1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qemu-common.h" 47 #include "qemu/datadir.h" 48 #include "qapi/error.h" 49 #include "trace.h" 50 #include "hw/hw.h" 51 #include "disas/disas.h" 52 #include "migration/vmstate.h" 53 #include "monitor/monitor.h" 54 #include "sysemu/reset.h" 55 #include "sysemu/sysemu.h" 56 #include "uboot_image.h" 57 #include "hw/loader.h" 58 #include "hw/nvram/fw_cfg.h" 59 #include "exec/memory.h" 60 #include "hw/boards.h" 61 #include "qemu/cutils.h" 62 #include "sysemu/runstate.h" 63 64 #include <zlib.h> 65 66 static int roms_loaded; 67 68 /* return the size or -1 if error */ 69 int64_t get_image_size(const char *filename) 70 { 71 int fd; 72 int64_t size; 73 fd = open(filename, O_RDONLY | O_BINARY); 74 if (fd < 0) 75 return -1; 76 size = lseek(fd, 0, SEEK_END); 77 close(fd); 78 return size; 79 } 80 81 /* return the size or -1 if error */ 82 ssize_t load_image_size(const char *filename, void *addr, size_t size) 83 { 84 int fd; 85 ssize_t actsize, l = 0; 86 87 fd = open(filename, O_RDONLY | O_BINARY); 88 if (fd < 0) { 89 return -1; 90 } 91 92 while ((actsize = read(fd, addr + l, size - l)) > 0) { 93 l += actsize; 94 } 95 96 close(fd); 97 98 return actsize < 0 ? -1 : l; 99 } 100 101 /* read()-like version */ 102 ssize_t read_targphys(const char *name, 103 int fd, hwaddr dst_addr, size_t nbytes) 104 { 105 uint8_t *buf; 106 ssize_t did; 107 108 buf = g_malloc(nbytes); 109 did = read(fd, buf, nbytes); 110 if (did > 0) 111 rom_add_blob_fixed("read", buf, did, dst_addr); 112 g_free(buf); 113 return did; 114 } 115 116 int load_image_targphys(const char *filename, 117 hwaddr addr, uint64_t max_sz) 118 { 119 return load_image_targphys_as(filename, addr, max_sz, NULL); 120 } 121 122 /* return the size or -1 if error */ 123 int load_image_targphys_as(const char *filename, 124 hwaddr addr, uint64_t max_sz, AddressSpace *as) 125 { 126 int size; 127 128 size = get_image_size(filename); 129 if (size < 0 || size > max_sz) { 130 return -1; 131 } 132 if (size > 0) { 133 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 134 return -1; 135 } 136 } 137 return size; 138 } 139 140 int load_image_mr(const char *filename, MemoryRegion *mr) 141 { 142 int size; 143 144 if (!memory_access_is_direct(mr, false)) { 145 /* Can only load an image into RAM or ROM */ 146 return -1; 147 } 148 149 size = get_image_size(filename); 150 151 if (size < 0 || size > memory_region_size(mr)) { 152 return -1; 153 } 154 if (size > 0) { 155 if (rom_add_file_mr(filename, mr, -1) < 0) { 156 return -1; 157 } 158 } 159 return size; 160 } 161 162 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 163 const char *source) 164 { 165 const char *nulp; 166 char *ptr; 167 168 if (buf_size <= 0) return; 169 nulp = memchr(source, 0, buf_size); 170 if (nulp) { 171 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 172 } else { 173 rom_add_blob_fixed(name, source, buf_size, dest); 174 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 175 *ptr = 0; 176 } 177 } 178 179 /* A.OUT loader */ 180 181 struct exec 182 { 183 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 184 uint32_t a_text; /* length of text, in bytes */ 185 uint32_t a_data; /* length of data, in bytes */ 186 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 187 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 188 uint32_t a_entry; /* start address */ 189 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 190 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 191 }; 192 193 static void bswap_ahdr(struct exec *e) 194 { 195 bswap32s(&e->a_info); 196 bswap32s(&e->a_text); 197 bswap32s(&e->a_data); 198 bswap32s(&e->a_bss); 199 bswap32s(&e->a_syms); 200 bswap32s(&e->a_entry); 201 bswap32s(&e->a_trsize); 202 bswap32s(&e->a_drsize); 203 } 204 205 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 206 #define OMAGIC 0407 207 #define NMAGIC 0410 208 #define ZMAGIC 0413 209 #define QMAGIC 0314 210 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 211 #define N_TXTOFF(x) \ 212 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 213 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 214 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 215 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 216 217 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 218 219 #define N_DATADDR(x, target_page_size) \ 220 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 221 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 222 223 224 int load_aout(const char *filename, hwaddr addr, int max_sz, 225 int bswap_needed, hwaddr target_page_size) 226 { 227 int fd; 228 ssize_t size, ret; 229 struct exec e; 230 uint32_t magic; 231 232 fd = open(filename, O_RDONLY | O_BINARY); 233 if (fd < 0) 234 return -1; 235 236 size = read(fd, &e, sizeof(e)); 237 if (size < 0) 238 goto fail; 239 240 if (bswap_needed) { 241 bswap_ahdr(&e); 242 } 243 244 magic = N_MAGIC(e); 245 switch (magic) { 246 case ZMAGIC: 247 case QMAGIC: 248 case OMAGIC: 249 if (e.a_text + e.a_data > max_sz) 250 goto fail; 251 lseek(fd, N_TXTOFF(e), SEEK_SET); 252 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 253 if (size < 0) 254 goto fail; 255 break; 256 case NMAGIC: 257 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 258 goto fail; 259 lseek(fd, N_TXTOFF(e), SEEK_SET); 260 size = read_targphys(filename, fd, addr, e.a_text); 261 if (size < 0) 262 goto fail; 263 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 264 e.a_data); 265 if (ret < 0) 266 goto fail; 267 size += ret; 268 break; 269 default: 