1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qemu/datadir.h" 47 #include "qapi/error.h" 48 #include "qapi/qapi-commands-machine.h" 49 #include "qapi/type-helpers.h" 50 #include "trace.h" 51 #include "hw/hw.h" 52 #include "disas/disas.h" 53 #include "migration/vmstate.h" 54 #include "monitor/monitor.h" 55 #include "sysemu/reset.h" 56 #include "sysemu/sysemu.h" 57 #include "uboot_image.h" 58 #include "hw/loader.h" 59 #include "hw/nvram/fw_cfg.h" 60 #include "exec/memory.h" 61 #include "hw/boards.h" 62 #include "qemu/cutils.h" 63 #include "sysemu/runstate.h" 64 #include "accel/tcg/debuginfo.h" 65 66 #include <zlib.h> 67 68 static int roms_loaded; 69 70 /* return the size or -1 if error */ 71 int64_t get_image_size(const char *filename) 72 { 73 int fd; 74 int64_t size; 75 fd = open(filename, O_RDONLY | O_BINARY); 76 if (fd < 0) 77 return -1; 78 size = lseek(fd, 0, SEEK_END); 79 close(fd); 80 return size; 81 } 82 83 /* return the size or -1 if error */ 84 ssize_t load_image_size(const char *filename, void *addr, size_t size) 85 { 86 int fd; 87 ssize_t actsize, l = 0; 88 89 fd = open(filename, O_RDONLY | O_BINARY); 90 if (fd < 0) { 91 return -1; 92 } 93 94 while ((actsize = read(fd, addr + l, size - l)) > 0) { 95 l += actsize; 96 } 97 98 close(fd); 99 100 return actsize < 0 ? -1 : l; 101 } 102 103 /* read()-like version */ 104 ssize_t read_targphys(const char *name, 105 int fd, hwaddr dst_addr, size_t nbytes) 106 { 107 uint8_t *buf; 108 ssize_t did; 109 110 buf = g_malloc(nbytes); 111 did = read(fd, buf, nbytes); 112 if (did > 0) 113 rom_add_blob_fixed("read", buf, did, dst_addr); 114 g_free(buf); 115 return did; 116 } 117 118 ssize_t load_image_targphys(const char *filename, 119 hwaddr addr, uint64_t max_sz) 120 { 121 return load_image_targphys_as(filename, addr, max_sz, NULL); 122 } 123 124 /* return the size or -1 if error */ 125 ssize_t load_image_targphys_as(const char *filename, 126 hwaddr addr, uint64_t max_sz, AddressSpace *as) 127 { 128 ssize_t size; 129 130 size = get_image_size(filename); 131 if (size < 0 || size > max_sz) { 132 return -1; 133 } 134 if (size > 0) { 135 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 136 return -1; 137 } 138 } 139 return size; 140 } 141 142 ssize_t load_image_mr(const char *filename, MemoryRegion *mr) 143 { 144 ssize_t size; 145 146 if (!memory_access_is_direct(mr, false)) { 147 /* Can only load an image into RAM or ROM */ 148 return -1; 149 } 150 151 size = get_image_size(filename); 152 153 if (size < 0 || size > memory_region_size(mr)) { 154 return -1; 155 } 156 if (size > 0) { 157 if (rom_add_file_mr(filename, mr, -1) < 0) { 158 return -1; 159 } 160 } 161 return size; 162 } 163 164 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 165 const char *source) 166 { 167 const char *nulp; 168 char *ptr; 169 170 if (buf_size <= 0) return; 171 nulp = memchr(source, 0, buf_size); 172 if (nulp) { 173 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 174 } else { 175 rom_add_blob_fixed(name, source, buf_size, dest); 176 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 177 *ptr = 0; 178 } 179 } 180 181 /* A.OUT loader */ 182 183 struct exec 184 { 185 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 186 uint32_t a_text; /* length of text, in bytes */ 187 uint32_t a_data; /* length of data, in bytes */ 188 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 189 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 190 uint32_t a_entry; /* start address */ 191 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 192 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 193 }; 194 195 static void bswap_ahdr(struct exec *e) 196 { 197 bswap32s(&e->a_info); 198 bswap32s(&e->a_text); 