1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "hw/hw.h" 46 #include "disas/disas.h" 47 #include "monitor/monitor.h" 48 #include "sysemu/sysemu.h" 49 #include "uboot_image.h" 50 #include "hw/loader.h" 51 #include "hw/nvram/fw_cfg.h" 52 #include "exec/memory.h" 53 #include "exec/address-spaces.h" 54 55 #include <zlib.h> 56 57 bool rom_file_in_ram = true; 58 59 static int roms_loaded; 60 61 /* return the size or -1 if error */ 62 int get_image_size(const char *filename) 63 { 64 int fd, size; 65 fd = open(filename, O_RDONLY | O_BINARY); 66 if (fd < 0) 67 return -1; 68 size = lseek(fd, 0, SEEK_END); 69 close(fd); 70 return size; 71 } 72 73 /* return the size or -1 if error */ 74 /* deprecated, because caller does not specify buffer size! */ 75 int load_image(const char *filename, uint8_t *addr) 76 { 77 int fd, size; 78 fd = open(filename, O_RDONLY | O_BINARY); 79 if (fd < 0) 80 return -1; 81 size = lseek(fd, 0, SEEK_END); 82 lseek(fd, 0, SEEK_SET); 83 if (read(fd, addr, size) != size) { 84 close(fd); 85 return -1; 86 } 87 close(fd); 88 return size; 89 } 90 91 /* read()-like version */ 92 ssize_t read_targphys(const char *name, 93 int fd, hwaddr dst_addr, size_t nbytes) 94 { 95 uint8_t *buf; 96 ssize_t did; 97 98 buf = g_malloc(nbytes); 99 did = read(fd, buf, nbytes); 100 if (did > 0) 101 rom_add_blob_fixed("read", buf, did, dst_addr); 102 g_free(buf); 103 return did; 104 } 105 106 /* return the size or -1 if error */ 107 int load_image_targphys(const char *filename, 108 hwaddr addr, uint64_t max_sz) 109 { 110 int size; 111 112 size = get_image_size(filename); 113 if (size > max_sz) { 114 return -1; 115 } 116 if (size > 0) { 117 rom_add_file_fixed(filename, addr, -1); 118 } 119 return size; 120 } 121 122 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 123 const char *source) 124 { 125 const char *nulp; 126 char *ptr; 127 128 if (buf_size <= 0) return; 129 nulp = memchr(source, 0, buf_size); 130 if (nulp) { 131 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 132 } else { 133 rom_add_blob_fixed(name, source, buf_size, dest); 134 ptr = rom_ptr(dest + buf_size - 1); 135 *ptr = 0; 136 } 137 } 138 139 /* A.OUT loader */ 140 141 struct exec 142 { 143 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 144 uint32_t a_text; /* length of text, in bytes */ 145 uint32_t a_data; /* length of data, in bytes */ 146 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 147 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 148 uint32_t a_entry; /* start address */ 149 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 150 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 151 }; 152 153 static void bswap_ahdr(struct exec *e) 154 { 155 bswap32s(&e->a_info); 156 bswap32s(&e->a_text); 157 bswap32s(&e->a_data); 158 bswap32s(&e->a_bss); 159 bswap32s(&e->a_syms); 160 bswap32s(&e->a_entry); 161 bswap32s(&e->a_trsize); 162 bswap32s(&e->a_drsize); 163 } 164 165 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 166 #define OMAGIC 0407 167 #define NMAGIC 0410 168 #define ZMAGIC 0413 169 #define QMAGIC 0314 170 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 171 #define N_TXTOFF(x) \ 172 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 173 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 174 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 175 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 176 177 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 178 179 #define N_DATADDR(x, target_page_size) \ 180 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 181 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 