1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qemu/datadir.h" 47 #include "qemu/error-report.h" 48 #include "qapi/error.h" 49 #include "qapi/qapi-commands-machine.h" 50 #include "qapi/type-helpers.h" 51 #include "trace.h" 52 #include "hw/hw.h" 53 #include "disas/disas.h" 54 #include "migration/vmstate.h" 55 #include "monitor/monitor.h" 56 #include "sysemu/reset.h" 57 #include "sysemu/sysemu.h" 58 #include "uboot_image.h" 59 #include "hw/loader.h" 60 #include "hw/nvram/fw_cfg.h" 61 #include "exec/memory.h" 62 #include "hw/boards.h" 63 #include "qemu/cutils.h" 64 #include "sysemu/runstate.h" 65 #include "accel/tcg/debuginfo.h" 66 67 #include <zlib.h> 68 69 static int roms_loaded; 70 71 /* return the size or -1 if error */ 72 int64_t get_image_size(const char *filename) 73 { 74 int fd; 75 int64_t size; 76 fd = open(filename, O_RDONLY | O_BINARY); 77 if (fd < 0) 78 return -1; 79 size = lseek(fd, 0, SEEK_END); 80 close(fd); 81 return size; 82 } 83 84 /* return the size or -1 if error */ 85 ssize_t load_image_size(const char *filename, void *addr, size_t size) 86 { 87 int fd; 88 ssize_t actsize, l = 0; 89 90 fd = open(filename, O_RDONLY | O_BINARY); 91 if (fd < 0) { 92 return -1; 93 } 94 95 while ((actsize = read(fd, addr + l, size - l)) > 0) { 96 l += actsize; 97 } 98 99 close(fd); 100 101 return actsize < 0 ? -1 : l; 102 } 103 104 /* read()-like version */ 105 ssize_t read_targphys(const char *name, 106 int fd, hwaddr dst_addr, size_t nbytes) 107 { 108 uint8_t *buf; 109 ssize_t did; 110 111 buf = g_malloc(nbytes); 112 did = read(fd, buf, nbytes); 113 if (did > 0) 114 rom_add_blob_fixed("read", buf, did, dst_addr); 115 g_free(buf); 116 return did; 117 } 118 119 ssize_t load_image_targphys(const char *filename, 120 hwaddr addr, uint64_t max_sz) 121 { 122 return load_image_targphys_as(filename, addr, max_sz, NULL); 123 } 124 125 /* return the size or -1 if error */ 126 ssize_t load_image_targphys_as(const char *filename, 127 hwaddr addr, uint64_t max_sz, AddressSpace *as) 128 { 129 ssize_t size; 130 131 size = get_image_size(filename); 132 if (size < 0 || size > max_sz) { 133 return -1; 134 } 135 if (size > 0) { 136 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 137 return -1; 138 } 139 } 140 return size; 141 } 142 143 ssize_t load_image_mr(const char *filename, MemoryRegion *mr) 144 { 145 ssize_t size; 146 147 if (!memory_access_is_direct(mr, false)) { 148 /* Can only load an image into RAM or ROM */ 149 return -1; 150 } 151 152 size = get_image_size(filename); 153 154 if (size < 0 || size > memory_region_size(mr)) { 155 return -1; 156 } 157 if (size > 0) { 158 if (rom_add_file_mr(filename, mr, -1) < 0) { 159 return -1; 160 } 161 } 162 return size; 163 } 164 165 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 166 const char *source) 167 { 168 const char *nulp; 169 char *ptr; 170 171 if (buf_size <= 0) return; 172 nulp = memchr(source, 0, buf_size); 173 if (nulp) { 174 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 175 } else { 176 rom_add_blob_fixed(name, source, buf_size, dest); 177 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 178 *ptr = 0; 179 } 180 } 181 182 /* A.OUT loader */ 183 184 struct exec 185 { 186 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 187 uint32_t a_text; /* length of text, in bytes */ 188 uint32_t a_data; /* length of data, in bytes */ 189 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 190 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 191 uint32_t a_entry; /* start address */ 192 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 193 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 194 }; 195 196 static void bswap_ahdr(struct exec *e) 197 { 198 bswap32s(&e->a_info); 199 bswap32s(&e->a_text); 200 bswap32s(&e->a_data); 201 bswap32s(&e->a_bss); 202 bswap32s(&e->a_syms); 203 bswap32s(&e->a_entry); 204 bswap32s(&e->a_trsize); 205 bswap32s(&e->a_drsize); 206 } 207 208 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 209 #define OMAGIC 0407 210 #define NMAGIC 0410 211 #define ZMAGIC 0413 212 #define QMAGIC 0314 213 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 214 #define N_TXTOFF(x) \ 215 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 216 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 217 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 218 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 219 220 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 221 222 #define N_DATADDR(x, target_page_size) \ 223 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 224 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 225 226 227 ssize_t load_aout(const char *filename, hwaddr addr, int max_sz, 228 int bswap_needed, hwaddr target_page_size) 229 { 230 int fd; 231 ssize_t size, ret; 232 struct exec e; 233 uint32_t magic; 234 235 fd = open(filename, O_RDONLY | O_BINARY); 236 if (fd < 0) 237 return -1; 238 239 size = read(fd, &e, sizeof(e)); 240 if (size < 0) 241 goto fail; 242 243 if (bswap_needed) { 244 bswap_ahdr(&e); 245 } 246 247 magic = N_MAGIC(e); 248 switch (magic) { 249 case ZMAGIC: 250 case QMAGIC: 251 case OMAGIC: 252 if (e.a_text + e.a_data > max_sz) 253 goto fail; 254 lseek(fd, N_TXTOFF(e), SEEK_SET); 255 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 256 if (size < 0) 257 goto fail; 258 break; 259 case NMAGIC: 260 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 261 goto fail; 262 lseek(fd, N_TXTOFF(e), SEEK_SET); 263 size = read_targphys(filename, fd, addr, e.a_text); 264 if (size < 0) 265 goto fail; 266 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 267 e.a_data); 268 if (ret < 0) 269 goto fail; 270 size += ret; 271 break; 272 default: 273 goto fail; 274 } 275 close(fd); 276 return size; 277 fail: 278 close(fd); 279 return -1; 280 } 281 282 /* ELF loader */ 283 284 static void *load_at(int fd, off_t offset, size_t size) 285 { 286 void *ptr; 287 if (lseek(fd, offset, SEEK_SET) < 0) 288 return NULL; 289 ptr = g_malloc(size); 290 if (read(fd, ptr, size) != size) { 291 g_free(ptr); 292 return NULL; 293 } 294 return ptr; 295 } 296 297 #ifdef ELF_CLASS 298 #undef ELF_CLASS 299 #endif 300 301 #define ELF_CLASS ELFCLASS32 302 #include "elf.h" 303 304 #define SZ 32 305 #define elf_word uint32_t 306 #define elf_sword int32_t 307 #define bswapSZs bswap32s 308 #include "hw/elf_ops.h" 309 310 #undef elfhdr 311 #undef elf_phdr 312 #undef