270 goto fail; 271 } 272 close(fd); 273 return size; 274 fail: 275 close(fd); 276 return -1; 277 } 278 279 /* ELF loader */ 280 281 static void *load_at(int fd, off_t offset, size_t size) 282 { 283 void *ptr; 284 if (lseek(fd, offset, SEEK_SET) < 0) 285 return NULL; 286 ptr = g_malloc(size); 287 if (read(fd, ptr, size) != size) { 288 g_free(ptr); 289 return NULL; 290 } 291 return ptr; 292 } 293 294 #ifdef ELF_CLASS 295 #undef ELF_CLASS 296 #endif 297 298 #define ELF_CLASS ELFCLASS32 299 #include "elf.h" 300 301 #define SZ 32 302 #define elf_word uint32_t 303 #define elf_sword int32_t 304 #define bswapSZs bswap32s 305 #include "hw/elf_ops.h" 306 307 #undef elfhdr 308 #undef elf_phdr 309 #undef elf_shdr 310 #undef elf_sym 311 #undef elf_rela 312 #undef elf_note 313 #undef elf_word 314 #undef elf_sword 315 #undef bswapSZs 316 #undef SZ 317 #define elfhdr elf64_hdr 318 #define elf_phdr elf64_phdr 319 #define elf_note elf64_note 320 #define elf_shdr elf64_shdr 321 #define elf_sym elf64_sym 322 #define elf_rela elf64_rela 323 #define elf_word uint64_t 324 #define elf_sword int64_t 325 #define bswapSZs bswap64s 326 #define SZ 64 327 #include "hw/elf_ops.h" 328 329 const char *load_elf_strerror(int error) 330 { 331 switch (error) { 332 case 0: 333 return "No error"; 334 case ELF_LOAD_FAILED: 335 return "Failed to load ELF"; 336 case ELF_LOAD_NOT_ELF: 337 return "The image is not ELF"; 338 case ELF_LOAD_WRONG_ARCH: 339 return "The image is from incompatible architecture"; 340 case ELF_LOAD_WRONG_ENDIAN: 341 return "The image has incorrect endianness"; 342 case ELF_LOAD_TOO_BIG: 343 return "The image segments are too big to load"; 344 default: 345 return "Unknown error"; 346 } 347 } 348 349 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 350 { 351 int fd; 352 uint8_t e_ident_local[EI_NIDENT]; 353 uint8_t *e_ident; 354 size_t hdr_size, off; 355 bool is64l; 356 357 if (!hdr) { 358 hdr = e_ident_local; 359 } 360 e_ident = hdr; 361 362 fd = open(filename, O_RDONLY | O_BINARY); 363 if (fd < 0) { 364 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 365 return; 366 } 367 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 368 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 369 goto fail; 370 } 371 if (e_ident[0] != ELFMAG0 || 372 e_ident[1] != ELFMAG1 || 373 e_ident[2] != ELFMAG2 || 374 e_ident[3] != ELFMAG3) { 375 error_setg(errp, "Bad ELF magic"); 376 goto fail; 377 } 378 379 is64l = e_ident[EI_CLASS] == ELFCLASS64; 380 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 381 if (is64) { 382 *is64 = is64l; 383 } 384 385 off = EI_NIDENT; 386 while (hdr != e_ident_local && off < hdr_size) { 387 size_t br = read(fd, hdr + off, hdr_size - off); 388 switch (br) { 389 case 0: 390 error_setg(errp, "File too short: %s", filename); 391 goto fail; 392 case -1: 393 error_setg_errno(errp, errno, "Failed to read file: %s", 394 filename); 395 goto fail; 396 } 397 off += br; 398 } 399 400 fail: 401 close(fd); 402 } 403 404 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 405 int load_elf(const char *filename, 406 uint64_t (*elf_note_fn)(void *, void *, bool), 407 uint64_t (*translate_fn)(void *, uint64_t), 408 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 409 uint64_t *highaddr, uint32_t *pflags, int big_endian, 410 int elf_machine, int clear_lsb, int data_swab) 411 { 412 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 413 pentry, lowaddr, highaddr, pflags, big_endian, 414 elf_machine, clear_lsb, data_swab, NULL); 415 } 416 417 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 418 int load_elf_as(const char *filename, 419 uint64_t (*elf_note_fn)(void *, void *, bool), 420 uint64_t (*translate_fn)(void *, uint64_t), 421 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 422 uint64_t *highaddr, uint32_t *pflags, int big_endian, 423 int elf_machine, int clear_lsb, int data_swab, AddressSpace *as) 424 { 425 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque, 426 pentry, lowaddr, highaddr, pflags, big_endian, 427 elf_machine, clear_lsb, data_swab, as, true); 428 } 429 430 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 431 int load_elf_ram(const char *filename, 432 uint64_t (*elf_note_fn)(void *, void *, bool), 433 uint64_t (*translate_fn)(void *, uint64_t), 434 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 435 uint64_t *highaddr, uint32_t *pflags, int big_endian, 436 int elf_machine, int clear_lsb, int data_swab, 437 AddressSpace *as, bool load_rom) 438 { 439 return load_elf_ram_sym(filename, elf_note_fn, 440 translate_fn, translate_opaque, 441 pentry, lowaddr, highaddr, pflags, big_endian, 442 elf_machine, clear_lsb, data_swab, as, 443 load_rom, NULL); 444 } 445 446 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 447 int load_elf_ram_sym(const char *filename, 448 uint64_t (*elf_note_fn)(void *, void *, bool), 449 uint64_t (*translate_fn)(void *, uint64_t), 450 void *translate_opaque, uint64_t *pentry, 451 uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags, 452 int big_endian, int elf_machine, 453 int clear_lsb, int data_swab, 454 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 455 { 456 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; 457 uint8_t e_ident[EI_NIDENT]; 458 459 fd = open(filename, O_RDONLY | O_BINARY); 460 if (fd < 0) { 461 perror(filename); 462 return -1; 463 } 464 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 465 goto fail; 466 if (e_ident[0] != ELFMAG0 || 467 e_ident[1] != ELFMAG1 || 468 e_ident[2] != ELFMAG2 || 469 e_ident[3] != ELFMAG3) { 470 ret = ELF_LOAD_NOT_ELF; 471 goto fail; 472 } 473 #ifdef HOST_WORDS_BIGENDIAN 474 data_order = ELFDATA2MSB; 475 #else 476 data_order = ELFDATA2LSB; 477 #endif 478 must_swab = data_order != e_ident[EI_DATA]; 479 if (big_endian) { 480 target_data_order = ELFDATA2MSB; 481 } else { 482 target_data_order = ELFDATA2LSB; 483 } 484 485 if (target_data_order != e_ident[EI_DATA]) { 486 ret = ELF_LOAD_WRONG_ENDIAN; 487 goto fail; 488 } 489 490 lseek(fd, 0, SEEK_SET); 491 if (e_ident[EI_CLASS] == ELFCLASS64) { 492 ret = load_elf64(filename, fd, elf_note_fn, 493 translate_fn, translate_opaque, must_swab, 494 pentry, lowaddr, highaddr, pflags, elf_machine, 495 clear_lsb, data_swab, as, load_rom, sym_cb); 496 } else { 497 ret = load_elf32(filename, fd, elf_note_fn, 498 translate_fn, translate_opaque, must_swab, 499 pentry, lowaddr, highaddr, pflags, elf_machine, 500 clear_lsb, data_swab, as, load_rom, sym_cb); 501 } 502 503 fail: 504 close(fd); 505 return ret; 506 } 507 508 static void bswap_uboot_header(uboot_image_header_t *hdr) 509 { 510 #ifndef HOST_WORDS_BIGENDIAN 511 bswap32s(&hdr->ih_magic); 512 bswap32s(&hdr->ih_hcrc); 513 bswap32s(&hdr->ih_time); 514 bswap32s(&hdr->ih_size); 515 bswap32s(&hdr->ih_load); 516 bswap32s(&hdr->ih_ep); 517 bswap32s(&hdr->ih_dcrc); 518 #endif 519 } 520 521 522 #define ZALLOC_ALIGNMENT 16 523 524 static void *zalloc(void *x, unsigned items, unsigned size) 525 { 526 void *p; 527 528 size *= items; 529 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 530 531 p = g_malloc(size); 532 533 return (p); 534 } 535 536 static void zfree(void *x, void *addr) 537 { 538 g_free(addr); 539 } 540 541 542 #define HEAD_CRC 2 543 #define EXTRA_FIELD 4 544 #define ORIG_NAME 8 545 #define COMMENT 0x10 546 #define RESERVED 0xe0 547 548 #define DEFLATED 8 549 550 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 551 { 552 z_stream s; 553 ssize_t dstbytes; 554 int r, i, flags; 555 556 /* skip header */ 557 i = 10; 558 if (srclen < 4) { 559 goto toosmall; 560 } 561 flags = src[3]; 562 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 563 puts ("Error: Bad gzipped data\n"); 564 return -1; 565 } 566 if ((flags & EXTRA_FIELD) != 0) { 567 if (srclen < 12) { 568 goto toosmall; 569 } 570 i = 12 + src[10] + (src[11] << 8); 571 } 572 if ((flags & ORIG_NAME) != 0) { 573 while (i < srclen && src[i++] != 0) { 574 /* do nothing */ 575 } 576 } 577 if ((flags & COMMENT) != 0) { 578 while (i < srclen && src[i++] != 0) { 579 /* do nothing */ 580 } 581 } 582 if ((flags & HEAD_CRC) != 0) { 583 i += 2; 584 } 585 if (i >= srclen) { 586 goto toosmall; 587 } 588 589 s.zalloc = zalloc; 590 s.zfree = zfree; 591 592 r = inflateInit2(&s, -MAX_WBITS); 593 if (r != Z_OK) { 594 printf ("Error: inflateInit2() returned %d\n", r); 595 return (-1); 596 } 597 s.next_in = src + i; 598 s.avail_in = srclen - i; 599 s.next_out = dst; 600 s.avail_out = dstlen; 601 r = inflate(&s, Z_FINISH); 602 if (r != Z_OK && r != Z_STREAM_END) { 603 printf ("Error: inflate() returned %d\n", r); 604 return -1; 605 } 606 dstbytes = s.next_out - (unsigned char *) dst; 607 inflateEnd(&s); 608 609 return dstbytes; 610 611 toosmall: 612 puts("Error: gunzip out of data in header\n"); 613 return -1; 614 } 615 616 /* Load a U-Boot image. */ 617 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 618 int *is_linux, uint8_t image_type, 619 uint64_t (*translate_fn)(void *, uint64_t), 620 void *translate_opaque, AddressSpace *as) 621 { 622 int fd; 623 int size; 624 hwaddr address; 625 uboot_image_header_t h; 626 uboot_image_header_t *hdr = &h; 627 uint8_t *data = NULL; 628 int ret = -1; 629 int do_uncompress = 0; 630 631 fd = open(filename, O_RDONLY | O_BINARY); 632 if (fd < 0) 633 return -1; 634 635 size = read(fd, hdr, sizeof(uboot_image_header_t)); 636 if (size < sizeof(uboot_image_header_t)) { 637 goto out; 638 } 639 640 bswap_uboot_header(hdr); 641 642 if (hdr->ih_magic != IH_MAGIC) 643 goto out; 644 645 if (hdr->ih_type != image_type) { 646 if (!(image_type == IH_TYPE_KERNEL && 647 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 648 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 649 image_type); 650 goto out; 651 } 652 } 653 654 /* TODO: Implement other image types. */ 655 switch (hdr->ih_type) { 656 case IH_TYPE_KERNEL_NOLOAD: 657 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 658 fprintf(stderr, "this image format (kernel_noload) cannot be " 659 "loaded on this machine type"); 660 goto out; 661 } 662 663 hdr->ih_load = *loadaddr + sizeof(*hdr); 664 hdr->ih_ep += hdr->ih_load; 665 /* fall through */ 666 case IH_TYPE_KERNEL: 667 address = hdr->ih_load; 668 if (translate_fn) { 669 address = translate_fn(translate_opaque, address); 670 } 671 if (loadaddr) { 672 *loadaddr = hdr->ih_load; 673 } 674 675 switch (hdr->ih_comp) { 676 case IH_COMP_NONE: 677 break; 678 case IH_COMP_GZIP: 679 do_uncompress = 1; 680 break; 681 default: 682 fprintf(stderr, 683 "Unable to load u-boot images with compression type %d\n", 684 hdr->ih_comp); 685 goto out; 686 } 687 688 if (ep) { 689 *ep = hdr->ih_ep; 690 } 691 692 /* TODO: Check CPU type. */ 693 if (is_linux) { 694 if (hdr->ih_os == IH_OS_LINUX) { 695 *is_linux = 1; 696 } else { 697 *is_linux = 0; 698 } 699 } 700 701 break; 702 case IH_TYPE_RAMDISK: 703 address = *loadaddr; 704 break; 705 default: 706 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 707 goto out; 708 } 709 710 data = g_malloc(hdr->ih_size); 711 712 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 713 fprintf(stderr, "Error reading file\n"); 714 goto out; 715 } 716 717 if (do_uncompress) { 718 uint8_t *compressed_data; 719 size_t max_bytes; 720 ssize_t bytes; 721 722 compressed_data = data; 723 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 724 data = g_malloc(max_bytes); 725 726 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 727 g_free(compressed_data); 728 if (bytes < 0) { 729 fprintf(stderr, "Unable to decompress gzipped image!