182 183 184 int load_aout(const char *filename, hwaddr addr, int max_sz, 185 int bswap_needed, hwaddr target_page_size) 186 { 187 int fd; 188 ssize_t size, ret; 189 struct exec e; 190 uint32_t magic; 191 192 fd = open(filename, O_RDONLY | O_BINARY); 193 if (fd < 0) 194 return -1; 195 196 size = read(fd, &e, sizeof(e)); 197 if (size < 0) 198 goto fail; 199 200 if (bswap_needed) { 201 bswap_ahdr(&e); 202 } 203 204 magic = N_MAGIC(e); 205 switch (magic) { 206 case ZMAGIC: 207 case QMAGIC: 208 case OMAGIC: 209 if (e.a_text + e.a_data > max_sz) 210 goto fail; 211 lseek(fd, N_TXTOFF(e), SEEK_SET); 212 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 213 if (size < 0) 214 goto fail; 215 break; 216 case NMAGIC: 217 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 218 goto fail; 219 lseek(fd, N_TXTOFF(e), SEEK_SET); 220 size = read_targphys(filename, fd, addr, e.a_text); 221 if (size < 0) 222 goto fail; 223 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 224 e.a_data); 225 if (ret < 0) 226 goto fail; 227 size += ret; 228 break; 229 default: 230 goto fail; 231 } 232 close(fd); 233 return size; 234 fail: 235 close(fd); 236 return -1; 237 } 238 239 /* ELF loader */ 240 241 static void *load_at(int fd, int offset, int size) 242 { 243 void *ptr; 244 if (lseek(fd, offset, SEEK_SET) < 0) 245 return NULL; 246 ptr = g_malloc(size); 247 if (read(fd, ptr, size) != size) { 248 g_free(ptr); 249 return NULL; 250 } 251 return ptr; 252 } 253 254 #ifdef ELF_CLASS 255 #undef ELF_CLASS 256 #endif 257 258 #define ELF_CLASS ELFCLASS32 259 #include "elf.h" 260 261 #define SZ 32 262 #define elf_word uint32_t 263 #define elf_sword int32_t 264 #define bswapSZs bswap32s 265 #include "hw/elf_ops.h" 266 267 #undef elfhdr 268 #undef elf_phdr 269 #undef elf_shdr 270 #undef elf_sym 271 #undef elf_note 272 #undef elf_word 273 #undef elf_sword 274 #undef bswapSZs 275 #undef SZ 276 #define elfhdr elf64_hdr 277 #define elf_phdr elf64_phdr 278 #define elf_note elf64_note 279 #define elf_shdr elf64_shdr 280 #define elf_sym elf64_sym 281 #define elf_word uint64_t 282 #define elf_sword int64_t 283 #define bswapSZs bswap64s 284 #define SZ 64 285 #include "hw/elf_ops.h" 286 287 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 288 int load_elf(const char *filename, uint64_t (*translate_fn)(void *, uint64_t), 289 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 290 uint64_t *highaddr, int big_endian, int elf_machine, int clear_lsb) 291 { 292 int fd, data_order, target_data_order, must_swab, ret; 293 uint8_t e_ident[EI_NIDENT]; 294 295 fd = open(filename, O_RDONLY | O_BINARY); 296 if (fd < 0) { 297 perror(filename); 298 return -1; 299 } 300 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 301 goto fail; 302 if (e_ident[0] != ELFMAG0 || 303 e_ident[1] != ELFMAG1 || 304 e_ident[2] != ELFMAG2 || 305 e_ident[3] != ELFMAG3) 306 goto fail; 307 #ifdef HOST_WORDS_BIGENDIAN 308 data_order = ELFDATA2MSB; 309 #else 310 data_order = ELFDATA2LSB; 311 #endif 312 must_swab = data_order != e_ident[EI_DATA]; 313 if (big_endian) { 314 target_data_order = ELFDATA2MSB; 315 } else { 316 target_data_order = ELFDATA2LSB; 317 } 318 319 if (target_data_order != e_ident[EI_DATA]) { 320 goto fail; 321 } 322 323 lseek(fd, 0, SEEK_SET); 324 if (e_ident[EI_CLASS] == ELFCLASS64) { 325 ret = load_elf64(filename, fd, translate_fn, translate_opaque, must_swab, 326 pentry, lowaddr, highaddr, elf_machine, clear_lsb); 327 } else { 328 ret = load_elf32(filename, fd, translate_fn, translate_opaque, must_swab, 329 pentry, lowaddr, highaddr, elf_machine, clear_lsb); 330 } 331 332 close(fd); 333 return ret; 334 335 fail: 336 close(fd); 337 return -1; 338 } 339 340 static void bswap_uboot_header(uboot_image_header_t *hdr) 341 { 342 #ifndef HOST_WORDS_BIGENDIAN 343 bswap32s(&hdr->ih_magic); 344 bswap32s(&hdr->ih_hcrc); 345 bswap32s(&hdr->ih_time); 346 bswap32s(&hdr->ih_size); 347 bswap32s(&hdr->ih_load); 348 bswap32s(&hdr->ih_ep); 349 bswap32s(&hdr->ih_dcrc); 350 #endif 351 } 352 353 354 #define ZALLOC_ALIGNMENT 16 355 356 static void *zalloc(void *x, unsigned items, unsigned size) 357 { 358 void *p; 359 360 size *= items; 361 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 362 363 p = g_malloc(size); 364 365 return (p); 366 } 367 368 static void zfree(void *x, void *addr) 369 { 370 g_free(addr); 371 } 372 373 374 #define HEAD_CRC 2 375 #define EXTRA_FIELD 4 376 #define ORIG_NAME 8 377 #define COMMENT 0x10 378 #define RESERVED 0xe0 379 380 #define DEFLATED 8 381 382 /* This is the usual maximum in uboot, so if a uImage overflows this, it would 383 * overflow on real hardware too. */ 384 #define UBOOT_MAX_GUNZIP_BYTES (64 << 20) 385 386 static ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, 387 size_t srclen) 388 { 389 z_stream s; 390 ssize_t dstbytes; 391 int r, i, flags; 392 393 /* skip header */ 394 i = 10; 395 flags = src[3]; 396 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 397 puts ("Error: Bad gzipped data\n"); 398 return -1; 399 } 400 if ((flags & EXTRA_FIELD) != 0) 401 i = 12 + src[10] + (src[11] << 8); 402 if ((flags & ORIG_NAME) != 0) 403 while (src[i++] != 0) 404 ; 405 if ((flags & COMMENT) != 0) 406 while (src[i++] != 0) 407 ; 408 if ((flags & HEAD_CRC) != 0) 409 i += 2; 410 if (i >= srclen) { 411 puts ("Error: gunzip out of data in header\n"); 412 return -1; 413 } 414 415 s.zalloc = zalloc; 416 s.zfree = zfree; 417 418 r = inflateInit2(&s, -MAX_WBITS); 419 if (r != Z_OK) { 420 printf ("Error: inflateInit2() returned %d\n", r); 421 return (-1); 422 } 423 s.next_in = src + i; 424 s.avail_in = srclen - i; 425 s.next_out = dst; 426 s.avail_out = dstlen; 427 r = inflate(&s, Z_FINISH); 428 if (r != Z_OK && r != Z_STREAM_END) { 429 printf ("Error: inflate() returned %d\n", r); 430 return -1; 431 } 432 dstbytes = s.next_out - (unsigned char *) dst; 433 inflateEnd(&s); 434 435 return dstbytes; 436 } 437 438 /* Load a U-Boot image. */ 439 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 440 int *is_linux, uint8_t image_type) 441 { 442 int fd; 443 int size; 444 hwaddr address; 445 uboot_image_header_t h; 446 uboot_image_header_t *hdr = &h; 447 uint8_t *data = NULL; 448 int ret = -1; 449 int do_uncompress = 0; 450 451 fd = open(filename, O_RDONLY | O_BINARY); 452 if (fd < 0) 453 return -1; 454 455 size = read(fd, hdr, sizeof(uboot_image_header_t)); 456 if (size < 0) 457 goto out; 458 459 bswap_uboot_header(hdr); 460 461 if (hdr->ih_magic != IH_MAGIC) 462 goto out; 463 464 if (hdr->ih_type != image_type) { 465 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 466 image_type); 467 goto out; 468 } 469 470 /* TODO: Implement other image types. */ 471 switch (hdr->ih_type) { 472 case IH_TYPE_KERNEL: 473 address = hdr->ih_load; 474 if (loadaddr) { 475 *loadaddr = hdr->ih_load; 476 } 477 478 switch (hdr->ih_comp) { 479 case IH_COMP_NONE: 480 break; 481 case IH_COMP_GZIP: 482 do_uncompress = 1; 483 break; 484 default: 485 fprintf(stderr, 486 "Unable to load u-boot images with compression type %d\n", 487 hdr->ih_comp); 488 goto out; 489 } 490 491 if (ep) { 492 *ep = hdr->ih_ep; 493 } 494 495 /* TODO: Check CPU type. */ 496 if (is_linux) { 497 if (hdr->ih_os == IH_OS_LINUX) { 