elf_shdr 313 #undef elf_sym 314 #undef elf_rela 315 #undef elf_note 316 #undef elf_word 317 #undef elf_sword 318 #undef bswapSZs 319 #undef SZ 320 #define elfhdr elf64_hdr 321 #define elf_phdr elf64_phdr 322 #define elf_note elf64_note 323 #define elf_shdr elf64_shdr 324 #define elf_sym elf64_sym 325 #define elf_rela elf64_rela 326 #define elf_word uint64_t 327 #define elf_sword int64_t 328 #define bswapSZs bswap64s 329 #define SZ 64 330 #include "hw/elf_ops.h" 331 332 const char *load_elf_strerror(ssize_t error) 333 { 334 switch (error) { 335 case 0: 336 return "No error"; 337 case ELF_LOAD_FAILED: 338 return "Failed to load ELF"; 339 case ELF_LOAD_NOT_ELF: 340 return "The image is not ELF"; 341 case ELF_LOAD_WRONG_ARCH: 342 return "The image is from incompatible architecture"; 343 case ELF_LOAD_WRONG_ENDIAN: 344 return "The image has incorrect endianness"; 345 case ELF_LOAD_TOO_BIG: 346 return "The image segments are too big to load"; 347 default: 348 return "Unknown error"; 349 } 350 } 351 352 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 353 { 354 int fd; 355 uint8_t e_ident_local[EI_NIDENT]; 356 uint8_t *e_ident; 357 size_t hdr_size, off; 358 bool is64l; 359 360 if (!hdr) { 361 hdr = e_ident_local; 362 } 363 e_ident = hdr; 364 365 fd = open(filename, O_RDONLY | O_BINARY); 366 if (fd < 0) { 367 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 368 return; 369 } 370 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 371 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 372 goto fail; 373 } 374 if (e_ident[0] != ELFMAG0 || 375 e_ident[1] != ELFMAG1 || 376 e_ident[2] != ELFMAG2 || 377 e_ident[3] != ELFMAG3) { 378 error_setg(errp, "Bad ELF magic"); 379 goto fail; 380 } 381 382 is64l = e_ident[EI_CLASS] == ELFCLASS64; 383 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 384 if (is64) { 385 *is64 = is64l; 386 } 387 388 off = EI_NIDENT; 389 while (hdr != e_ident_local && off < hdr_size) { 390 size_t br = read(fd, hdr + off, hdr_size - off); 391 switch (br) { 392 case 0: 393 error_setg(errp, "File too short: %s", filename); 394 goto fail; 395 case -1: 396 error_setg_errno(errp, errno, "Failed to read file: %s", 397 filename); 398 goto fail; 399 } 400 off += br; 401 } 402 403 fail: 404 close(fd); 405 } 406 407 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 408 ssize_t load_elf(const char *filename, 409 uint64_t (*elf_note_fn)(void *, void *, bool), 410 uint64_t (*translate_fn)(void *, uint64_t), 411 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 412 uint64_t *highaddr, uint32_t *pflags, int big_endian, 413 int elf_machine, int clear_lsb, int data_swab) 414 { 415 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 416 pentry, lowaddr, highaddr, pflags, big_endian, 417 elf_machine, clear_lsb, data_swab, NULL); 418 } 419 420 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 421 ssize_t load_elf_as(const char *filename, 422 uint64_t (*elf_note_fn)(void *, void *, bool), 423 uint64_t (*translate_fn)(void *, uint64_t), 424 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 425 uint64_t *highaddr, uint32_t *pflags, int big_endian, 426 int elf_machine, int clear_lsb, int data_swab, 427 AddressSpace *as) 428 { 429 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque, 430 pentry, lowaddr, highaddr, pflags, big_endian, 431 elf_machine, clear_lsb, data_swab, as, true); 432 } 433 434 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 435 ssize_t load_elf_ram(const char *filename, 436 uint64_t (*elf_note_fn)(void *, void *, bool), 437 uint64_t (*translate_fn)(void *, uint64_t), 438 void *translate_opaque, uint64_t *pentry, 439 uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags, 440 int big_endian, int elf_machine, int clear_lsb, 441 int data_swab, AddressSpace *as, bool load_rom) 442 { 443 return load_elf_ram_sym(filename, elf_note_fn, 444 translate_fn, translate_opaque, 445 pentry, lowaddr, highaddr, pflags, big_endian, 446 elf_machine, clear_lsb, data_swab, as, 447 load_rom, NULL); 448 } 449 450 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 451 ssize_t load_elf_ram_sym(const char *filename, 452 uint64_t (*elf_note_fn)(void *, void *, bool), 453 uint64_t (*translate_fn)(void *, uint64_t), 454 void *translate_opaque, uint64_t *pentry, 455 uint64_t *lowaddr, uint64_t *highaddr, 456 uint32_t *pflags, int big_endian, int elf_machine, 457 int clear_lsb, int data_swab, 458 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 459 { 460 int fd, data_order, target_data_order, must_swab; 461 ssize_t ret = ELF_LOAD_FAILED; 462 uint8_t e_ident[EI_NIDENT]; 463 464 fd = open(filename, O_RDONLY | O_BINARY); 465 if (fd < 0) { 466 perror(filename); 467 return -1; 468 } 469 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 470 goto fail; 471 if (e_ident[0] != ELFMAG0 || 472 e_ident[1] != ELFMAG1 || 473 e_ident[2] != ELFMAG2 || 474 e_ident[3] != ELFMAG3) { 475 ret = ELF_LOAD_NOT_ELF; 476 goto fail; 477 } 478 #if HOST_BIG_ENDIAN 479 data_order = ELFDATA2MSB; 480 #else 481 data_order = ELFDATA2LSB; 482 #endif 483 must_swab = data_order != e_ident[EI_DATA]; 484 if (big_endian) { 485 target_data_order = ELFDATA2MSB; 486 } else { 487 target_data_order = ELFDATA2LSB; 488 } 489 490 if (target_data_order != e_ident[EI_DATA]) { 491 ret = ELF_LOAD_WRONG_ENDIAN; 492 goto fail; 493 } 494 495 lseek(fd, 0, SEEK_SET); 496 if (e_ident[EI_CLASS] == ELFCLASS64) { 497 ret = load_elf64(filename, fd, elf_note_fn, 498 translate_fn, translate_opaque, must_swab, 499 pentry, lowaddr, highaddr, pflags, elf_machine, 500 clear_lsb, data_swab, as, load_rom, sym_cb); 501 } else { 502 ret = load_elf32(filename, fd, elf_note_fn, 503 translate_fn, translate_opaque, must_swab, 504 pentry, lowaddr, highaddr, pflags, elf_machine, 505 clear_lsb, data_swab, as, load_rom, sym_cb); 506 } 507 508 if (ret != ELF_LOAD_FAILED) { 509 debuginfo_report_elf(filename, fd, 0); 510 } 511 512 fail: 513 close(fd); 514 return ret; 515 } 516 517 static void bswap_uboot_header(uboot_image_header_t *hdr) 518 { 519 #if !HOST_BIG_ENDIAN 520 bswap32s(&hdr->ih_magic); 521 bswap32s(&hdr->ih_hcrc); 522 bswap32s(&hdr->ih_time); 523 bswap32s(&hdr->ih_size); 524 bswap32s(&hdr->ih_load); 525 bswap32s(&hdr->ih_ep); 526 bswap32s(&hdr->ih_dcrc); 527 #endif 528 } 529 530 531 #define ZALLOC_ALIGNMENT 16 532 533 static void *zalloc(void *x, unsigned items, unsigned size) 534 { 535 void *p; 536 