\n"); 730 goto out; 731 } 732 hdr->ih_size = bytes; 733 } 734 735 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 736 737 ret = hdr->ih_size; 738 739 out: 740 g_free(data); 741 close(fd); 742 return ret; 743 } 744 745 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 746 int *is_linux, 747 uint64_t (*translate_fn)(void *, uint64_t), 748 void *translate_opaque) 749 { 750 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 751 translate_fn, translate_opaque, NULL); 752 } 753 754 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 755 int *is_linux, 756 uint64_t (*translate_fn)(void *, uint64_t), 757 void *translate_opaque, AddressSpace *as) 758 { 759 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 760 translate_fn, translate_opaque, as); 761 } 762 763 /* Load a ramdisk. */ 764 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 765 { 766 return load_ramdisk_as(filename, addr, max_sz, NULL); 767 } 768 769 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 770 AddressSpace *as) 771 { 772 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 773 NULL, NULL, as); 774 } 775 776 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 777 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 778 uint8_t **buffer) 779 { 780 uint8_t *compressed_data = NULL; 781 uint8_t *data = NULL; 782 gsize len; 783 ssize_t bytes; 784 int ret = -1; 785 786 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 787 NULL)) { 788 goto out; 789 } 790 791 /* Is it a gzip-compressed file? */ 792 if (len < 2 || 793 compressed_data[0] != 0x1f || 794 compressed_data[1] != 0x8b) { 795 goto out; 796 } 797 798 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 799 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 800 } 801 802 data = g_malloc(max_sz); 803 bytes = gunzip(data, max_sz, compressed_data, len); 804 if (bytes < 0) { 805 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 806 filename); 807 goto out; 808 } 809 810 /* trim to actual size and return to caller */ 811 *buffer = g_realloc(data, bytes); 812 ret = bytes; 813 /* ownership has been transferred to caller */ 814 data = NULL; 815 816 out: 817 g_free(compressed_data); 818 g_free(data); 819 return ret; 820 } 821 822 /* Load a gzip-compressed kernel. */ 823 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 824 { 825 int bytes; 826 uint8_t *data; 827 828 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 829 if (bytes != -1) { 830 rom_add_blob_fixed(filename, data, bytes, addr); 831 g_free(data); 832 } 833 return bytes; 834 } 835 836 /* 837 * Functions for reboot-persistent memory regions. 838 * - used for vga bios and option roms. 839 * - also linux kernel (-kernel / -initrd). 840 */ 841 842 typedef struct Rom Rom; 843 844 struct Rom { 845 char *name; 846 char *path; 847 848 /* datasize is the amount of memory allocated in "data". If datasize is less 849 * than romsize, it means that the area from datasize to romsize is filled 850 * with zeros. 851 */ 852 size_t romsize; 853 size_t datasize; 854 855 uint8_t *data; 856 MemoryRegion *mr; 857 AddressSpace *as; 858 int isrom; 859 char *fw_dir; 860 char *fw_file; 861 GMappedFile *mapped_file; 862 863 bool committed; 864 865 hwaddr addr; 866 QTAILQ_ENTRY(Rom) next; 867 }; 868 869 static FWCfgState *fw_cfg; 870 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 871 872 /* 873 * rom->data can be heap-allocated or memory-mapped (e.g. when added with 874 * rom_add_elf_program()) 875 */ 876 static void rom_free_data(Rom *rom) 877 { 878 if (rom->mapped_file) { 879 g_mapped_file_unref(rom->mapped_file); 880 rom->mapped_file = NULL; 881 } else { 882 g_free(rom->data); 883 } 884 885 rom->data = NULL; 886 } 887 888 static void rom_free(Rom *rom) 889 { 890 rom_free_data(rom); 891 g_free(rom->path); 892 g_free(rom->name); 893 g_free(rom->fw_dir); 894 g_free(rom->fw_file); 895 g_free(rom); 896 } 897 898 static inline bool rom_order_compare(Rom *rom, Rom *item) 899 { 900 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 901 (rom->as == item->as && rom->addr >= item->addr); 902 } 903 904 static void rom_insert(Rom *rom) 905 { 906 Rom *item; 907 908 if (roms_loaded) { 909 hw_error ("ROM images must be loaded at startup\n"); 910 } 911 912 /* The user didn't specify an address space, this is the default */ 913 if (!rom->as) { 914 rom->as = &address_space_memory; 915 } 916 917 rom->committed = false; 918 919 /* List is ordered by load address in the same address space */ 920 QTAILQ_FOREACH(item, &roms, next) { 921 if (rom_order_compare(rom, item)) { 922 continue; 923 } 924 QTAILQ_INSERT_BEFORE(item, rom, next); 925 return; 926 } 927 QTAILQ_INSERT_TAIL(&roms, rom, next); 928 } 929 930 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 931 { 932 if (fw_cfg) { 933 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 934 } 935 } 936 937 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 938 { 939 void *data; 940 941 rom->mr = g_malloc(sizeof(*rom->mr)); 942 memory_region_init_resizeable_ram(rom->mr, owner, name, 943 rom->datasize, rom->romsize, 944 fw_cfg_resized, 945 &error_fatal); 946 memory_region_set_readonly(rom->mr, ro); 947 