199 bswap32s(&e->a_data); 200 bswap32s(&e->a_bss); 201 bswap32s(&e->a_syms); 202 bswap32s(&e->a_entry); 203 bswap32s(&e->a_trsize); 204 bswap32s(&e->a_drsize); 205 } 206 207 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 208 #define OMAGIC 0407 209 #define NMAGIC 0410 210 #define ZMAGIC 0413 211 #define QMAGIC 0314 212 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 213 #define N_TXTOFF(x) \ 214 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 215 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 216 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 217 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 218 219 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 220 221 #define N_DATADDR(x, target_page_size) \ 222 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 223 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 224 225 226 ssize_t load_aout(const char *filename, hwaddr addr, int max_sz, 227 int bswap_needed, hwaddr target_page_size) 228 { 229 int fd; 230 ssize_t size, ret; 231 struct exec e; 232 uint32_t magic; 233 234 fd = open(filename, O_RDONLY | O_BINARY); 235 if (fd < 0) 236 return -1; 237 238 size = read(fd, &e, sizeof(e)); 239 if (size < 0) 240 goto fail; 241 242 if (bswap_needed) { 243 bswap_ahdr(&e); 244 } 245 246 magic = N_MAGIC(e); 247 switch (magic) { 248 case ZMAGIC: 249 case QMAGIC: 250 case OMAGIC: 251 if (e.a_text + e.a_data > max_sz) 252 goto fail; 253 lseek(fd, N_TXTOFF(e), SEEK_SET); 254 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 255 if (size < 0) 256 goto fail; 257 break; 258 case NMAGIC: 259 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 260 goto fail; 261 lseek(fd, N_TXTOFF(e), SEEK_SET); 262 size = read_targphys(filename, fd, addr, e.a_text); 263 if (size < 0) 264 goto fail; 265 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 266 e.a_data); 267 if (ret < 0) 268 goto fail; 269 size += ret; 270 break; 271 default: 272 goto fail; 273 } 274 close(fd); 275 return size; 276 fail: 277 close(fd); 278 return -1; 279 } 280 281 /* ELF loader */ 282 283 static void *load_at(int fd, off_t offset, size_t size) 284 { 285 void *ptr; 286 if (lseek(fd, offset, SEEK_SET) < 0) 287 return NULL; 288 ptr = g_malloc(size); 289 if (read(fd, ptr, size) != size) { 290 g_free(ptr); 291 return NULL; 292 } 293 return ptr; 294 } 295 296 #ifdef ELF_CLASS 297 #undef ELF_CLASS 298 #endif 299 300 #define ELF_CLASS ELFCLASS32 301 #include "elf.h" 302 303 #define SZ 32 304 #define elf_word uint32_t 305 #define elf_sword int32_t 306 #define bswapSZs bswap32s 307 #include "hw/elf_ops.h" 308 309 #undef elfhdr 310 #undef elf_phdr 311 #undef elf_shdr 312 #undef elf_sym 313 #undef elf_rela 314 #undef elf_note 315 #undef elf_word 316 #undef elf_sword 317 #undef bswapSZs 318 #undef SZ 319 #define elfhdr elf64_hdr 320 #define elf_phdr elf64_phdr 321 #define elf_note elf64_note 322 #define elf_shdr elf64_shdr 323 #define elf_sym elf64_sym 324 #define elf_rela elf64_rela 325 #define elf_word uint64_t 326 #define elf_sword int64_t 327 #define bswapSZs bswap64s 328 #define SZ 64 329 #include "hw/elf_ops.h" 330 331 const char *load_elf_strerror(ssize_t error) 332 { 333 switch (error) { 334 case 0: 335 return "No error"; 336 case ELF_LOAD_FAILED: 337 return "Failed to load ELF"; 338 case ELF_LOAD_NOT_ELF: 339 return "The image is not ELF"; 340 case ELF_LOAD_WRONG_ARCH: 341 return "The image is from incompatible architecture"; 342 case ELF_LOAD_WRONG_ENDIAN: 343 return "The image has incorrect endianness"; 344 case ELF_LOAD_TOO_BIG: 345 return "The image segments are too big to load"; 346 default: 347 return "Unknown error"; 348 } 349 } 350 351 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 