytes);
812     ret = bytes;
813     /* ownership has been transferred to caller */
814     data = NULL;
815 
816  out:
817     g_free(compressed_data);
818     g_free(data);
819     return ret;
820 }
821 
822 /* Load a gzip-compressed kernel. */
823 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
824 {
825     int bytes;
826     uint8_t *data;
827 
828     bytes = load_image_gzipped_buffer(filename, max_sz, &data);
829     if (bytes != -1) {
830         rom_add_blob_fixed(filename, data, bytes, addr);
831         g_free(data);
832     }
833     return bytes;
834 }
835 
836 /*
837  * Functions for reboot-persistent memory regions.
838  *  - used for vga bios and option roms.
839  *  - also linux kernel (-kernel / -initrd).
840  */
841 
842 typedef struct Rom Rom;
843 
844 struct Rom {
845     char *name;
846     char *path;
847 
848     /* datasize is the amount of memory allocated in "data". If datasize is less
849      * than romsize, it means that the area from datasize to romsize is filled
850      * with zeros.
851      */
852     size_t romsize;
853     size_t datasize;
854 
855     uint8_t *data;
856     MemoryRegion *mr;
857     AddressSpace *as;
858     int isrom;
859     char *fw_dir;
860     char *fw_file;
861     GMappedFile *mapped_file;
862 
863     bool committed;
864 
865     hwaddr addr;
866     QTAILQ_ENTRY(Rom) next;
867 };
868 
869 static FWCfgState *fw_cfg;
870 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
871 
872 /*
873  * rom->data can be heap-allocated or memory-mapped (e.g. when added with
874  * rom_add_elf_program())
875  */
876 static void rom_free_data(Rom *rom)
877 {
878     if (rom->mapped_file) {
879         g_mapped_file_unref(rom->mapped_file);
880         rom->mapped_file = NULL;
881     } else {
882         g_free(rom->data);
883     }
884 
885     rom->data = NULL;
886 }
887 
888 static void rom_free(Rom *rom)
889 {
890     rom_free_data(rom);
891     g_free(rom->path);
892     g_free(rom->name);
893     g_free(rom->fw_dir);
894     g_free(rom->fw_file);
895     g_free(rom);
896 }
897 
898 static inline bool rom_order_compare(Rom *rom, Rom *item)
899 {
900     return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
901            (rom->as == item->as && rom->addr >= item->addr);
902 }
903 
904 static void rom_insert(Rom *rom)
905 {
906     Rom *item;
907 
908     if (roms_loaded) {
909         hw_error ("ROM images must be loaded at startup\n");
910     }
911 
912     /* The user didn't specify an address space, this is the default */
913     if (!rom->as) {
914         rom->as = &address_space_memory;
915     }
916 
917     rom->committed = false;
918 
919     /* List is ordered by load address in the same address space */
920     QTAILQ_FOREACH(item, &roms, next) {
921         if (rom_order_compare(rom, item)) {
922             continue;
923         }
924         QTAILQ_INSERT_BEFORE(item, rom, next);
925         return;
926     }
927     QTAILQ_INSERT_TAIL(&roms, rom, next);
928 }
929 
930 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
931 {
932     if (fw_cfg) {
933         fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
934     }
935 }
936 
937 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
938 {
939     void *data;
940 
941     rom->mr = g_malloc(sizeof(*rom->mr));
942     memory_region_init_resizeable_ram(rom->mr, owner, name,
943                                       rom->datasize, rom->romsize,
944                                       fw_cfg_resized,
945                                       &error_fatal);
946     memory_region_set_readonly(rom->mr, ro);
947     vmstate_register_ram_global(rom->mr);
948 
949     data = memory_region_get_ram_ptr(rom->mr);
950     memcpy(data, rom->data, rom->datasize);
951 
952     return data;
953 }
954 
955 int rom_add_file(const char *file, const char *fw_dir,
956                  hwaddr addr, int32_t bootindex,
957                  bool option_rom, MemoryRegion *mr,
958                  AddressSpace *as)
959 {
960     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
961     Rom *rom;
962     int rc, fd = -1;
963     char devpath[100];
964 
965     if (as && mr) {
966         fprintf(stderr, "Specifying an Address Space and Memory Region is " \
967                 "not valid when loading a rom\n");
968         /* We haven't allocated anything so we don't need any cleanup */
969         return -1;
970     }
971 
972     rom = g_malloc0(sizeof(*rom));