537 size *= items; 538 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 539 540 p = g_malloc(size); 541 542 return (p); 543 } 544 545 static void zfree(void *x, void *addr) 546 { 547 g_free(addr); 548 } 549 550 551 #define HEAD_CRC 2 552 #define EXTRA_FIELD 4 553 #define ORIG_NAME 8 554 #define COMMENT 0x10 555 #define RESERVED 0xe0 556 557 #define DEFLATED 8 558 559 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 560 { 561 z_stream s = {}; 562 ssize_t dstbytes; 563 int r, i, flags; 564 565 /* skip header */ 566 i = 10; 567 if (srclen < 4) { 568 goto toosmall; 569 } 570 flags = src[3]; 571 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 572 puts ("Error: Bad gzipped data\n"); 573 return -1; 574 } 575 if ((flags & EXTRA_FIELD) != 0) { 576 if (srclen < 12) { 577 goto toosmall; 578 } 579 i = 12 + src[10] + (src[11] << 8); 580 } 581 if ((flags & ORIG_NAME) != 0) { 582 while (i < srclen && src[i++] != 0) { 583 /* do nothing */ 584 } 585 } 586 if ((flags & COMMENT) != 0) { 587 while (i < srclen && src[i++] != 0) { 588 /* do nothing */ 589 } 590 } 591 if ((flags & HEAD_CRC) != 0) { 592 i += 2; 593 } 594 if (i >= srclen) { 595 goto toosmall; 596 } 597 598 s.zalloc = zalloc; 599 s.zfree = zfree; 600 601 r = inflateInit2(&s, -MAX_WBITS); 602 if (r != Z_OK) { 603 printf ("Error: inflateInit2() returned %d\n", r); 604 return (-1); 605 } 606 s.next_in = src + i; 607 s.avail_in = srclen - i; 608 s.next_out = dst; 609 s.avail_out = dstlen; 610 r = inflate(&s, Z_FINISH); 611 if (r != Z_OK && r != Z_STREAM_END) { 612 printf ("Error: inflate() returned %d\n", r); 613 return -1; 614 } 615 dstbytes = s.next_out - (unsigned char *) dst; 616 inflateEnd(&s); 617 618 return dstbytes; 619 620 toosmall: 621 puts("Error: gunzip out of data in header\n"); 622 return -1; 623 } 624 625 /* Load a U-Boot image. */ 626 static ssize_t load_uboot_image(const char *filename, hwaddr *ep, 627 hwaddr *loadaddr, int *is_linux, 628 uint8_t image_type, 629 uint64_t (*translate_fn)(void *, uint64_t), 630 void *translate_opaque, AddressSpace *as) 631 { 632 int fd; 633 ssize_t size; 634 hwaddr address; 635 uboot_image_header_t h; 636 uboot_image_header_t *hdr = &h; 637 uint8_t *data = NULL; 638 int ret = -1; 639 int do_uncompress = 0; 640 641 fd = open(filename, O_RDONLY | O_BINARY); 642 if (fd < 0) 643 return -1; 644 645 size = read(fd, hdr, sizeof(uboot_image_header_t)); 646 if (size < sizeof(uboot_image_header_t)) { 647 goto out; 648 } 649 650 bswap_uboot_header(hdr); 651 652 if (hdr->ih_magic != IH_MAGIC) 653 goto out; 654 655 if (hdr->ih_type != image_type) { 656 if (!(image_type == IH_TYPE_KERNEL && 657 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 658 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 659 image_type); 660 goto out; 661 } 662 } 663 664 /* TODO: Implement other image types. */ 665 switch (hdr->ih_type) { 666 case IH_TYPE_KERNEL_NOLOAD: 667 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 668 fprintf(stderr, "this image format (kernel_noload) cannot be " 669 "loaded on this machine type"); 670 goto out; 671 } 672 673 hdr->ih_load = *loadaddr + sizeof(*hdr); 674 hdr->ih_ep += hdr->ih_load; 675 /* fall through */ 676 case IH_TYPE_KERNEL: 677 address = hdr->ih_load; 678 if (translate_fn) { 679 address = translate_fn(translate_opaque, address); 680 } 681 if (loadaddr) { 682 *loadaddr = hdr->ih_load; 683 } 684 685 switch (hdr->ih_comp) { 686 case IH_COMP_NONE: 687 break; 688 case IH_COMP_GZIP: 689 do_uncompress = 1; 690 break; 691 default: 692 fprintf(stderr, 693 "Unable to load u-boot images with compression type %d\n", 694 hdr->ih_comp); 695 goto out; 696 } 697 698 if (ep) { 699 *ep = hdr->ih_ep; 700 } 701 702 /* TODO: Check CPU type. */ 703 if (is_linux) { 704 if (hdr->ih_os == IH_OS_LINUX) { 705 *is_linux = 1; 706 } else if (hdr->ih_os == IH_OS_VXWORKS) { 707 /* 708 * VxWorks 7 uses the same boot interface as the Linux kernel 709 * on Arm (64-bit only), PowerPC and RISC-V architectures. 710 */ 711 switch (hdr->ih_arch) { 712 case IH_ARCH_ARM64: 713 case IH_ARCH_PPC: 714 case IH_ARCH_RISCV: 715 *is_linux = 1; 716 break; 717 default: 718 *is_linux = 0; 719 break; 720 } 721 } else { 722 *is_linux = 0; 723 } 724 } 725 726 break; 727 case IH_TYPE_RAMDISK: 728 address = *loadaddr; 729 break; 730 default: 731 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 732 goto out; 733 } 734 735 data = g_malloc(hdr->ih_size); 736 737 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 738 fprintf(stderr, "Error reading file\n"); 739 goto out; 740 } 741 742 if (do_uncompress) { 743 uint8_t *compressed_data; 744 size_t max_bytes; 745 ssize_t bytes; 746 747 compressed_data = data; 748 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 749 data = g_malloc(max_bytes); 750 751 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 752 g_free(compressed_data); 753 if (bytes < 0) { 754 fprintf(stderr, "Unable to decompress gzipped image!\n"); 755 goto out; 756 } 757 hdr->ih_size = bytes; 758 } 759 760 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 761 762 ret = hdr->ih_size; 763 764 out: 765 g_free(data); 766 close(fd); 767 return ret; 768 } 769 770 ssize_t load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 771 int *is_linux, 772 uint64_t (*translate_fn)(void *, uint64_t), 773 void *translate_opaque) 774 { 775 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 776 translate_fn, translate_opaque, NULL); 777 } 778 779 ssize_t load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 780 int *is_linux, 781 uint64_t (*translate_fn)(void *, uint64_t), 782 void *translate_opaque, AddressSpace *as) 783 { 784 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 785 translate_fn, translate_opaque, as); 786 } 787 788 /* Load a ramdisk. */ 789 ssize_t load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 790 { 791 return load_ramdisk_as(filename, addr, max_sz, NULL); 792 } 793 794 ssize_t load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 795 AddressSpace *as) 796 { 797 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 798 NULL, NULL, as); 799 } 800 801 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 802 ssize_t load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 803 uint8_t **buffer) 804 { 805 uint8_t *compressed_data = NULL; 806 uint8_t *data = NULL; 807 gsize len; 808 ssize_t bytes; 809 int ret = -1; 810 811 