vmstate_register_ram_global(rom->mr); 948 949 data = memory_region_get_ram_ptr(rom->mr); 950 memcpy(data, rom->data, rom->datasize); 951 952 return data; 953 } 954 955 int rom_add_file(const char *file, const char *fw_dir, 956 hwaddr addr, int32_t bootindex, 957 bool option_rom, MemoryRegion *mr, 958 AddressSpace *as) 959 { 960 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 961 Rom *rom; 962 int rc, fd = -1; 963 char devpath[100]; 964 965 if (as && mr) { 966 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 967 "not valid when loading a rom\n"); 968 /* We haven't allocated anything so we don't need any cleanup */ 969 return -1; 970 } 971 972 rom = g_malloc0(sizeof(*rom)); 973 rom->name = g_strdup(file); 974 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 975 rom->as = as; 976 if (rom->path == NULL) { 977 rom->path = g_strdup(file); 978 } 979 980 fd = open(rom->path, O_RDONLY | O_BINARY); 981 if (fd == -1) { 982 fprintf(stderr, "Could not open option rom '%s': %s\n", 983 rom->path, strerror(errno)); 984 goto err; 985 } 986 987 if (fw_dir) { 988 rom->fw_dir = g_strdup(fw_dir); 989 rom->fw_file = g_strdup(file); 990 } 991 rom->addr = addr; 992 rom->romsize = lseek(fd, 0, SEEK_END); 993 if (rom->romsize == -1) { 994 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 995 rom->name, strerror(errno)); 996 goto err; 997 } 998 999 rom->datasize = rom->romsize; 1000 rom->data = g_malloc0(rom->datasize); 1001 lseek(fd, 0, SEEK_SET); 1002 rc = read(fd, rom->data, rom->datasize); 1003 if (rc != rom->datasize) { 1004 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 1005 rom->name, rc, rom->datasize); 1006 goto err; 1007 } 1008 close(fd); 1009 rom_insert(rom); 1010 if (rom->fw_file && fw_cfg) { 1011 const char *basename; 1012 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 1013 void *data; 1014 1015 basename = strrchr(rom->fw_file, '/'); 1016 if (basename) { 1017 basename++; 1018 } else { 1019 basename = rom->fw_file; 1020 } 1021 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 1022 basename); 1023 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1024 1025 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 1026 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 1027 } else { 1028 data = rom->data; 1029 } 1030 1031 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 1032 } else { 1033 if (mr) { 1034 rom->mr = mr; 1035 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 1036 } else { 1037 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 1038 } 1039 } 1040 1041 add_boot_device_path(bootindex, NULL, devpath); 1042 return 0; 1043 1044 err: 1045 if (fd != -1) 1046 close(fd); 1047 1048 rom_free(rom); 1049 return -1; 1050 } 1051 1052 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1053 size_t max_len, hwaddr addr, const char *fw_file_name, 1054 FWCfgCallback fw_callback, void *callback_opaque, 1055 AddressSpace *as, bool read_only) 1056 { 1057 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1058 Rom *rom; 1059 MemoryRegion *mr = NULL; 1060 1061 rom = g_malloc0(sizeof(*rom)); 1062 rom->name = g_strdup(name); 1063 rom->as = as; 1064 rom->addr = addr; 1065 rom->romsize = max_len ? max_len : len; 1066 rom->datasize = len; 1067 g_assert(rom->romsize >= rom->datasize); 1068 rom->data = g_malloc0(rom->datasize); 1069 memcpy(rom->data, blob, len); 1070 rom_insert(rom); 1071 if (fw_file_name && fw_cfg) { 1072 char devpath[100]; 1073 void *data; 1074 1075 if (read_only) { 1076 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1077 } else { 1078 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1079 } 1080 1081 if (mc->rom_file_has_mr) { 1082 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1083 mr = rom->mr; 1084 } else { 1085 data = rom->data; 1086 } 1087 1088 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1089 fw_callback, NULL, callback_opaque, 1090 data, rom->datasize, read_only); 1091 } 1092 return mr; 1093 } 1094 1095 /* This function is specific for elf program because we don't need to allocate 1096 * all the rom. We just allocate the first part and the rest is just zeros. This 1097 * is why romsize and datasize are different. Also, this function takes its own 1098 * reference to "mapped_file", so we don't have to allocate and copy the buffer. 1099 */ 1100 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, 1101 size_t datasize, size_t romsize, hwaddr addr, 1102 AddressSpace *as) 1103 { 1104 Rom *rom; 1105 1106 rom = g_malloc0(sizeof(*rom)); 1107 rom->name = g_strdup(name); 1108 rom->addr = addr; 1109 rom->datasize = datasize; 1110 rom->romsize = romsize; 1111 rom->data = data; 1112 rom->as = as; 1113 1114 if (mapped_file && data) { 1115 g_mapped_file_ref(mapped_file); 1116 rom->mapped_file = mapped_file; 1117 } 1118 1119 rom_insert(rom); 1120 return 0; 1121 } 1122 1123 int rom_add_vga(const char *file) 1124 { 1125 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1126 } 1127 1128 int rom_add_option(const char *file, int32_t bootindex) 1129 { 1130 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1131 } 1132 1133 static void rom_reset(void *unused) 1134 { 1135 Rom *rom; 1136 1137 QTAILQ_FOREACH(rom, &roms, next) { 1138 if (rom->fw_file) { 1139 continue; 1140 } 1141 /* 1142 * We don't need to fill in the RAM with ROM data because we'll fill 1143 * the data in during the next incoming migration in all cases. Note 1144 * that some of those RAMs can actually be modified by the guest. 