973     rom->name = g_strdup(file);
974     rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
975     rom->as = as;
976     if (rom->path == NULL) {
977         rom->path = g_strdup(file);
978     }
979 
980     fd = open(rom->path, O_RDONLY | O_BINARY);
981     if (fd == -1) {
982         fprintf(stderr, "Could not open option rom '%s': %s\n",
983                 rom->path, strerror(errno));
984         goto err;
985     }
986 
987     if (fw_dir) {
988         rom->fw_dir  = g_strdup(fw_dir);
989         rom->fw_file = g_strdup(file);
990     }
991     rom->addr     = addr;
992     rom->romsize  = lseek(fd, 0, SEEK_END);
993     if (rom->romsize == -1) {
994         fprintf(stderr, "rom: file %-20s: get size error: %s\n",
995                 rom->name, strerror(errno));
996         goto err;
997     }
998 
999     rom->datasize = rom->romsize;
1000     rom->data     = g_malloc0(rom->datasize);
1001     lseek(fd, 0, SEEK_SET);
1002     rc = read(fd, rom->data, rom->datasize);
1003     if (rc != rom->datasize) {
1004         fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
1005                 rom->name, rc, rom->datasize);
1006         goto err;
1007     }
1008     close(fd);
1009     rom_insert(rom);
1010     if (rom->fw_file && fw_cfg) {
1011         const char *basename;
1012         char fw_file_name[FW_CFG_MAX_FILE_PATH];
1013         void *data;
1014 
1015         basename = strrchr(rom->fw_file, '/');
1016         if (basename) {
1017             basename++;
1018         } else {
1019             basename = rom->fw_file;
1020         }
1021         snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
1022                  basename);
1023         snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1024 
1025         if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
1026             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
1027         } else {
1028             data = rom->data;
1029         }
1030 
1031         fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
1032     } else {
1033         if (mr) {
1034             rom->mr = mr;
1035             snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1036         } else {
1037             snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
1038         }
1039     }
1040 
1041     add_boot_device_path(bootindex, NULL, devpath);
1042     return 0;
1043 
1044 err:
1045     if (fd != -1)
1046         close(fd);
1047 
1048     rom_free(rom);
1049     return -1;
1050 }
1051 
1052 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1053                    size_t max_len, hwaddr addr, const char *fw_file_name,
1054                    FWCfgCallback fw_callback, void *callback_opaque,
1055                    AddressSpace *as, bool read_only)
1056 {
1057     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1058     Rom *rom;
1059     MemoryRegion *mr = NULL;
1060 
1061     rom           = g_malloc0(sizeof(*rom));
1062     rom->name     = g_strdup(name);
1063     rom->as       = as;
1064     rom->addr     = addr;
1065     rom->romsize  = max_len ? max_len : len;
1066     rom->datasize = len;
1067     g_assert(rom->romsize >= rom->datasize);
1068     rom->data     = g_malloc0(rom->datasize);
1069     memcpy(rom->data, blob, len);
1070     rom_insert(rom);
1071     if (fw_file_name && fw_cfg) {
1072         char devpath[100];
1073         void *data;
1074 
1075         if (read_only) {
1076             snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1077         } else {
1078             snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1079         }
1080 
1081         if (mc->rom_file_has_mr) {
1082             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1083             mr = rom->mr;
1084         } else {
1085             data = rom->data;
1086         }
1087 
1088         fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1089                                  fw_callback, NULL, callback_opaque,
1090                                  data, rom->datasize, read_only);
1091     }
1092     return mr;
1093 }
1094 
1095 /* This function is specific for elf program because we don't need to allocate
1096  * all the rom. We just allocate the first part and the rest is just zeros. This
1097  * is why romsize and datasize are different. Also, this function takes its own
1098  * reference to "mapped_file", so we don't have to allocate and copy the buffer.