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 812 NULL)) { 813 goto out; 814 } 815 816 /* Is it a gzip-compressed file? */ 817 if (len < 2 || 818 compressed_data[0] != 0x1f || 819 compressed_data[1] != 0x8b) { 820 goto out; 821 } 822 823 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 824 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 825 } 826 827 data = g_malloc(max_sz); 828 bytes = gunzip(data, max_sz, compressed_data, len); 829 if (bytes < 0) { 830 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 831 filename); 832 goto out; 833 } 834 835 /* trim to actual size and return to caller */ 836 *buffer = g_realloc(data, bytes); 837 ret = bytes; 838 /* ownership has been transferred to caller */ 839 data = NULL; 840 841 out: 842 g_free(compressed_data); 843 g_free(data); 844 return ret; 845 } 846 847 /* Load a gzip-compressed kernel. */ 848 ssize_t load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 849 { 850 ssize_t bytes; 851 uint8_t *data; 852 853 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 854 if (bytes != -1) { 855 rom_add_blob_fixed(filename, data, bytes, addr); 856 g_free(data); 857 } 858 return bytes; 859 } 860 861 /* The PE/COFF MS-DOS stub magic number */ 862 #define EFI_PE_MSDOS_MAGIC "MZ" 863 864 /* 865 * The Linux header magic number for a EFI PE/COFF 866 * image targeting an unspecified architecture. 867 */ 868 #define EFI_PE_LINUX_MAGIC "\xcd\x23\x82\x81" 869 870 /* 871 * Bootable Linux kernel images may be packaged as EFI zboot images, which are 872 * self-decompressing executables when loaded via EFI. The compressed payload 873 * can also be extracted from the image and decompressed by a non-EFI loader. 874 * 875 * The de facto specification for this format is at the following URL: 876 * 877 * https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/firmware/efi/libstub/zboot-header.S 878 * 879 * This definition is based on Linux upstream commit 29636a5ce87beba. 880 */ 881 struct linux_efi_zboot_header { 882 uint8_t msdos_magic[2]; /* PE/COFF 'MZ' magic number */ 883 uint8_t reserved0[2]; 884 uint8_t zimg[4]; /* "zimg" for Linux EFI zboot images */ 885 uint32_t payload_offset; /* LE offset to compressed payload */ 886 uint32_t payload_size; /* LE size of the compressed payload */ 887 uint8_t reserved1[8]; 888 char compression_type[32]; /* Compression type, NUL terminated */ 889 uint8_t linux_magic[4]; /* Linux header magic */ 890 uint32_t pe_header_offset; /* LE offset to the PE header */ 891 }; 892 893 /* 894 * Check whether *buffer points to a Linux EFI zboot image in memory. 895 * 896 * If it does, attempt to decompress it to a new buffer, and free the old one. 897 * If any of this fails, return an error to the caller. 898 * 899 * If the image is not a Linux EFI zboot image, do nothing and return success. 900 */ 901 ssize_t unpack_efi_zboot_image(uint8_t **buffer, int *size) 902 { 903 const struct linux_efi_zboot_header *header; 904 uint8_t *data = NULL; 905 int ploff, plsize; 906 ssize_t bytes; 907 908 /* ignore if this is too small to be a EFI zboot image */ 909 if (*size < sizeof(*header)) { 910 return 0; 911 } 912 913 header = (struct linux_efi_zboot_header *)*buffer; 914 915 /* ignore if this is not a Linux EFI zboot image */ 916 if (memcmp(&header->msdos_magic, EFI_PE_MSDOS_MAGIC, 2) != 0 || 917 memcmp(&header->zimg, "zimg", 4) != 0 || 918 memcmp(&header->linux_magic, EFI_PE_LINUX_MAGIC, 4) != 0) { 919 return 0; 920 } 921 922 if (strcmp(header->compression_type, "gzip") != 0) { 923 fprintf(stderr, 924 "unable to handle EFI zboot image with \"%.*s\" compression\n", 925 (int)sizeof(header->compression_type) - 1, 926 header->compression_type); 927 return -1; 928 } 929 930 ploff = ldl_le_p(&header->payload_offset); 931 plsize = ldl_le_p(&header->payload_size); 932 933 if (ploff < 0 || plsize < 0 || ploff + plsize > *size) { 934 fprintf(stderr, "unable to handle corrupt EFI zboot image\n"); 935 return -1; 936 } 937 938 data = g_malloc(LOAD_IMAGE_MAX_GUNZIP_BYTES); 939 bytes = gunzip(data, LOAD_IMAGE_MAX_GUNZIP_BYTES, *buffer + ploff, plsize); 940 if (bytes < 0) { 941 fprintf(stderr, "failed to decompress EFI zboot image\n"); 942 g_free(data); 943 return -1; 944 } 945 946 g_free(*buffer); 947 *buffer = g_realloc(data, bytes); 948 *size = bytes; 949 return bytes; 950 } 951 952 /* 953 * Functions for reboot-persistent memory regions. 954 * - used for vga bios and option roms. 955 * - also linux kernel (-kernel / -initrd). 956 */ 957 958 typedef struct Rom Rom; 959 960 struct Rom { 961 char *name; 962 char *path; 963 964 /* datasize is the amount of memory allocated in "data". If datasize is less 965 * than romsize, it means that the area from datasize to romsize is filled 966 * with zeros. 967 */ 968 size_t romsize; 969 size_t datasize; 970 971 uint8_t *data; 972 MemoryRegion *mr; 973 AddressSpace *as; 974 int isrom; 975 char *fw_dir; 976 char *fw_file; 977 GMappedFile *mapped_file; 978 979 bool committed; 980 981 hwaddr addr; 982 QTAILQ_ENTRY(Rom) next; 983 }; 984 985 static FWCfgState *fw_cfg; 986 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 987 988 /* 989 * rom->data can be heap-allocated or memory-mapped (e.g. when added with 990 * rom_add_elf_program()) 991 */ 992 static void rom_free_data(Rom *rom) 993 { 994 if (rom->mapped_file) { 995 g_mapped_file_unref(rom->mapped_file); 996 rom->mapped_file = NULL; 997 } else { 998 g_free(rom->data); 999 } 1000 1001 rom->data = NULL; 1002 } 1003 1004 static void rom_free(Rom *rom) 1005 { 1006 rom_free_data(rom); 1007 g_free(rom->path); 1008 g_free(rom->name); 1009 g_free(rom->fw_dir); 1010 g_free(rom->fw_file); 1011 g_free(rom); 1012 } 1013 1014 static inline bool rom_order_compare(Rom *rom, Rom *item) 1015 { 1016 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 1017 (rom->as == item->as && rom->addr >= item->addr); 1018 } 1019 1020 static void rom_insert(Rom *rom) 1021 { 1022 Rom *item; 1023 1024 if (roms_loaded) { 1025 hw_error ("ROM images must be loaded at startup\n"); 1026 } 1027 1028 /* The user didn't specify an address space, this is the default */ 1029 if (!rom->as) { 1030 rom->as = &address_space_memory; 1031 } 1032 1033 rom->committed = false; 1034 1035 /* List is ordered by load address in the same address space */ 1036 QTAILQ_FOREACH(item, &roms, next) { 1037 if (rom_order_compare(rom, item)) { 1038 continue; 1039 } 1040 QTAILQ_INSERT_BEFORE(item, rom, next); 