1145 */ 1146 if (runstate_check(RUN_STATE_INMIGRATE)) { 1147 if (rom->data && rom->isrom) { 1148 /* 1149 * Free it so that a rom_reset after migration doesn't 1150 * overwrite a potentially modified 'rom'. 1151 */ 1152 rom_free_data(rom); 1153 } 1154 continue; 1155 } 1156 1157 if (rom->data == NULL) { 1158 continue; 1159 } 1160 if (rom->mr) { 1161 void *host = memory_region_get_ram_ptr(rom->mr); 1162 memcpy(host, rom->data, rom->datasize); 1163 } else { 1164 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1165 rom->data, rom->datasize); 1166 } 1167 if (rom->isrom) { 1168 /* rom needs to be written only once */ 1169 rom_free_data(rom); 1170 } 1171 /* 1172 * The rom loader is really on the same level as firmware in the guest 1173 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1174 * that the instruction cache for that new region is clear, so that the 1175 * CPU definitely fetches its instructions from the just written data. 1176 */ 1177 cpu_flush_icache_range(rom->addr, rom->datasize); 1178 1179 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom); 1180 } 1181 } 1182 1183 /* Return true if two consecutive ROMs in the ROM list overlap */ 1184 static bool roms_overlap(Rom *last_rom, Rom *this_rom) 1185 { 1186 if (!last_rom) { 1187 return false; 1188 } 1189 return last_rom->as == this_rom->as && 1190 last_rom->addr + last_rom->romsize > this_rom->addr; 1191 } 1192 1193 static const char *rom_as_name(Rom *rom) 1194 { 1195 const char *name = rom->as ? rom->as->name : NULL; 1196 return name ?: "anonymous"; 1197 } 1198 1199 static void rom_print_overlap_error_header(void) 1200 { 1201 error_report("Some ROM regions are overlapping"); 1202 error_printf( 1203 "These ROM regions might have been loaded by " 1204 "direct user request or by default.\n" 1205 "They could be BIOS/firmware images, a guest kernel, " 1206 "initrd or some other file loaded into guest memory.\n" 1207 "Check whether you intended to load all this guest code, and " 1208 "whether it has been built to load to the correct addresses.\n"); 1209 } 1210 1211 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom) 1212 { 1213 error_printf( 1214 "\nThe following two regions overlap (in the %s address space):\n", 1215 rom_as_name(rom)); 1216 error_printf( 1217 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n", 1218 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize); 1219 error_printf( 1220 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n", 1221 rom->name, rom->addr, rom->addr + rom->romsize); 1222 } 1223 1224 int rom_check_and_register_reset(void) 1225 { 1226 MemoryRegionSection section; 1227 Rom *rom, *last_rom = NULL; 1228 bool found_overlap = false; 1229 1230 QTAILQ_FOREACH(rom, &roms, next) { 1231 if (rom->fw_file) { 1232 continue; 1233 } 1234 if (!rom->mr) { 1235 if (roms_overlap(last_rom, rom)) { 1236 if (!found_overlap) { 1237 found_overlap = true; 1238 rom_print_overlap_error_header(); 1239 } 1240 rom_print_one_overlap_error(last_rom, rom); 1241 /* Keep going through the list so we report all overlaps */ 1242 } 1243 last_rom = rom; 1244 } 1245 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1246 rom->addr, 1); 1247 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1248 memory_region_unref(section.mr); 1249 } 1250 if (found_overlap) { 1251 return -1; 1252 } 1253 1254 qemu_register_reset(rom_reset, NULL); 1255 roms_loaded = 1; 1256 return 0; 1257 } 1258 1259 void rom_set_fw(FWCfgState *f) 1260 { 1261 fw_cfg = f; 1262 } 1263 1264 void rom_set_order_override(int order) 1265 { 1266 if (!fw_cfg) 1267 return; 1268 fw_cfg_set_order_override(fw_cfg, order); 1269 } 1270 1271 void rom_reset_order_override(void) 1272 { 1273 if (!fw_cfg) 1274 return; 1275 fw_cfg_reset_order_override(fw_cfg); 1276 } 1277 1278 void rom_transaction_begin(void) 1279 { 1280 Rom *rom; 1281 1282 /* Ignore ROMs added without the transaction API */ 1283 QTAILQ_FOREACH(rom, &roms, next) { 1284 rom->committed = true; 1285 } 1286 } 1287 1288 void rom_transaction_end(bool commit) 1289 { 1290 Rom *rom; 1291 Rom *tmp; 1292 1293 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1294 if (rom->committed) { 1295 continue; 1296 } 1297 if (commit) { 1298 rom->committed = true; 1299 } else { 1300 QTAILQ_REMOVE(&roms, rom, next); 1301 rom_free(rom); 1302 } 1303 } 1304 } 1305 1306 static Rom *find_rom(hwaddr addr, size_t size) 1307 { 1308 Rom *rom; 1309 1310 QTAILQ_FOREACH(rom, &roms, next) { 1311 if (rom->fw_file) { 1312 continue; 1313 } 1314 if (rom->mr) { 1315 continue; 1316 } 1317 if (rom->addr > addr) { 1318 continue; 1319 } 1320 if (rom->addr + rom->romsize < addr + size) { 1321 continue; 1322 } 1323 return rom; 1324 } 1325 return NULL; 1326 } 1327 1328 /* 1329 * Copies memory from registered ROMs to dest. Any memory that is contained in 1330 * a ROM between addr and addr + size is copied. Note that this can involve 1331 * multiple ROMs, which need not start at addr and need not end at addr + size. 1332 */ 1333 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1334 { 1335 hwaddr end = addr + size; 1336 uint8_t *s, *d = dest; 1337 size_t l = 0; 1338 Rom *rom; 1339 1340 QTAILQ_FOREACH(rom, &roms, next) { 1341 if (rom->fw_file) { 1342 continue; 1343 } 1344 if (rom->mr) { 1345 continue; 1346 } 1347 if (rom->addr + rom->romsize < addr) { 1348 continue; 1349 } 1350 if (rom->addr > end || rom->addr < addr) { 1351 break; 1352 } 1353 1354 d = dest + (rom->addr - addr); 1355 s = rom->data; 1356 l = rom->datasize; 1357 1358 if ((d + l) > (dest + size)) { 1359 l = dest - d; 1360 } 1361 1362 if (l > 0) { 1363 memcpy(d, s, l); 1364 } 1365 1366 if (rom->romsize > rom->datasize) { 1367 /* If datasize is less than romsize, it means that we didn't 1368 * allocate all the ROM because the trailing data are only zeros. 