1099  */
1100 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
1101                         size_t datasize, size_t romsize, hwaddr addr,
1102                         AddressSpace *as)
1103 {
1104     Rom *rom;
1105 
1106     rom           = g_malloc0(sizeof(*rom));
1107     rom->name     = g_strdup(name);
1108     rom->addr     = addr;
1109     rom->datasize = datasize;
1110     rom->romsize  = romsize;
1111     rom->data     = data;
1112     rom->as       = as;
1113 
1114     if (mapped_file && data) {
1115         g_mapped_file_ref(mapped_file);
1116         rom->mapped_file = mapped_file;
1117     }
1118 
1119     rom_insert(rom);
1120     return 0;
1121 }
1122 
1123 int rom_add_vga(const char *file)
1124 {
1125     return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1126 }
1127 
1128 int rom_add_option(const char *file, int32_t bootindex)
1129 {
1130     return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1131 }
1132 
1133 static void rom_reset(void *unused)
1134 {
1135     Rom *rom;
1136 
1137     QTAILQ_FOREACH(rom, &roms, next) {
1138         if (rom->fw_file) {
1139             continue;
1140         }
1141         /*
1142          * We don't need to fill in the RAM with ROM data because we'll fill
1143          * the data in during the next incoming migration in all cases.  Note
1144          * that some of those RAMs can actually be modified by the guest.
1145          */
1146         if (runstate_check(RUN_STATE_INMIGRATE)) {
1147             if (rom->data && rom->isrom) {
1148                 /*
1149                  * Free it so that a rom_reset after migration doesn't
1150                  * overwrite a potentially modified 'rom'.
1151                  */
1152                 rom_free_data(rom);
1153             }
1154             continue;
1155         }
1156 
1157         if (rom->data == NULL) {
1158             continue;
1159         }
1160         if (rom->mr) {
1161             void *host = memory_region_get_ram_ptr(rom->mr);
1162             memcpy(host, rom->data, rom->datasize);
1163         } else {
1164             address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1165                                     rom->data, rom->datasize);
1166         }
1167         if (rom->isrom) {
1168             /* rom needs to be written only once */
1169             rom_free_data(rom);
1170         }
1171         /*
1172          * The rom loader is really on the same level as firmware in the guest
1173          * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1174          * that the instruction cache for that new region is clear, so that the
1175          * CPU definitely fetches its instructions from the just written data.
1176          */
1177         cpu_flush_icache_range(rom->addr, rom->datasize);
1178 
1179         trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom);
1180     }
1181 }
1182 
1183 /* Return true if two consecutive ROMs in the ROM list overlap */
1184 static bool roms_overlap(Rom *last_rom, Rom *this_rom)
1185 {
1186     if (!last_rom) {
1187         return false;
1188     }
1189     return last_rom->as == this_rom->as &&
1190         last_rom->addr + last_rom->romsize > this_rom->addr;
1191 }
1192 
1193 static const char *rom_as_name(Rom *rom)
1194 {
1195     const char *name = rom->as ? rom->as->name : NULL;
1196     return name ?: "anonymous";
1197 }
1198 
1199 static void rom_print_overlap_error_header(void)
1200 {
1201     error_report("Some ROM regions are overlapping");
1202     error_printf(
1203         "These ROM regions might have been loaded by "
1204         "direct user request or by default.\n"
1205         "They could be BIOS/firmware images, a guest kernel, "
1206         "initrd or some other file loaded into guest memory.\n"
1207         "Check whether you intended to load all this guest code, and "
1208         "whether it has been built to load to the correct addresses.\n");
1209 }
1210 
1211 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom)
1212 {
1213     error_printf(
1214         "\nThe following two regions overlap (in the %s address space):\n",
1215         rom_as_name(rom));
1216     error_printf(
1217         "  %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1218         last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize);
1219     error_printf(
1220         "  %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1221         rom->name, rom->addr, rom->addr + rom->romsize);