352 { 353 int fd; 354 uint8_t e_ident_local[EI_NIDENT]; 355 uint8_t *e_ident; 356 size_t hdr_size, off; 357 bool is64l; 358 359 if (!hdr) { 360 hdr = e_ident_local; 361 } 362 e_ident = hdr; 363 364 fd = open(filename, O_RDONLY | O_BINARY); 365 if (fd < 0) { 366 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 367 return; 368 } 369 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 370 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 371 goto fail; 372 } 373 if (e_ident[0] != ELFMAG0 || 374 e_ident[1] != ELFMAG1 || 375 e_ident[2] != ELFMAG2 || 376 e_ident[3] != ELFMAG3) { 377 error_setg(errp, "Bad ELF magic"); 378 goto fail; 379 } 380 381 is64l = e_ident[EI_CLASS] == ELFCLASS64; 382 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 383 if (is64) { 384 *is64 = is64l; 385 } 386 387 off = EI_NIDENT; 388 while (hdr != e_ident_local && off < hdr_size) { 389 size_t br = read(fd, hdr + off, hdr_size - off); 390 switch (br) { 391 case 0: 392 error_setg(errp, "File too short: %s", filename); 393 goto fail; 394 case -1: 395 error_setg_errno(errp, errno, "Failed to read file: %s", 396 filename); 397 goto fail; 398 } 399 off += br; 400 } 401 402 fail: 403 close(fd); 404 } 405 406 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 407 ssize_t load_elf(const char *filename, 408 uint64_t (*elf_note_fn)(void *, void *, bool), 409 uint64_t (*translate_fn)(void *, uint64_t), 410 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 411 uint64_t *highaddr, uint32_t *pflags, int big_endian, 412 int elf_machine, int clear_lsb, int data_swab) 413 { 414 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 415 pentry, lowaddr, highaddr, pflags, big_endian, 416 elf_machine, clear_lsb, data_swab, NULL); 417 } 418 419 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 420 ssize_t load_elf_as(const char *filename, 421 uint64_t (*elf_note_fn)(void *, void *, bool), 422 uint64_t (*translate_fn)(void *, uint64_t), 423 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 424 uint64_t *highaddr, uint32_t *pflags, int big_endian, 425 int elf_machine, int clear_lsb, int data_swab, 426 AddressSpace *as) 427 { 428 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque, 429 pentry, lowaddr, highaddr, pflags, big_endian, 430 elf_machine, clear_lsb, data_swab, as, true); 431 } 432 433 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 434 ssize_t load_elf_ram(const char *filename, 435 uint64_t (*elf_note_fn)(void *, void *, bool), 436 uint64_t (*translate_fn)(void *, uint64_t), 437 void *translate_opaque, uint64_t *pentry, 438 uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags, 439 int big_endian, int elf_machine, int clear_lsb, 440 int data_swab, AddressSpace *as, bool load_rom) 441 { 442 return load_elf_ram_sym(filename, elf_note_fn, 443 translate_fn, translate_opaque, 444 pentry, lowaddr, highaddr, pflags, big_endian, 445 elf_machine, clear_lsb, data_swab, as, 446 load_rom, NULL); 447 } 448 449 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 450 ssize_t load_elf_ram_sym(const char *filename, 451 uint64_t (*elf_note_fn)(void *, void *, bool), 452 uint64_t (*translate_fn)(void *, uint64_t), 453 void *translate_opaque, uint64_t *pentry, 454 uint64_t *lowaddr, uint64_t *highaddr, 455 uint32_t *pflags, int big_endian, int elf_machine, 456 int clear_lsb, int data_swab, 457 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 458 { 459 int fd, data_order, target_data_order, must_swab; 460 ssize_t ret = ELF_LOAD_FAILED; 461 uint8_t e_ident[EI_NIDENT]; 462 463 fd = open(filename, O_RDONLY | O_BINARY); 464 if (fd < 0) { 465 perror(filename); 466 return -1; 467 } 468 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 