1041 return; 1042 } 1043 QTAILQ_INSERT_TAIL(&roms, rom, next); 1044 } 1045 1046 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 1047 { 1048 if (fw_cfg) { 1049 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 1050 } 1051 } 1052 1053 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 1054 { 1055 void *data; 1056 1057 rom->mr = g_malloc(sizeof(*rom->mr)); 1058 memory_region_init_resizeable_ram(rom->mr, owner, name, 1059 rom->datasize, rom->romsize, 1060 fw_cfg_resized, 1061 &error_fatal); 1062 memory_region_set_readonly(rom->mr, ro); 1063 vmstate_register_ram_global(rom->mr); 1064 1065 data = memory_region_get_ram_ptr(rom->mr); 1066 memcpy(data, rom->data, rom->datasize); 1067 1068 return data; 1069 } 1070 1071 ssize_t rom_add_file(const char *file, const char *fw_dir, 1072 hwaddr addr, int32_t bootindex, 1073 bool option_rom, MemoryRegion *mr, 1074 AddressSpace *as) 1075 { 1076 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1077 Rom *rom; 1078 ssize_t rc; 1079 int fd = -1; 1080 char devpath[100]; 1081 1082 if (as && mr) { 1083 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 1084 "not valid when loading a rom\n"); 1085 /* We haven't allocated anything so we don't need any cleanup */ 1086 return -1; 1087 } 1088 1089 rom = g_malloc0(sizeof(*rom)); 1090 rom->name = g_strdup(file); 1091 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 1092 rom->as = as; 1093 if (rom->path == NULL) { 1094 rom->path = g_strdup(file); 1095 } 1096 1097 fd = open(rom->path, O_RDONLY | O_BINARY); 1098 if (fd == -1) { 1099 fprintf(stderr, "Could not open option rom '%s': %s\n", 1100 rom->path, strerror(errno)); 1101 goto err; 1102 } 1103 1104 if (fw_dir) { 1105 rom->fw_dir = g_strdup(fw_dir); 1106 rom->fw_file = g_strdup(file); 1107 } 1108 rom->addr = addr; 1109 rom->romsize = lseek(fd, 0, SEEK_END); 1110 if (rom->romsize == -1) { 1111 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 1112 rom->name, strerror(errno)); 1113 goto err; 1114 } 1115 1116 rom->datasize = rom->romsize; 1117 rom->data = g_malloc0(rom->datasize); 1118 lseek(fd, 0, SEEK_SET); 1119 rc = read(fd, rom->data, rom->datasize); 1120 if (rc != rom->datasize) { 1121 fprintf(stderr, "rom: file %-20s: read error: rc=%zd (expected %zd)\n", 1122 rom->name, rc, rom->datasize); 1123 goto err; 1124 } 1125 close(fd); 1126 rom_insert(rom); 1127 if (rom->fw_file && fw_cfg) { 1128 const char *basename; 1129 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 1130 void *data; 1131 1132 basename = strrchr(rom->fw_file, '/'); 1133 if (basename) { 1134 basename++; 1135 } else { 1136 basename = rom->fw_file; 1137 } 1138 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 1139 basename); 1140 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1141 1142 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 1143 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 1144 } else { 1145 data = rom->data; 1146 } 1147 1148 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 1149 } else { 1150 if (mr) { 1151 rom->mr = mr; 1152 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 1153 } else { 1154 snprintf(devpath, sizeof(devpath), "/rom@" HWADDR_FMT_plx, addr); 1155 } 1156 } 1157 1158 add_boot_device_path(bootindex, NULL, devpath); 1159 return 0; 1160 1161 err: 1162 if (fd != -1) 1163 close(fd); 1164 1165 rom_free(rom); 1166 return -1; 1167 } 1168 1169 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1170 size_t max_len, hwaddr addr, const char *fw_file_name, 1171 FWCfgCallback fw_callback, void *callback_opaque, 1172 AddressSpace *as, bool read_only) 1173 { 1174 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1175 Rom *rom; 1176 MemoryRegion *mr = NULL; 1177 1178 rom = g_malloc0(sizeof(*rom)); 1179 rom->name = g_strdup(name); 1180 rom->as = as; 1181 rom->addr = addr; 1182 rom->romsize = max_len ? max_len : len; 1183 rom->datasize = len; 1184 g_assert(rom->romsize >= rom->datasize); 1185 rom->data = g_malloc0(rom->datasize); 1186 memcpy(rom->data, blob, len); 1187 rom_insert(rom); 1188 if (fw_file_name && fw_cfg) { 1189 char devpath[100]; 1190 void *data; 1191 1192 if (read_only) { 1193 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1194 } else { 1195 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1196 } 1197 1198 if (mc->rom_file_has_mr) { 1199 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1200 mr = rom->mr; 1201 } else { 1202 data = rom->data; 1203 } 1204 1205 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1206 fw_callback, NULL, callback_opaque, 1207 data, rom->datasize, read_only); 1208 } 1209 return mr; 1210 } 1211 1212 /* This function is specific for elf program because we don't need to allocate 1213 * all the rom. We just allocate the first part and the rest is just zeros. This 1214 * is why romsize and datasize are different. Also, this function takes its own 1215 * reference to "mapped_file", so we don't have to allocate and copy the buffer. 1216 */ 1217 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, 1218 size_t datasize, size_t romsize, hwaddr addr, 1219 AddressSpace *as) 1220 { 1221 Rom *rom; 1222 1223 rom = g_malloc0(sizeof(*rom)); 1224 rom->name = g_strdup(name); 1225 rom->addr = addr; 1226 rom->datasize = datasize; 1227 rom->romsize = romsize; 1228 rom->data = data; 1229 rom->as = as; 1230 1231 if (mapped_file && data) { 1232 g_mapped_file_ref(mapped_file); 1233 rom->mapped_file = mapped_file; 1234 } 1235 1236 rom_insert(rom); 1237 return 0; 1238 } 1239 1240 ssize_t rom_add_vga(const char *file) 1241 { 1242 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1243 } 1244 1245 ssize_t rom_add_option(const char *file, int32_t bootindex) 1246 { 1247 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1248 } 1249 1250 static void rom_reset(void *unused) 1251 { 1252 Rom *rom; 1253 1254 QTAILQ_FOREACH(rom, &roms, next) { 1255 if (rom->fw_file) { 1256 continue; 1257 } 1258 /* 1259 * We don't need to fill in the RAM with ROM data because we'll fill 1260 * the data in during the next incoming migration in all cases. Note 1261 * that some of those RAMs can actually be modified by the guest. 1262 */ 1263 if (runstate_check(RUN_STATE_INMIGRATE)) { 1264 if (rom->data && rom->isrom) { 1265 /* 1266 * Free it so that a rom_reset after migration doesn't 1267 * overwrite a potentially modified 'rom'. 