1222 }
1223 
1224 int rom_check_and_register_reset(void)
1225 {
1226     MemoryRegionSection section;
1227     Rom *rom, *last_rom = NULL;
1228     bool found_overlap = false;
1229 
1230     QTAILQ_FOREACH(rom, &roms, next) {
1231         if (rom->fw_file) {
1232             continue;
1233         }
1234         if (!rom->mr) {
1235             if (roms_overlap(last_rom, rom)) {
1236                 if (!found_overlap) {
1237                     found_overlap = true;
1238                     rom_print_overlap_error_header();
1239                 }
1240                 rom_print_one_overlap_error(last_rom, rom);
1241                 /* Keep going through the list so we report all overlaps */
1242             }
1243             last_rom = rom;
1244         }
1245         section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1246                                      rom->addr, 1);
1247         rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1248         memory_region_unref(section.mr);
1249     }
1250     if (found_overlap) {
1251         return -1;
1252     }
1253 
1254     qemu_register_reset(rom_reset, NULL);
1255     roms_loaded = 1;
1256     return 0;
1257 }
1258 
1259 void rom_set_fw(FWCfgState *f)
1260 {
1261     fw_cfg = f;
1262 }
1263 
1264 void rom_set_order_override(int order)
1265 {
1266     if (!fw_cfg)
1267         return;
1268     fw_cfg_set_order_override(fw_cfg, order);
1269 }
1270 
1271 void rom_reset_order_override(void)
1272 {
1273     if (!fw_cfg)
1274         return;
1275     fw_cfg_reset_order_override(fw_cfg);
1276 }
1277 
1278 void rom_transaction_begin(void)
1279 {
1280     Rom *rom;
1281 
1282     /* Ignore ROMs added without the transaction API */
1283     QTAILQ_FOREACH(rom, &roms, next) {
1284         rom->committed = true;
1285     }
1286 }
1287 
1288 void rom_transaction_end(bool commit)
1289 {
1290     Rom *rom;
1291     Rom *tmp;
1292 
1293     QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1294         if (rom->committed) {
1295             continue;
1296         }
1297         if (commit) {
1298             rom->committed = true;
1299         } else {
1300             QTAILQ_REMOVE(&roms, rom, next);
1301             rom_free(rom);
1302         }
1303     }
1304 }
1305 
1306 static Rom *find_rom(hwaddr addr, size_t size)
1307 {
1308     Rom *rom;
1309 
1310     QTAILQ_FOREACH(rom, &roms, next) {
1311         if (rom->fw_file) {
1312             continue;
1313         }
1314         if (rom->mr) {
1315             continue;
1316         }
1317         if (rom->addr > addr) {
1318             continue;
1319         }
1320         if (rom->addr + rom->romsize < addr + size) {
1321             continue;
1322         }
1323         return rom;
1324     }
1325     return NULL;
1326 }
1327 
1328 /*
1329  * Copies memory from registered ROMs to dest. Any memory that is contained in
1330  * a ROM between addr and addr + size is copied. Note that this can involve
1331  * multiple ROMs, which need not start at addr and need not end at addr + size.
1332  */
1333 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1334 {
1335     hwaddr end = addr + size;
1336     uint8_t *s, *d = dest;
1337     size_t l = 0;
1338     Rom *rom;
1339 
1340     QTAILQ_FOREACH(rom, &roms, next) {
1341         if (rom->fw_file) {
1342             continue;
1343         }
1344         if (rom->mr) {
1345             continue;
1346         }
1347         if (rom->addr + rom->romsize < addr) {
1348             continue;
1349         }
1350         if (rom->addr > end || rom->addr < addr) {
1351             break;
1352         }
1353 
1354         d = dest + (rom->addr - addr);
1355         s = rom->data;
1356         l = rom->datasize;
1357 
1358         if ((d + l) > (dest + size)) {
1359             l = dest - d;
1360         }
1361 
1362         if (l > 0) {
1363             memcpy(d, s, l);
1364         }
1365 
1366         if (rom->romsize > rom->datasize) {
1367             /* If datasize is less than romsize, it means that we didn't
1368              * allocate all the ROM because the trailing data are only zeros.
1369              */
1370 
1371             d += l;
1372             l = rom->romsize - rom->datasize;
1373 
1374             if ((d + l) > (dest + size)) {
1375                 /* Rom size doesn't fit in the destination area. Adjust to avoid
1376                  * overflow.