469 goto fail; 470 if (e_ident[0] != ELFMAG0 || 471 e_ident[1] != ELFMAG1 || 472 e_ident[2] != ELFMAG2 || 473 e_ident[3] != ELFMAG3) { 474 ret = ELF_LOAD_NOT_ELF; 475 goto fail; 476 } 477 #if HOST_BIG_ENDIAN 478 data_order = ELFDATA2MSB; 479 #else 480 data_order = ELFDATA2LSB; 481 #endif 482 must_swab = data_order != e_ident[EI_DATA]; 483 if (big_endian) { 484 target_data_order = ELFDATA2MSB; 485 } else { 486 target_data_order = ELFDATA2LSB; 487 } 488 489 if (target_data_order != e_ident[EI_DATA]) { 490 ret = ELF_LOAD_WRONG_ENDIAN; 491 goto fail; 492 } 493 494 lseek(fd, 0, SEEK_SET); 495 if (e_ident[EI_CLASS] == ELFCLASS64) { 496 ret = load_elf64(filename, fd, elf_note_fn, 497 translate_fn, translate_opaque, must_swab, 498 pentry, lowaddr, highaddr, pflags, elf_machine, 499 clear_lsb, data_swab, as, load_rom, sym_cb); 500 } else { 501 ret = load_elf32(filename, fd, elf_note_fn, 502 translate_fn, translate_opaque, must_swab, 503 pentry, lowaddr, highaddr, pflags, elf_machine, 504 clear_lsb, data_swab, as, load_rom, sym_cb); 505 } 506 507 if (ret != ELF_LOAD_FAILED) { 508 debuginfo_report_elf(filename, fd, 0); 509 } 510 511 fail: 512 close(fd); 513 return ret; 514 } 515 516 static void bswap_uboot_header(uboot_image_header_t *hdr) 517 { 518 #if !HOST_BIG_ENDIAN 519 bswap32s(&hdr->ih_magic); 520 bswap32s(&hdr->ih_hcrc); 521 bswap32s(&hdr->ih_time); 522 bswap32s(&hdr->ih_size); 523 bswap32s(&hdr->ih_load); 524 bswap32s(&hdr->ih_ep); 525 bswap32s(&hdr->ih_dcrc); 526 #endif 527 } 528 529 530 #define ZALLOC_ALIGNMENT 16 531 532 static void *zalloc(void *x, unsigned items, unsigned size) 533 { 534 void *p; 535 536 size *= items; 537 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 538 539 p = g_malloc(size); 540 541 return (p); 542 } 543 544 static void zfree(void *x, void *addr) 545 { 546 g_free(addr); 547 } 548 549 550 #define HEAD_CRC 2 551 #define EXTRA_FIELD 4 552 #define ORIG_NAME 8 553 #define COMMENT 0x10 554 #define RESERVED 0xe0 555 556 #define DEFLATED 8 557 558 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 559 { 560 z_stream s; 561 ssize_t dstbytes; 562 int r, i, flags; 563 564 /* skip header */ 565 i = 10; 566 if (srclen < 4) { 567 goto toosmall; 568 } 569 flags = src[3]; 570 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 571 puts ("Error: Bad gzipped data\n"); 572 return -1; 573 } 574 if ((flags & EXTRA_FIELD) != 0) { 575 if (srclen < 12) { 576 goto toosmall; 577 } 578 i = 12 + src[10] + (src[11] << 8); 579 } 580 if ((flags & ORIG_NAME) != 0) { 581 while (i < srclen && src[i++] != 0) { 582 /* do nothing */ 583 } 584 } 585 if ((flags & COMMENT) != 0) { 586 while (i < srclen && src[i++] != 0) { 587 /* do nothing */ 588 } 589 } 590 if ((flags & HEAD_CRC) != 0) { 591 i += 2; 592 } 593 if (i >= srclen) { 594 goto toosmall; 595 } 596 597 s.zalloc = zalloc; 598 s.zfree = zfree; 599 600 r = inflateInit2(&s, -MAX_WBITS); 601 if (r != Z_OK) { 602 printf ("Error: inflateInit2() returned %d\n", r); 603 return (-1); 604 } 605 s.next_in = src + i; 606 s.avail_in = srclen - i; 607 s.next_out = dst; 608 s.avail_out = dstlen; 609 r = inflate(&s, Z_FINISH); 610 if (r != Z_OK && r != Z_STREAM_END) { 611 printf ("Error: inflate() returned %d\n", r); 612 return -1; 613 } 614 dstbytes = s.next_out - (unsigned char *) dst; 615 inflateEnd(&s); 616 617 return dstbytes; 618 619 toosmall: 620 puts("Error: gunzip out of data in header\n"); 621 return -1; 622 } 623 624 /* Load a U-Boot image. */ 625 static ssize_t load_uboot_image(const char *filename, hwaddr *ep, 626 hwaddr *loadaddr, int *is_linux, 627 uint8_t image_type, 628 uint64_t (*translate_fn)(void *, uint64_t), 629 void *translate_opaque, AddressSpace *as) 630 { 631 int fd; 632 ssize_t size; 633 hwaddr address; 634 uboot_image_header_t h; 635 uboot_image_header_t *hdr = &h; 636 uint8_t *data = NULL; 637 int ret = -1; 638 int do_uncompress = 0; 639 640 fd = open(filename, O_RDONLY | O_BINARY); 641 if (fd < 0) 642 return -1; 643 644 size = read(fd, hdr, sizeof(uboot_image_header_t)); 645 if (size < sizeof(uboot_image_header_t)) { 646 goto out; 647 } 648 649 bswap_uboot_header(hdr); 650 651 if (hdr->ih_magic != IH_MAGIC) 652 goto out; 653 654 if (hdr->ih_type != image_type) { 655 if (!