1268 */ 1269 rom_free_data(rom); 1270 } 1271 continue; 1272 } 1273 1274 if (rom->data == NULL) { 1275 continue; 1276 } 1277 if (rom->mr) { 1278 void *host = memory_region_get_ram_ptr(rom->mr); 1279 memcpy(host, rom->data, rom->datasize); 1280 memset(host + rom->datasize, 0, rom->romsize - rom->datasize); 1281 } else { 1282 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1283 rom->data, rom->datasize); 1284 address_space_set(rom->as, rom->addr + rom->datasize, 0, 1285 rom->romsize - rom->datasize, 1286 MEMTXATTRS_UNSPECIFIED); 1287 } 1288 if (rom->isrom) { 1289 /* rom needs to be written only once */ 1290 rom_free_data(rom); 1291 } 1292 /* 1293 * The rom loader is really on the same level as firmware in the guest 1294 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1295 * that the instruction cache for that new region is clear, so that the 1296 * CPU definitely fetches its instructions from the just written data. 1297 */ 1298 cpu_flush_icache_range(rom->addr, rom->datasize); 1299 1300 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom); 1301 } 1302 } 1303 1304 /* Return true if two consecutive ROMs in the ROM list overlap */ 1305 static bool roms_overlap(Rom *last_rom, Rom *this_rom) 1306 { 1307 if (!last_rom) { 1308 return false; 1309 } 1310 return last_rom->as == this_rom->as && 1311 last_rom->addr + last_rom->romsize > this_rom->addr; 1312 } 1313 1314 static const char *rom_as_name(Rom *rom) 1315 { 1316 const char *name = rom->as ? rom->as->name : NULL; 1317 return name ?: "anonymous"; 1318 } 1319 1320 static void rom_print_overlap_error_header(void) 1321 { 1322 error_report("Some ROM regions are overlapping"); 1323 error_printf( 1324 "These ROM regions might have been loaded by " 1325 "direct user request or by default.\n" 1326 "They could be BIOS/firmware images, a guest kernel, " 1327 "initrd or some other file loaded into guest memory.\n" 1328 "Check whether you intended to load all this guest code, and " 1329 "whether it has been built to load to the correct addresses.\n"); 1330 } 1331 1332 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom) 1333 { 1334 error_printf( 1335 "\nThe following two regions overlap (in the %s address space):\n", 1336 rom_as_name(rom)); 1337 error_printf( 1338 " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n", 1339 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize); 1340 error_printf( 1341 " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n", 1342 rom->name, rom->addr, rom->addr + rom->romsize); 1343 } 1344 1345 int rom_check_and_register_reset(void) 1346 { 1347 MemoryRegionSection section; 1348 Rom *rom, *last_rom = NULL; 1349 bool found_overlap = false; 1350 1351 QTAILQ_FOREACH(rom, &roms, next) { 1352 if (rom->fw_file) { 1353 continue; 1354 } 1355 if (!rom->mr) { 1356 if (roms_overlap(last_rom, rom)) { 1357 if (!found_overlap) { 1358 found_overlap = true; 1359 rom_print_overlap_error_header(); 1360 } 1361 rom_print_one_overlap_error(last_rom, rom); 1362 /* Keep going through the list so we report all overlaps */ 1363 } 1364 last_rom = rom; 1365 } 1366 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1367 rom->addr, 1); 1368 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1369 memory_region_unref(section.mr); 1370 } 1371 if (found_overlap) { 1372 return -1; 1373 } 1374 1375 qemu_register_reset(rom_reset, NULL); 1376 roms_loaded = 1; 1377 return 0; 1378 } 1379 1380 void rom_set_fw(FWCfgState *f) 1381 { 1382 fw_cfg = f; 1383 } 1384 1385 void rom_set_order_override(int order) 1386 { 1387 if (!fw_cfg) 1388 return; 1389 fw_cfg_set_order_override(fw_cfg, order); 1390 } 1391 1392 void rom_reset_order_override(void) 1393 { 1394 if (!fw_cfg) 1395 return; 1396 fw_cfg_reset_order_override(fw_cfg); 1397 } 1398 1399 void rom_transaction_begin(void) 1400 { 1401 Rom *rom; 1402 1403 /* Ignore ROMs added without the transaction API */ 1404 QTAILQ_FOREACH(rom, &roms, next) { 1405 rom->committed = true; 1406 } 1407 } 1408 1409 void rom_transaction_end(bool commit) 1410 { 1411 Rom *rom; 1412 Rom *tmp; 1413 1414 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1415 if (rom->committed) { 1416 continue; 1417 } 1418 if (commit) { 1419 rom->committed = true; 1420 } else { 1421 QTAILQ_REMOVE(&roms, rom, next); 1422 rom_free(rom); 1423 } 1424 } 1425 } 1426 1427 static Rom *find_rom(hwaddr addr, size_t size) 1428 { 1429 Rom *rom; 1430 1431 QTAILQ_FOREACH(rom, &roms, next) { 1432 if (rom->fw_file) { 1433 continue; 1434 } 1435 if (rom->mr) { 1436 continue; 1437 } 1438 if (rom->addr > addr) { 1439 continue; 1440 } 1441 if (rom->addr + rom->romsize < addr + size) { 1442 continue; 1443 } 1444 return rom; 1445 } 1446 return NULL; 1447 } 1448 1449 typedef struct RomSec { 1450 hwaddr base; 1451 int se; /* start/end flag */ 1452 } RomSec; 1453 1454 1455 /* 1456 * Sort into address order. We break ties between rom-startpoints 1457 * and rom-endpoints in favour of the startpoint, by sorting the 0->1 1458 * transition before the 1->0 transition. Either way round would 1459 * work, but this way saves a little work later by avoiding 1460 * dealing with "gaps" of 0 length. 1461 */ 1462 static gint sort_secs(gconstpointer a, gconstpointer b) 1463 { 1464 RomSec *ra = (RomSec *) a; 1465 RomSec *rb = (RomSec *) b; 1466 1467 if (ra->base == rb->base) { 1468 return ra->se - rb->se; 1469 } 1470 return ra->base > rb->base ? 1 : -1; 1471 } 1472 1473 static GList *add_romsec_to_list(GList *secs, hwaddr base, int se) 1474 { 1475 RomSec *cand = g_new(RomSec, 1); 1476 cand->base = base; 1477 cand->se = se; 1478 return g_list_prepend(secs, cand); 1479 } 1480 1481 RomGap rom_find_largest_gap_between(hwaddr base, size_t size) 1482 { 1483 Rom *rom; 1484 RomSec *cand; 1485 RomGap res = {0, 0}; 1486 hwaddr gapstart = base; 1487 GList *it, *secs = NULL; 1488 int count = 0; 1489 1490 QTAILQ_FOREACH(rom, &roms, next) { 1491 /* Ignore blobs being loaded to special places */ 1492 if (rom->mr || rom->fw_file) { 1493 continue; 1494 } 1495 /* ignore anything finishing below base */ 1496 if (rom->addr + rom->romsize <= base) { 1497 continue; 1498 } 1499 /* ignore anything starting above the region */ 1500 if (rom->addr >= base + size) { 1501 continue; 1502 } 1503 1504 /* Save the start and end of each relevant ROM */ 1505 secs = add_romsec_to_list(secs, rom->addr, 1); 1506 1507 if (rom->addr + rom->romsize < base + size) { 1508 secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1); 1509 } 1510 } 1511 1512 /* sentinel */ 1513 secs = add_romsec_to_list(secs, base + size, 1); 1514 1515 secs = g_list_sort(secs, sort_secs); 1516 1517 for (it = g_list_first(secs); it; it = g_list_next(it)) { 1518 cand = (RomSec *) it->data; 1519 if (count == 0 && count + cand->se == 1) { 1520 size_t gap = cand->base - gapstart; 1521 if (gap > res.size) { 1522 res.base = gapstart; 1523 res.size = gap; 1524 } 1525 } else if (count == 1 && count + cand->se == 0) { 1526 gapstart = cand->base; 1527 } 1528 count += cand->se; 1529 } 1530 1531 g_list_free_full(secs, g_free); 1532 return res; 1533 } 1534 1535 /* 1536 * Copies memory from registered ROMs to dest. Any memory that is contained in 1537 * a ROM between addr and addr + size is copied. Note that this can involve 1538 * multiple ROMs, which need not start at addr and need not end at addr + size. 1539 */ 1540 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1541 { 1542 hwaddr end = addr + size; 1543 uint8_t *s, *d = dest; 1544 size_t l = 0; 1545 Rom *rom; 1546 1547 QTAILQ_FOREACH(rom, &roms, next) { 1548 if (rom->fw_file) { 1549 continue; 1550 } 1551 if (rom->mr) { 1552 continue; 1553 } 1554 if (rom->addr + rom->romsize < addr) { 1555 continue; 1556 } 1557 if (rom->addr > end || rom->addr < addr) { 1558 break; 1559 } 1560 1561 d = dest + (rom->addr - addr); 1562 s = rom->data; 1563 l = rom->datasize; 1564 1565 if ((d + l) > (dest + size)) { 1566 l = dest - d; 1567 } 1568 1569 if (l > 0) { 1570 memcpy(d, s, l); 1571 } 1572 1573 if (rom->romsize > rom->datasize) { 1574 /* If datasize is less than romsize, it means that we didn't 1575 * allocate all the ROM because the trailing data are only zeros. 1576 */ 1577 1578 d += l; 1579 l = rom->romsize - rom->datasize; 1580 1581 if ((d + l) > (dest + size)) { 1582 /* Rom size doesn't fit in the destination area. Adjust to avoid 1583 * overflow. 1584 */ 1585 l = dest - d; 1586 } 1587 1588 if (l > 0) { 1589 memset(d, 0x0, l); 1590 } 1591 } 1592 } 1593 1594 return (d + l) - dest; 1595 } 1596 1597 void *rom_ptr(hwaddr addr, size_t size) 1598 { 1599 Rom *rom; 1600 1601 rom = find_rom(addr, size); 1602 if (!rom || !rom->data) 1603 return NULL; 1604 return rom->data + (addr - rom->addr); 1605 } 1606 1607 typedef struct FindRomCBData { 1608 size_t size; /* Amount of data we want from ROM, in bytes */ 1609 MemoryRegion *mr; /* MR at the unaliased guest addr */ 1610 hwaddr xlat; /* Offset of addr within mr */ 1611 void *rom; /* Output: rom data pointer, if found */ 1612 } FindRomCBData; 1613 1614 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr, 1615 hwaddr offset_in_region, void *opaque) 1616 { 1617 FindRomCBData *cbdata = opaque; 1618 hwaddr alias_addr; 1619 1620 if (mr != cbdata->mr) { 1621 return false; 1622 } 1623 1624 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region; 1625 cbdata->rom = rom_ptr(alias_addr, cbdata->size); 1626 if (!cbdata->rom) { 1627 return false; 1628 } 1629 /* Found a match, stop iterating */ 1630 return true; 1631 } 1632 1633 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size) 1634 { 1635 /* 1636 * Find any ROM data for the given guest address range. If there 1637 * is a ROM blob then return a pointer to the host memory 1638 * corresponding to 'addr'; otherwise return NULL. 1639 * 1640 * We look not only for ROM blobs that were loaded directly to 1641 * addr, but also for ROM blobs that were loaded to aliases of 1642 * that memory at other addresses within the AddressSpace. 1643 * 1644 * Note that we do not check @as against the 'as' member in the 1645 * 'struct Rom' returned by rom_ptr(). The Rom::as is the 1646 * AddressSpace which the rom blob should be written to, whereas 1647 * our @as argument is the AddressSpace which we are (effectively) 1648 * reading from, and the same underlying RAM will often be visible 1649 * in multiple AddressSpaces. (A common example is a ROM blob 1650 * written to the 'system' address space but then read back via a 1651 * CPU's cpu->as pointer.) This does mean we might potentially 1652 * return a false-positive match if a ROM blob was loaded into an 1653 * AS which is entirely separate and distinct from the one we're 1654 * querying, but this issue exists also for rom_ptr() and hasn't 1655 * caused any problems in practice. 1656 */ 1657 FlatView *fv; 1658 void *rom; 1659 hwaddr len_unused; 1660 FindRomCBData cbdata = {}; 1661 1662 /* Easy case: there's data at the actual address */ 1663 rom = rom_ptr(addr, size); 1664 if (rom) { 1665 return rom; 1666 } 1667 1668 RCU_READ_LOCK_GUARD(); 1669 1670 fv = address_space_to_flatview(as); 1671 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused, 1672 false, MEMTXATTRS_UNSPECIFIED); 1673 if (!cbdata.mr) { 1674 /* Nothing at this address, so there can't be any aliasing */ 1675 return NULL; 1676 } 1677 cbdata.size = size; 1678 flatview_for_each_range(fv, find_rom_cb, &cbdata); 1679 return cbdata.rom; 1680 } 1681 1682 HumanReadableText *qmp_x_query_roms(Error **errp) 1683 { 1684 Rom *rom; 1685 g_autoptr(GString) buf = g_string_new(""); 1686 1687 QTAILQ_FOREACH(rom, &roms, next) { 1688 if (rom->mr) { 1689 g_string_append_printf(buf, "%s" 1690 " size=0x%06zx name=\"%s\"\n", 1691 memory_region_name(rom->mr), 1692 rom->romsize, 1693 rom->name); 1694 } else if (!rom->fw_file) { 1695 g_string_append_printf(buf, "addr=" HWADDR_FMT_plx 1696 " size=0x%06zx mem=%s name=\"%s\"\n", 1697 rom->addr, rom->romsize, 1698 rom->isrom ? "rom" : "ram", 1699 rom->name); 1700 } else { 1701 g_string_append_printf(buf, "fw=%s/%s" 1702 " size=0x%06zx name=\"%s\"\n", 1703 rom->fw_dir, 1704 rom->fw_file, 1705 rom->romsize, 1706 rom->name); 1707 } 1708 } 1709 1710 return human_readable_text_from_str(buf); 1711 } 1712 1713 typedef enum HexRecord HexRecord; 1714 enum HexRecord { 1715 DATA_RECORD = 0, 1716 EOF_RECORD, 1717 EXT_SEG_ADDR_RECORD, 1718 START_SEG_ADDR_RECORD, 1719 EXT_LINEAR_ADDR_RECORD, 1720 START_LINEAR_ADDR_RECORD, 1721 }; 1722 1723 /* Each record contains a 16-bit address which is combined with the upper 16 1724 * bits of the implicit "next address" to form a 32-bit address. 