1377                  */
1378                 l = dest - d;
1379             }
1380 
1381             if (l > 0) {
1382                 memset(d, 0x0, l);
1383             }
1384         }
1385     }
1386 
1387     return (d + l) - dest;
1388 }
1389 
1390 void *rom_ptr(hwaddr addr, size_t size)
1391 {
1392     Rom *rom;
1393 
1394     rom = find_rom(addr, size);
1395     if (!rom || !rom->data)
1396         return NULL;
1397     return rom->data + (addr - rom->addr);
1398 }
1399 
1400 typedef struct FindRomCBData {
1401     size_t size; /* Amount of data we want from ROM, in bytes */
1402     MemoryRegion *mr; /* MR at the unaliased guest addr */
1403     hwaddr xlat; /* Offset of addr within mr */
1404     void *rom; /* Output: rom data pointer, if found */
1405 } FindRomCBData;
1406 
1407 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr,
1408                         hwaddr offset_in_region, void *opaque)
1409 {
1410     FindRomCBData *cbdata = opaque;
1411     hwaddr alias_addr;
1412 
1413     if (mr != cbdata->mr) {
1414         return false;
1415     }
1416 
1417     alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region;
1418     cbdata->rom = rom_ptr(alias_addr, cbdata->size);
1419     if (!cbdata->rom) {
1420         return false;
1421     }
1422     /* Found a match, stop iterating */
1423     return true;
1424 }
1425 
1426 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size)
1427 {
1428     /*
1429      * Find any ROM data for the given guest address range.  If there
1430      * is a ROM blob then return a pointer to the host memory
1431      * corresponding to 'addr'; otherwise return NULL.
1432      *
1433      * We look not only for ROM blobs that were loaded directly to
1434      * addr, but also for ROM blobs that were loaded to aliases of
1435      * that memory at other addresses within the AddressSpace.
1436      *
1437      * Note that we do not check @as against the 'as' member in the
1438      * 'struct Rom' returned by rom_ptr(). The Rom::as is the
1439      * AddressSpace which the rom blob should be written to, whereas
1440      * our @as argument is the AddressSpace which we are (effectively)
1441      * reading from, and the same underlying RAM will often be visible
1442      * in multiple AddressSpaces. (A common example is a ROM blob
1443      * written to the 'system' address space but then read back via a
1444      * CPU's cpu->as pointer.) This does mean we might potentially
1445      * return a false-positive match if a ROM blob was loaded into an
1446      * AS which is entirely separate and distinct from the one we're
1447      * querying, but this issue exists also for rom_ptr() and hasn't
1448      * caused any problems in practice.
1449      */
1450     FlatView *fv;
1451     void *rom;
1452     hwaddr len_unused;
1453     FindRomCBData cbdata = {};
1454 
1455     /* Easy case: there's data at the actual address */
1456     rom = rom_ptr(addr, size);
1457     if (rom) {
1458         return rom;
1459     }
1460 
1461     RCU_READ_LOCK_GUARD();
1462 
1463     fv = address_space_to_flatview(as);
1464     cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused,
1465                                    false, MEMTXATTRS_UNSPECIFIED);
1466     if (!cbdata.mr) {
1467         /* Nothing at this address, so there can't be any aliasing */
1468         return NULL;
1469     }
1470     cbdata.size = size;
1471     flatview_for_each_range(fv, find_rom_cb, &cbdata);
1472     return cbdata.rom;
1473 }
1474 
1475 void hmp_info_roms(Monitor *mon, const QDict *qdict)
1476 {
1477     Rom *rom;
1478 
1479     QTAILQ_FOREACH(rom, &roms, next) {
1480         if (rom->mr) {
1481             monitor_printf(mon, "%s"
1482                            " size=0x%06zx name=\"%s\"\n",
1483                            memory_region_name(rom->mr),
1484                            rom->romsize,
1485                            rom->name);
1486         } else if (!rom->fw_file) {
1487             monitor_printf(mon, "addr=" TARGET_FMT_plx
1488                            " size=0x%06zx mem=%s name=\"%s\"\n",
1489                            rom->addr, rom->romsize,
1490                            rom->isrom ? "rom" : "ram",
1491                            rom->name);
1492         } else {
1493             monitor_printf(mon, "fw=%s/%s"
1494                            " size=0x%06zx name=\"%s\"\n",
1495                            rom->fw_dir,
1496                            rom->fw_file,
1497                            rom->romsize,
1498                            rom->name);
1499         }
1500     }
1501 }
1502 
1503 typedef enum HexRecord HexRecord;
1504 enum HexRecord {
1505     DATA_RECORD = 0,
1506     EOF_RECORD,
1507     EXT_SEG_ADDR_RECORD,
1508     START_SEG_ADDR_RECORD,
1509     EXT_LINEAR_ADDR_RECORD,
1510     START_LINEAR_ADDR_RECORD,
1511 };
1512 
1513 /* Each record contains a 16-bit address which is combined with the upper 16
1514  * bits of the implicit "next address" to form a 32-bit address.