(image_type == IH_TYPE_KERNEL && 656 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 657 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 658 image_type); 659 goto out; 660 } 661 } 662 663 /* TODO: Implement other image types. */ 664 switch (hdr->ih_type) { 665 case IH_TYPE_KERNEL_NOLOAD: 666 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 667 fprintf(stderr, "this image format (kernel_noload) cannot be " 668 "loaded on this machine type"); 669 goto out; 670 } 671 672 hdr->ih_load = *loadaddr + sizeof(*hdr); 673 hdr->ih_ep += hdr->ih_load; 674 /* fall through */ 675 case IH_TYPE_KERNEL: 676 address = hdr->ih_load; 677 if (translate_fn) { 678 address = translate_fn(translate_opaque, address); 679 } 680 if (loadaddr) { 681 *loadaddr = hdr->ih_load; 682 } 683 684 switch (hdr->ih_comp) { 685 case IH_COMP_NONE: 686 break; 687 case IH_COMP_GZIP: 688 do_uncompress = 1; 689 break; 690 default: 691 fprintf(stderr, 692 "Unable to load u-boot images with compression type %d\n", 693 hdr->ih_comp); 694 goto out; 695 } 696 697 if (ep) { 698 *ep = hdr->ih_ep; 699 } 700 701 /* TODO: Check CPU type. */ 702 if (is_linux) { 703 if (hdr->ih_os == IH_OS_LINUX) { 704 *is_linux = 1; 705 } else if (hdr->ih_os == IH_OS_VXWORKS) { 706 /* 707 * VxWorks 7 uses the same boot interface as the Linux kernel 708 * on Arm (64-bit only), PowerPC and RISC-V architectures. 709 */ 710 switch (hdr->ih_arch) { 711 case IH_ARCH_ARM64: 712 case IH_ARCH_PPC: 713 case IH_ARCH_RISCV: 714 *is_linux = 1; 715 break; 716 default: 717 *is_linux = 0; 718 break; 719 } 720 } else { 721 *is_linux = 0; 722 } 723 } 724 725 break; 726 case IH_TYPE_RAMDISK: 727 address = *loadaddr; 728 break; 729 default: 730 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 731 goto out; 732 } 733 734 data = g_malloc(hdr->ih_size); 735 736 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 737 fprintf(stderr, "Error reading file\n"); 738 goto out; 739 } 740 741 if (do_uncompress) { 742 uint8_t *compressed_data; 743 size_t max_bytes; 744 ssize_t bytes; 745 746 compressed_data = data; 747 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 748 data = g_malloc(max_bytes); 749 750 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 751 g_free(compressed_data); 752 if (bytes < 0) { 753 fprintf(stderr, "Unable to decompress gzipped image!\n"); 754 goto out; 755 } 756 hdr->ih_size = bytes; 757 } 758 759 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 760 761 ret = hdr->ih_size; 762 763 out: 764 g_free(data); 765 close(fd); 766 return ret; 767 } 768 769 ssize_t load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 770 int *is_linux, 771 uint64_t (*translate_fn)(void *, uint64_t), 772 void *translate_opaque) 773 { 774 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 775 translate_fn, translate_opaque, NULL); 776 } 777 778 ssize_t load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 779 int *is_linux, 780 uint64_t (*translate_fn)(void *, uint64_t), 781 void *translate_opaque, AddressSpace *as) 782 { 783 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 784 translate_fn, translate_opaque, as); 785 } 786 787 /* Load a ramdisk. */ 788 ssize_t