498 *is_linux = 1; 499 } else { 500 *is_linux = 0; 501 } 502 } 503 504 break; 505 case IH_TYPE_RAMDISK: 506 address = *loadaddr; 507 break; 508 default: 509 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 510 goto out; 511 } 512 513 data = g_malloc(hdr->ih_size); 514 515 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 516 fprintf(stderr, "Error reading file\n"); 517 goto out; 518 } 519 520 if (do_uncompress) { 521 uint8_t *compressed_data; 522 size_t max_bytes; 523 ssize_t bytes; 524 525 compressed_data = data; 526 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 527 data = g_malloc(max_bytes); 528 529 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 530 g_free(compressed_data); 531 if (bytes < 0) { 532 fprintf(stderr, "Unable to decompress gzipped image!\n"); 533 goto out; 534 } 535 hdr->ih_size = bytes; 536 } 537 538 rom_add_blob_fixed(filename, data, hdr->ih_size, address); 539 540 ret = hdr->ih_size; 541 542 out: 543 if (data) 544 g_free(data); 545 close(fd); 546 return ret; 547 } 548 549 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 550 int *is_linux) 551 { 552 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL); 553 } 554 555 /* Load a ramdisk. */ 556 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 557 { 558 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK); 559 } 560 561 /* 562 * Functions for reboot-persistent memory regions. 563 * - used for vga bios and option roms. 564 * - also linux kernel (-kernel / -initrd). 565 */ 566 567 typedef struct Rom Rom; 568 569 struct Rom { 570 char *name; 571 char *path; 572 573 /* datasize is the amount of memory allocated in "data". If datasize is less 574 * than romsize, it means that the area from datasize to romsize is filled 575 * with zeros. 576 */ 577 size_t romsize; 578 size_t datasize; 579 580 uint8_t *data; 581 MemoryRegion *mr; 582 int isrom; 583 char *fw_dir; 584 char *fw_file; 585 586 hwaddr addr; 587 QTAILQ_ENTRY(Rom) next; 588 }; 589 590 static FWCfgState *fw_cfg; 591 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 592 593 static void rom_insert(Rom *rom) 594 { 595 Rom *item; 596 597 if (roms_loaded) { 598 hw_error ("ROM images must be loaded at startup\n"); 599 } 600 601 /* list is ordered by load address */ 602 QTAILQ_FOREACH(item, &roms, next) { 603 if (rom->addr >= item->addr) 604 continue; 605 QTAILQ_INSERT_BEFORE(item, rom, next); 606 return; 607 } 608 QTAILQ_INSERT_TAIL(&roms, rom, next); 609 } 610 611 static void *rom_set_mr(Rom *rom, Object *owner, const char *name) 612 { 613 void *data; 614 615 rom->mr = g_malloc(sizeof(*rom->mr)); 616 memory_region_init_ram(rom->mr, owner, name, rom->datasize); 617 memory_region_set_readonly(rom->mr, true); 618 vmstate_register_ram_global(rom->mr); 619 620 data = memory_region_get_ram_ptr(rom->mr); 621 memcpy(data, rom->data, rom->datasize); 622 623 return data; 624 } 625 626 int rom_add_file(const char *file, const char *fw_dir, 627 hwaddr addr, int32_t bootindex) 628 { 629 Rom *rom; 630 int rc, fd = -1; 631 char devpath[100]; 632 633 rom = g_malloc0(sizeof(*rom)); 634 rom->name = g_strdup(file); 635 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 636 if (rom->path == NULL) { 637 rom->path = g_strdup(file); 638 } 639 640 fd = open(rom->path, O_RDONLY | O_BINARY); 641 if (fd == -1) { 642 fprintf(stderr, "Could not open option rom '%s': %s\n", 643 rom->path, strerror(errno)); 644 goto err; 645 } 646 647 if (fw_dir) { 648 rom->fw_dir = g_strdup(fw_dir); 649 rom->fw_file = g_strdup(file); 650 } 651 rom->addr = addr; 652 rom->romsize = lseek(fd, 0, SEEK_END); 653 