1725 */ 1726 #define NEXT_ADDR_MASK 0xffff0000 1727 1728 #define DATA_FIELD_MAX_LEN 0xff 1729 #define LEN_EXCEPT_DATA 0x5 1730 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1731 * sizeof(checksum) */ 1732 typedef struct { 1733 uint8_t byte_count; 1734 uint16_t address; 1735 uint8_t record_type; 1736 uint8_t data[DATA_FIELD_MAX_LEN]; 1737 uint8_t checksum; 1738 } HexLine; 1739 1740 /* return 0 or -1 if error */ 1741 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1742 uint32_t *index, const bool in_process) 1743 { 1744 /* +-------+---------------+-------+---------------------+--------+ 1745 * | byte | |record | | | 1746 * | count | address | type | data |checksum| 1747 * +-------+---------------+-------+---------------------+--------+ 1748 * ^ ^ ^ ^ ^ ^ 1749 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1750 */ 1751 uint8_t value = 0; 1752 uint32_t idx = *index; 1753 /* ignore space */ 1754 if (g_ascii_isspace(c)) { 1755 return true; 1756 } 1757 if (!g_ascii_isxdigit(c) || !in_process) { 1758 return false; 1759 } 1760 value = g_ascii_xdigit_value(c); 1761 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1762 if (idx < 2) { 1763 line->byte_count |= value; 1764 } else if (2 <= idx && idx < 6) { 1765 line->address <<= 4; 1766 line->address += g_ascii_xdigit_value(c); 1767 } else if (6 <= idx && idx < 8) { 1768 line->record_type |= value; 1769 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1770 line->data[(idx - 8) >> 1] |= value; 1771 } else if (8 + 2 * line->byte_count <= idx && 1772 idx < 10 + 2 * line->byte_count) { 1773 line->checksum |= value; 1774 } else { 1775 return false; 1776 } 1777 *our_checksum += value; 1778 ++(*index); 1779 return true; 1780 } 1781 1782 typedef struct { 1783 const char *filename; 1784 HexLine line; 1785 uint8_t *bin_buf; 1786 hwaddr *start_addr; 1787 int total_size; 1788 uint32_t next_address_to_write; 1789 uint32_t current_address; 1790 uint32_t current_rom_index; 1791 uint32_t rom_start_address; 1792 AddressSpace *as; 1793 bool complete; 1794 } HexParser; 1795 1796 /* return size or -1 if error */ 1797 static int handle_record_type(HexParser *parser) 1798 { 1799 HexLine *line = &(parser->line); 1800 switch (line->record_type) { 1801 case DATA_RECORD: 1802 parser->current_address = 1803 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1804 /* verify this is a contiguous block of memory */ 1805 if (parser->current_address != parser->next_address_to_write) { 1806 if (parser->current_rom_index != 0) { 1807 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1808 parser->current_rom_index, 1809 parser->rom_start_address, parser->as); 1810 } 1811 parser->rom_start_address = parser->current_address; 1812 parser->current_rom_index = 0; 1813 } 1814 1815 /* copy from line buffer to output bin_buf */ 1816 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1817 line->byte_count); 1818 parser->current_rom_index += line->byte_count; 1819 parser->total_size += line->byte_count; 1820 /* save next address to write */ 1821 parser->next_address_to_write = 1822 parser->current_address + line->byte_count; 1823 break; 1824 1825 case EOF_RECORD: 1826 if (parser->current_rom_index != 0) { 1827 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1828 parser->current_rom_index, 1829 parser->rom_start_address, parser->as); 1830 } 1831 parser->complete = true; 1832 return parser->total_size; 1833 case EXT_SEG_ADDR_RECORD: 1834 case EXT_LINEAR_ADDR_RECORD: 1835 if (line->byte_count != 2 && line->address != 0) { 1836 return -1; 1837 } 1838 1839 if (parser->current_rom_index != 0) { 1840 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1841 parser->current_rom_index, 1842 parser->rom_start_address, parser->as); 1843 } 1844 1845 /* save next address to write, 1846 * in case of non-contiguous block of memory */ 1847 parser->next_address_to_write = (line->data[0] << 12) | 1848 (line->data[1] << 4); 1849 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1850 parser->next_address_to_write <<= 12; 1851 } 1852 1853 parser->rom_start_address = parser->next_address_to_write; 1854 parser->current_rom_index = 0; 1855 break; 1856 1857 case START_SEG_ADDR_RECORD: 1858 if (line->byte_count != 4 && line->address != 0) { 1859 return -1; 1860 } 1861 1862 /* x86 16-bit CS:IP segmented addressing */ 1863 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1864 ((line->data[2] << 8) | line->data[3]); 1865 break; 1866 1867 case START_LINEAR_ADDR_RECORD: 1868 if (line->byte_count != 4 && line->address != 0) { 1869 return -1; 1870 } 1871 1872 *(parser->start_addr) = ldl_be_p(line->data); 1873 break; 1874 1875 default: 1876 return -1; 1877 } 1878 1879 return parser->total_size; 1880 } 1881 1882 /* return size or -1 if error */ 1883 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1884 size_t hex_blob_size, AddressSpace *as) 1885 { 1886 bool in_process = false; /* avoid re-enter and 1887 * check whether record begin with ':' */ 1888 uint8_t *end = hex_blob + hex_blob_size; 1889 uint8_t our_checksum = 0; 1890 uint32_t record_index = 0; 1891 HexParser parser = { 1892 .filename = filename, 1893 .bin_buf = g_malloc(hex_blob_size), 1894 .start_addr = addr, 1895 .as = as, 1896 .complete = false 1897 }; 1898 1899 rom_transaction_begin(); 1900 1901 for (; hex_blob < end && !parser.complete; ++hex_blob) { 1902 switch (*hex_blob) { 1903 case '\r': 1904 case '\n': 1905 if (!in_process) { 1906 break; 1907 } 1908 1909 in_process = false; 1910 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1911 record_index || 1912 our_checksum != 0) { 1913 parser.total_size = -1; 1914 goto out; 1915 } 1916 1917 if (handle_record_type(&parser) == -1) { 1918 parser.total_size = -1; 1919 goto out; 1920 } 1921 break; 1922 1923 /* start of a new record. */ 1924 case ':': 1925 memset(&parser.line, 0, sizeof(HexLine)); 1926 in_process = true; 1927 record_index = 0; 1928 break; 1929 1930 /* decoding lines */ 1931 default: 1932 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1933 &record_index, in_process)) { 1934 parser.total_size = -1; 1935 goto out; 1936 } 1937 break; 1938 } 1939 } 1940 1941 out: 1942 g_free(parser.bin_buf); 1943 rom_transaction_end(parser.total_size != -1); 1944 return parser.total_size; 1945 } 1946 1947 /* return size or -1 if error */ 1948 ssize_t load_targphys_hex_as(const char *filename, hwaddr *entry, 1949 AddressSpace *as) 1950 { 1951 gsize hex_blob_size; 1952 gchar *hex_blob; 1953 ssize_t total_size = 0; 1954 1955 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1956 return -1; 1957 } 1958 1959 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1960 hex_blob_size, as); 1961 1962 g_free(hex_blob); 1963 return total_size; 1964 } 1965