1515  */
1516 #define NEXT_ADDR_MASK 0xffff0000
1517 
1518 #define DATA_FIELD_MAX_LEN 0xff
1519 #define LEN_EXCEPT_DATA 0x5
1520 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1521  *       sizeof(checksum) */
1522 typedef struct {
1523     uint8_t byte_count;
1524     uint16_t address;
1525     uint8_t record_type;
1526     uint8_t data[DATA_FIELD_MAX_LEN];
1527     uint8_t checksum;
1528 } HexLine;
1529 
1530 /* return 0 or -1 if error */
1531 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1532                          uint32_t *index, const bool in_process)
1533 {
1534     /* +-------+---------------+-------+---------------------+--------+
1535      * | byte  |               |record |                     |        |
1536      * | count |    address    | type  |        data         |checksum|
1537      * +-------+---------------+-------+---------------------+--------+
1538      * ^       ^               ^       ^                     ^        ^
1539      * |1 byte |    2 bytes    |1 byte |     0-255 bytes     | 1 byte |
1540      */
1541     uint8_t value = 0;
1542     uint32_t idx = *index;
1543     /* ignore space */
1544     if (g_ascii_isspace(c)) {
1545         return true;
1546     }
1547     if (!g_ascii_isxdigit(c) || !in_process) {
1548         return false;
1549     }
1550     value = g_ascii_xdigit_value(c);
1551     value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1552     if (idx < 2) {
1553         line->byte_count |= value;
1554     } else if (2 <= idx && idx < 6) {
1555         line->address <<= 4;
1556         line->address += g_ascii_xdigit_value(c);
1557     } else if (6 <= idx && idx < 8) {
1558         line->record_type |= value;
1559     } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1560         line->data[(idx - 8) >> 1] |= value;
1561     } else if (8 + 2 * line->byte_count <= idx &&
1562                idx < 10 + 2 * line->byte_count) {
1563         line->checksum |= value;
1564     } else {
1565         return false;
1566     }
1567     *our_checksum += value;
1568     ++(*index);
1569     return true;
1570 }
1571 
1572 typedef struct {
1573     const char *filename;
1574     HexLine line;
1575     uint8_t *bin_buf;
1576     hwaddr *start_addr;
1577     int total_size;
1578     uint32_t next_address_to_write;
1579     uint32_t current_address;
1580     uint32_t current_rom_index;
1581     uint32_t rom_start_address;
1582     AddressSpace *as;
1583     bool complete;
1584 } HexParser;
1585 
1586 /* return size or -1 if error */
1587 static int handle_record_type(HexParser *parser)
1588 {
1589     HexLine *line = &(parser->line);
1590     switch (line->record_type) {
1591     case DATA_RECORD:
1592         parser->current_address =
1593             (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1594         /* verify this is a contiguous block of memory */
1595         if (parser->current_address != parser->next_address_to_write) {
1596             if (parser->current_rom_index != 0) {
1597                 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1598                                       parser->current_rom_index,
1599                                       parser->rom_start_address, parser->as);
1600             }
1601             parser->rom_start_address = parser->current_address;
1602             parser->current_rom_index = 0;
1603         }
1604 
1605         /* copy from line buffer to output bin_buf */
1606         memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1607                line->byte_count);
1608         parser->current_rom_index += line->byte_count;
1609         parser->total_size += line->byte_count;
1610         /* save next address to write */
1611         parser->next_address_to_write =
1612             parser->current_address + line->byte_count;
1613         break;
1614 
1615     case EOF_RECORD:
1616         if (parser->current_rom_index != 0) {
1617             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1618                                   parser->current_rom_index,
1619                                   parser->rom_start_address, parser->as);
1620         }
1621         parser->complete = true;
1622         return parser->total_size;
1623     case EXT_SEG_ADDR_RECORD:
1624     case EXT_LINEAR_ADDR_RECORD:
1625         if (line->byte_count != 2 && line->address != 0) {
1626             return -1;
1627         }
1628 
1629         if (parser->current_rom_index != 0) {
1630             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1631                                   parser->current_rom_index,
1632                                   parser->rom_start_address, parser->as);
1633         }
1634 
1635         /* save next address to write,
1636          * in case of non-contiguous block of memory */
1637         parser->next_address_to_write = (line->data[0] << 12) |
1638                                         (line->data[1] << 4);
1639         if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1640             parser->next_address_to_write <<= 12;
1641         }
1642 
1643         parser->rom_start_address = parser->next_address_to_write;
1644         parser->current_rom_index = 0;
1645         break;
1646 
1647     case START_SEG_ADDR_RECORD:
1648         if (line->byte_count != 4 && line->address != 0) {
1649             return -1;
1650         }
1651 
1652         /* x86 16-bit CS:IP segmented addressing */
1653         *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1654                                 ((line->data[2] << 8) | line->data[3]);
1655         break;
1656 
1657     case START_LINEAR_ADDR_RECORD:
1658         if (line->byte_count != 4 && line->address != 0) {
1659             return -1;
1660         }
1661 
1662         *(parser->start_addr) = ldl_be_p(line->data);
1663         break;
1664 
1665     default:
1666         return -1;
1667     }
1668 
1669     return parser->total_size;
1670 }
1671 
1672 /* return size or -1 if error */
1673 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1674                           size_t hex_blob_size, AddressSpace *as)
1675 {
1676     bool in_process = false; /* avoid re-enter and
1677                               * check whether record begin with ':' */
1678     uint8_t *end = hex_blob + hex_blob_size;
1679     uint8_t our_checksum = 0;
1680     uint32_t record_index = 0;
1681     HexParser parser = {
1682         .filename = filename,
1683         .bin_buf = g_malloc(hex_blob_size),
1684         .start_addr = addr,
1685         .as = as,
1686         .complete = false
1687     };
1688 
1689     rom_transaction_begin();
1690 
1691     for (; hex_blob < end && !parser.complete; ++hex_blob) {
1692         switch (*hex_blob) {
1693         case '\r':
1694         case '\n':
1695             if (!in_process) {
1696                 break;
1697             }
1698 
1699             in_process = false;
1700             if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1701                     record_index ||
1702                 our_checksum != 0) {
1703                 parser.total_size = -1;
1704                 goto out;
1705             }
1706 
1707             if (handle_record_type(&parser) == -1) {
1708                 parser.total_size = -1;
1709                 goto out;
1710             }
1711             break;
1712 
1713         /* start of a new record. */
1714         case ':':
1715             memset(&parser.line, 0, sizeof(HexLine));
1716             in_process = true;
1717             record_index = 0;
1718             break;
1719 
1720         /* decoding lines */
1721         default:
1722             if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1723                               &record_index, in_process)) {
1724                 parser.total_size = -1;
1725                 goto out;
1726             }
1727             break;
1728         }
1729     }
1730 
1731 out:
1732     g_free(parser.bin_buf);
1733     rom_transaction_end(parser.total_size != -1);
1734     return parser.total_size;
1735 }
1736 
1737 /* return size or -1 if error */
1738 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as)
1739 {
1740     gsize hex_blob_size;
1741     gchar *hex_blob;
1742     int total_size = 0;
1743 
1744     if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1745         return -1;
1746     }
1747 
1748     total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1749                                 hex_blob_size, as);
1750 
1751     g_free(hex_blob);
1752     return total_size;
1753 }
1754