rom->datasize = rom->romsize; 654 rom->data = g_malloc0(rom->datasize); 655 lseek(fd, 0, SEEK_SET); 656 rc = read(fd, rom->data, rom->datasize); 657 if (rc != rom->datasize) { 658 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 659 rom->name, rc, rom->datasize); 660 goto err; 661 } 662 close(fd); 663 rom_insert(rom); 664 if (rom->fw_file && fw_cfg) { 665 const char *basename; 666 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 667 void *data; 668 669 basename = strrchr(rom->fw_file, '/'); 670 if (basename) { 671 basename++; 672 } else { 673 basename = rom->fw_file; 674 } 675 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 676 basename); 677 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 678 679 if (rom_file_in_ram) { 680 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath); 681 } else { 682 data = rom->data; 683 } 684 685 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 686 } else { 687 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 688 } 689 690 add_boot_device_path(bootindex, NULL, devpath); 691 return 0; 692 693 err: 694 if (fd != -1) 695 close(fd); 696 g_free(rom->data); 697 g_free(rom->path); 698 g_free(rom->name); 699 g_free(rom); 700 return -1; 701 } 702 703 void *rom_add_blob(const char *name, const void *blob, size_t len, 704 hwaddr addr, const char *fw_file_name, 705 FWCfgReadCallback fw_callback, void *callback_opaque) 706 { 707 Rom *rom; 708 void *data = NULL; 709 710 rom = g_malloc0(sizeof(*rom)); 711 rom->name = g_strdup(name); 712 rom->addr = addr; 713 rom->romsize = len; 714 rom->datasize = len; 715 rom->data = g_malloc0(rom->datasize); 716 memcpy(rom->data, blob, len); 717 rom_insert(rom); 718 if (fw_file_name && fw_cfg) { 719 char devpath[100]; 720 721 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 722 723 if (rom_file_in_ram) { 724 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath); 725 } else { 726 data = rom->data; 727 } 728 729 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 730 fw_callback, callback_opaque, 731 data, rom->romsize); 732 } 733 return data; 734 } 735 736 /* This function is specific for elf program because we don't need to allocate 737 * all the rom. We just allocate the first part and the rest is just zeros. This 738 * is why romsize and datasize are different. Also, this function seize the 739 * memory ownership of "data", so we don't have to allocate and copy the buffer. 740 */ 741 int rom_add_elf_program(const char *name, void *data, size_t datasize, 742 size_t romsize, hwaddr addr) 743 { 744 Rom *rom; 745 746 rom = g_malloc0(sizeof(*rom)); 747 rom->name = g_strdup(name); 748 rom->addr = addr; 749 rom->datasize = datasize; 750 rom->romsize = romsize; 751 rom->data = data; 752 rom_insert(rom); 753 return 0; 754 } 755 756 int rom_add_vga(const char *file) 757 { 758 return rom_add_file(file, "vgaroms", 0, -1); 759 } 760 761 int rom_add_option(const char *file, int32_t bootindex) 762 { 763 return rom_add_file(file, "genroms", 0, bootindex); 764 } 765 766 static void rom_reset(void *unused) 767 { 768 Rom *rom; 769 770 QTAILQ_FOREACH(rom, &roms, next) { 771 if (rom->fw_file) { 772 continue; 773 } 774 if (rom->data == NULL) { 775 continue; 776 } 777 if (rom->mr) { 778 void *host = memory_region_get_ram_ptr(rom->mr); 779 memcpy(host, rom->data, rom->datasize); 780 } else { 781 cpu_physical_memory_write_rom(rom->addr, rom->data, rom->datasize); 782 } 783 if (rom->isrom) { 784 /* rom needs to be written only once */ 785 g_free(rom->data); 786 rom->data = NULL; 787 } 788 /* 789 * The rom loader is really on the same level as firmware in the