1369 */ 1370 1371 d += l; 1372 l = rom->romsize - rom->datasize; 1373 1374 if ((d + l) > (dest + size)) { 1375 /* Rom size doesn't fit in the destination area. Adjust to avoid 1376 * overflow. 1377 */ 1378 l = dest - d; 1379 } 1380 1381 if (l > 0) { 1382 memset(d, 0x0, l); 1383 } 1384 } 1385 } 1386 1387 return (d + l) - dest; 1388 } 1389 1390 void *rom_ptr(hwaddr addr, size_t size) 1391 { 1392 Rom *rom; 1393 1394 rom = find_rom(addr, size); 1395 if (!rom || !rom->data) 1396 return NULL; 1397 return rom->data + (addr - rom->addr); 1398 } 1399 1400 typedef struct FindRomCBData { 1401 size_t size; /* Amount of data we want from ROM, in bytes */ 1402 MemoryRegion *mr; /* MR at the unaliased guest addr */ 1403 hwaddr xlat; /* Offset of addr within mr */ 1404 void *rom; /* Output: rom data pointer, if found */ 1405 } FindRomCBData; 1406 1407 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr, 1408 hwaddr offset_in_region, void *opaque) 1409 { 1410 FindRomCBData *cbdata = opaque; 1411 hwaddr alias_addr; 1412 1413 if (mr != cbdata->mr) { 1414 return false; 1415 } 1416 1417 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region; 1418 cbdata->rom = rom_ptr(alias_addr, cbdata->size); 1419 if (!cbdata->rom) { 1420 return false; 1421 } 1422 /* Found a match, stop iterating */ 1423 return true; 1424 } 1425 1426 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size) 1427 { 1428 /* 1429 * Find any ROM data for the given guest address range. If there 1430 * is a ROM blob then return a pointer to the host memory 1431 * corresponding to 'addr'; otherwise return NULL. 1432 * 1433 * We look not only for ROM blobs that were loaded directly to 1434 * addr, but also for ROM blobs that were loaded to aliases of 1435 * that memory at other addresses within the AddressSpace. 1436 * 1437 * Note that we do not check @as against the 'as' member in the 1438 * 'struct Rom' returned by rom_ptr(). The Rom::as is the 1439 * AddressSpace which the rom blob should be written to, whereas 1440 * our @as argument is the AddressSpace which we are (effectively) 1441 * reading from, and the same underlying RAM will often be visible 1442 * in multiple AddressSpaces. (A common example is a ROM blob 1443 * written to the 'system' address space but then read back via a 1444 * CPU's cpu->as pointer.) This does mean we might potentially 1445 * return a false-positive match if a ROM blob was loaded into an 1446 * AS which is entirely separate and distinct from the one we're 1447 * querying, but this issue exists also for rom_ptr() and hasn't 1448 * caused any problems in practice. 1449 */ 1450 FlatView *fv; 1451 void *rom; 1452 hwaddr len_unused; 1453 FindRomCBData cbdata = {}; 1454 1455 /* Easy case: there's data at the actual address */ 1456 rom = rom_ptr(addr, size); 1457 if (rom) { 1458 return rom; 1459 } 1460 1461 RCU_READ_LOCK_GUARD(); 1462 1463 fv = address_space_to_flatview(as); 1464 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused, 1465 false, MEMTXATTRS_UNSPECIFIED); 1466 if (!cbdata.mr) { 1467 /* Nothing at this address, so there can't be any aliasing */ 1468 return NULL; 1469 } 1470 cbdata.size = size; 1471 flatview_for_each_range(fv, find_rom_cb, &cbdata); 1472 return cbdata.rom; 1473 } 1474 1475 void hmp_info_roms(Monitor *mon, const QDict *qdict) 1476 { 1477 Rom *rom; 1478 1479 QTAILQ_FOREACH(rom, &roms, next) { 1480 if (rom->mr) { 1481 monitor_printf(mon, "%s" 1482 " size=0x%06zx name=\"%s\"\n", 1483 memory_region_name(rom->mr), 1484 rom->romsize, 1485 rom->name); 1486 } else if (!rom->fw_file) { 1487 monitor_printf(mon, "addr=" TARGET_FMT_plx 1488 " size=0x%06zx mem=%s name=\"%s\"\n", 1489 rom->addr, rom->romsize, 1490 rom->isrom ? "rom" : "ram", 1491 rom->name); 1492 } else { 1493 monitor_printf(mon, "fw=%s/%s" 1494 " size=0x%06zx name=\"%s\"\n", 1495 rom->fw_dir, 1496 rom->fw_file, 1497 rom->romsize, 1498 rom->name); 1499 } 1500 } 1501 } 1502 1503 typedef enum HexRecord HexRecord; 1504 enum HexRecord { 1505 DATA_RECORD = 0, 1506 EOF_RECORD, 1507 EXT_SEG_ADDR_RECORD, 1508 START_SEG_ADDR_RECORD, 1509 EXT_LINEAR_ADDR_RECORD, 1510 START_LINEAR_ADDR_RECORD, 1511 }; 1512 1513 /* Each record contains a 16-bit address which is combined with the upper 16 1514 * bits of the implicit "next address" to form a 32-bit address. 1515 */ 1516 #define NEXT_ADDR_MASK 0xffff0000 1517 1518 #define DATA_FIELD_MAX_LEN 0xff 1519 #define LEN_EXCEPT_DATA 0x5 1520 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1521 * sizeof(checksum) */ 1522 typedef struct { 1523 uint8_t byte_count; 1524 uint16_t address; 1525 uint8_t record_type; 1526 uint8_t data[DATA_FIELD_MAX_LEN]; 1527 uint8_t checksum; 1528 } HexLine; 1529 1530 /* return 0 or -1 if error */ 1531 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1532 uint32_t *index, const bool in_process) 1533 { 1534 /* +-------+---------------+-------+---------------------+--------+ 1535 * | byte | |record | | | 1536 * | count | address | type | data |checksum| 1537 * +-------+---------------+-------+---------------------+--------+ 1538 * ^ ^ ^ ^ ^ ^ 1539 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1540 */ 1541 uint8_t value = 0; 1542 uint32_t idx = *index; 1543 /* ignore space */ 1544 if (g_ascii_isspace(c)) { 1545 return true; 1546 } 1547 if (!g_ascii_isxdigit(c) || !in_process) { 1548 return false; 1549 } 1550 value = g_ascii_xdigit_value(c); 1551 