guest 790 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 791 * that the instruction cache for that new region is clear, so that the 792 * CPU definitely fetches its instructions from the just written data. 793 */ 794 cpu_flush_icache_range(rom->addr, rom->datasize); 795 } 796 } 797 798 int rom_load_all(void) 799 { 800 hwaddr addr = 0; 801 MemoryRegionSection section; 802 Rom *rom; 803 804 QTAILQ_FOREACH(rom, &roms, next) { 805 if (rom->fw_file) { 806 continue; 807 } 808 if (addr > rom->addr) { 809 fprintf(stderr, "rom: requested regions overlap " 810 "(rom %s. free=0x" TARGET_FMT_plx 811 ", addr=0x" TARGET_FMT_plx ")\n", 812 rom->name, addr, rom->addr); 813 return -1; 814 } 815 addr = rom->addr; 816 addr += rom->romsize; 817 section = memory_region_find(get_system_memory(), rom->addr, 1); 818 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 819 memory_region_unref(section.mr); 820 } 821 qemu_register_reset(rom_reset, NULL); 822 return 0; 823 } 824 825 void rom_load_done(void) 826 { 827 roms_loaded = 1; 828 } 829 830 void rom_set_fw(FWCfgState *f) 831 { 832 fw_cfg = f; 833 } 834 835 static Rom *find_rom(hwaddr addr) 836 { 837 Rom *rom; 838 839 QTAILQ_FOREACH(rom, &roms, next) { 840 if (rom->fw_file) { 841 continue; 842 } 843 if (rom->mr) { 844 continue; 845 } 846 if (rom->addr > addr) { 847 continue; 848 } 849 if (rom->addr + rom->romsize < addr) { 850 continue; 851 } 852 return rom; 853 } 854 return NULL; 855 } 856 857 /* 858 * Copies memory from registered ROMs to dest. Any memory that is contained in 859 * a ROM between addr and addr + size is copied. Note that this can involve 860 * multiple ROMs, which need not start at addr and need not end at addr + size. 861 */ 862 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 863 { 864 hwaddr end = addr + size; 865 uint8_t *s, *d = dest; 866 size_t l = 0; 867 Rom *rom; 868 869 QTAILQ_FOREACH(rom, &roms, next) { 870 if (rom->fw_file) { 871 continue; 872 } 873 if (rom->mr) { 874 continue; 875 } 876 if (rom->addr + rom->romsize < addr) { 877 continue; 878 } 879 if (rom->addr > end) { 880 break; 881 } 882 883 d = dest + (rom->addr - addr); 884 s = rom->data; 885 l = rom->datasize; 886 887 if ((d + l) > (dest + size)) { 888 l = dest - d; 889 } 890 891 if (l > 0) { 892 memcpy(d, s, l); 893 } 894 895 if (rom->romsize > rom->datasize) { 896 /* If datasize is less than romsize, it means that we didn't 897 * allocate all the ROM because the trailing data are only zeros. 898 */ 899 900 d += l; 901 l = rom->romsize - rom->datasize; 902 903 if ((d + l) > (dest + size)) { 904 /* Rom size doesn't fit in the destination area. Adjust to avoid 905 * overflow. 906 */ 907 l = dest - d; 908 } 909 910 if (l > 0) { 911 memset(d, 0x0, l); 912 } 913 } 914 } 915 916 return (d + l) - dest; 917 } 918 919 void *rom_ptr(hwaddr addr) 920 { 921 Rom *rom; 922 923 rom = find_rom(addr); 924 if (!rom || !rom->data) 925 return NULL; 926 return rom->data + (addr - rom->addr); 927 } 928 929 void do_info_roms(Monitor *mon, const QDict *qdict) 930 { 931 Rom *rom; 932 933 QTAILQ_FOREACH(rom, &roms, next) { 934 if (rom->mr) { 935 monitor_printf(mon, "%s" 936 " size=0x%06zx name=\"%s\"\n", 937 rom->mr->name, 938 rom->romsize, 939 rom->name); 940 } else if (!rom->fw_file) { 941 monitor_printf(mon, "addr=" TARGET_FMT_plx 942 " size=0x%06zx mem=%s name=\"%s\"\n", 943 rom->addr, rom->romsize, 944 rom->isrom ? "rom" : "ram", 945 rom->name); 946 } else { 947 monitor_printf(mon, "fw=%s/%s" 948 " size=0x%06zx name=\"%s\"\n", 949 rom->fw_dir, 950 rom->fw_file, 951 rom->romsize, 952 rom->name); 953 } 954 } 955 } 956