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1552 if (idx < 2) { 1553 line->byte_count |= value; 1554 } else if (2 <= idx && idx < 6) { 1555 line->address <<= 4; 1556 line->address += g_ascii_xdigit_value(c); 1557 } else if (6 <= idx && idx < 8) { 1558 line->record_type |= value; 1559 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1560 line->data[(idx - 8) >> 1] |= value; 1561 } else if (8 + 2 * line->byte_count <= idx && 1562 idx < 10 + 2 * line->byte_count) { 1563 line->checksum |= value; 1564 } else { 1565 return false; 1566 } 1567 *our_checksum += value; 1568 ++(*index); 1569 return true; 1570 } 1571 1572 typedef struct { 1573 const char *filename; 1574 HexLine line; 1575 uint8_t *bin_buf; 1576 hwaddr *start_addr; 1577 int total_size; 1578 uint32_t next_address_to_write; 1579 uint32_t current_address; 1580 uint32_t current_rom_index; 1581 uint32_t rom_start_address; 1582 AddressSpace *as; 1583 bool complete; 1584 } HexParser; 1585 1586 /* return size or -1 if error */ 1587 static int handle_record_type(HexParser *parser) 1588 { 1589 HexLine *line = &(parser->line); 1590 switch (line->record_type) { 1591 case DATA_RECORD: 1592 parser->current_address = 1593 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1594 /* verify this is a contiguous block of memory */ 1595 if (parser->current_address != parser->next_address_to_write) { 1596 if (parser->current_rom_index != 0) { 1597 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1598 parser->current_rom_index, 1599 parser->rom_start_address, parser->as); 1600 } 1601 parser->rom_start_address = parser->current_address; 1602 parser->current_rom_index = 0; 1603 } 1604 1605 /* copy from line buffer to output bin_buf */ 1606 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1607 line->byte_count); 1608 parser->current_rom_index += line->byte_count; 1609 parser->total_size += line->byte_count; 1610 /* save next address to write */ 1611 parser->next_address_to_write = 1612 parser->current_address + line->byte_count; 1613 break; 1614 1615 case EOF_RECORD: 1616 if (parser->current_rom_index != 0) { 1617 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1618 parser->current_rom_index, 1619 parser->rom_start_address, parser->as); 1620 } 1621 parser->complete = true; 1622 return parser->total_size; 1623 case EXT_SEG_ADDR_RECORD: 1624 case EXT_LINEAR_ADDR_RECORD: 1625 if (line->byte_count != 2 && line->address != 0) { 1626 return -1; 1627 } 1628 1629 if (parser->current_rom_index != 0) { 1630 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1631 parser->current_rom_index, 1632 parser->rom_start_address, parser->as); 1633 } 1634 1635 /* save next address to write, 1636 * in case of non-contiguous block of memory */ 1637 parser->next_address_to_write = (line->data[0] << 12) | 1638 (line->data[1] << 4); 1639 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1640 parser->next_address_to_write <<= 12; 1641 } 1642 1643 parser->rom_start_address = parser->next_address_to_write; 1644 parser->current_rom_index = 0; 1645 break; 1646 1647 case START_SEG_ADDR_RECORD: 1648 if (line->byte_count != 4 && line->address != 0) { 1649 return -1; 1650 } 1651 1652 /* x86 16-bit CS:IP segmented addressing */ 1653 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1654 ((line->data[2] << 8) | line->data[3]); 1655 break; 1656 1657 case START_LINEAR_ADDR_RECORD: 1658 if (line->byte_count != 4 && line->address != 0) { 1659 return -1; 1660 } 1661 1662 *(parser->start_addr) = ldl_be_p(line->data); 1663 break; 1664 1665 default: 1666 return -1; 1667 } 1668 1669 return parser->total_size; 1670 } 1671 1672 /* return size or -1 if error */ 1673 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1674 size_t hex_blob_size, AddressSpace *as) 1675 { 1676 bool in_process = false; /* avoid re-enter and 1677 * check whether record begin with ':' */ 1678 uint8_t *end = hex_blob + hex_blob_size; 1679 uint8_t our_checksum = 0; 1680 uint32_t record_index = 0; 1681 HexParser parser = { 1682 .filename = filename, 1683 .bin_buf = g_malloc(hex_blob_size), 1684 .start_addr = addr, 1685 .as = as, 1686 .complete = false 1687 }; 1688 1689 rom_transaction_begin(); 1690 1691 for (; hex_blob < end && !parser.complete; ++hex_blob) { 1692 switch (*hex_blob) { 1693 case '\r': 1694 case '\n': 1695 if (!in_process) { 1696 break; 1697 } 1698 1699 in_process = false; 1700 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1701 record_index || 1702 our_checksum != 0) { 1703 parser.total_size = -1; 1704 goto out; 1705 } 1706 1707 if (handle_record_type(&parser) == -1) { 1708 parser.total_size = -1; 1709 goto out; 1710 } 1711 break; 1712 1713 /* start of a new record. */ 1714 case ':': 1715 memset(&parser.line, 0, sizeof(HexLine)); 1716 in_process = true; 1717 record_index = 0; 1718 break; 1719 1720 /* decoding lines */ 1721 default: 1722 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1723 &record_index, in_process)) { 1724 parser.total_size = -1; 1725 goto out; 1726 } 1727 break; 1728 } 1729 } 1730 1731 out: 1732 g_free(parser.bin_buf); 1733 rom_transaction_end(parser.total_size != -1); 1734 return parser.total_size; 1735 } 1736 1737 /* return size or -1 if error */ 1738 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as) 1739 { 1740 gsize hex_blob_size; 1741 gchar *hex_blob; 1742 int total_size = 0; 1743 1744 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1745 return -1; 1746 } 1747 1748 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1749 hex_blob_size, as); 1750 1751 g_free(hex_blob); 1752 return total_size; 1753 } 1754