load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 789 { 790 return load_ramdisk_as(filename, addr, max_sz, NULL); 791 } 792 793 ssize_t load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 794 AddressSpace *as) 795 { 796 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 797 NULL, NULL, as); 798 } 799 800 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 801 ssize_t load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 802 uint8_t **buffer) 803 { 804 uint8_t *compressed_data = NULL; 805 uint8_t *data = NULL; 806 gsize len; 807 ssize_t bytes; 808 int ret = -1; 809 810 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 811 NULL)) { 812 goto out; 813 } 814 815 /* Is it a gzip-compressed file? */ 816 if (len < 2 || 817 compressed_data[0] != 0x1f || 818 compressed_data[1] != 0x8b) { 819 goto out; 820 } 821 822 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 823 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 824 } 825 826 data = g_malloc(max_sz); 827 bytes = gunzip(data, max_sz, compressed_data, len); 828 if (bytes < 0) { 829 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 830 filename); 831 goto out; 832 } 833 834 /* trim to actual size and return to caller */ 835 *buffer = g_realloc(data, bytes); 836 ret = bytes; 837 /* ownership has been transferred to caller */ 838 data = NULL; 839 840 out: 841 g_free(compressed_data); 842 g_free(data); 843 return ret; 844 } 845 846 /* Load a gzip-compressed kernel. */ 847 ssize_t load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 848 { 849 ssize_t bytes; 850 uint8_t *data; 851 852 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 853 if (bytes != -1) { 854 rom_add_blob_fixed(filename, data, bytes, addr); 855 g_free(data); 856 } 857 return bytes; 858 } 859 860 /* The PE/COFF MS-DOS stub magic number */ 861 #define EFI_PE_MSDOS_MAGIC "MZ" 862 863 /* 864 * The Linux header magic number for a EFI PE/COFF 865 * image targetting an unspecified architecture. 866 */ 867 #define EFI_PE_LINUX_MAGIC "\xcd\x23\x82\x81" 868 869 /* 870 * Bootable Linux kernel images may be packaged as EFI zboot images, which are 871 * self-decompressing executables when loaded via EFI. The compressed payload 872 * can also be extracted from the image and decompressed by a non-EFI loader. 873 * 874 * The de facto specification for this format is at the following URL: 875 * 876 * https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/firmware/efi/libstub/zboot-header.S 877 * 878 * This definition is based on Linux upstream commit 29636a5ce87beba. 879 */ 880 struct linux_efi_zboot_header { 881 uint8_t msdos_magic[2]; /* PE/COFF 'MZ' magic number */ 882 uint8_t reserved0[2]; 883 uint8_t zimg[4]; /* "zimg" for Linux EFI zboot images */ 884 uint32_t payload_offset; /* LE offset to compressed payload */ 885 uint32_t payload_size; /* LE size of the compressed payload */ 886 uint8_t reserved1[8]; 887 char compression_type[32]; /* Compression type, NUL terminated */ 888 uint8_t linux_magic[4]; /* Linux header magic */ 889 uint32_t pe_header_offset; /* LE offset to the PE header */ 890 }; 891 892 /* 893 * Check whether *buffer points to a Linux EFI zboot image in memory. 894 * 895 * If it does, attempt to decompress it to a new buffer, and free the old one. 896 * If any of this fails, return an error to the caller. 897 * 898 * If the image is not a Linux EFI zboot image, do nothing and return success. 899 */ 900 ssize_t unpack_efi_zboot_image(uint8_t **buffer, int *size) 901 { 902 const struct linux_efi_zboot_header *header; 903 uint8_t *data = NULL; 904 int ploff, plsize; 905 ssize_t bytes; 906 907 /* ignore if this is too small to be a EFI zboot image */ 908 if (*size < sizeof(*header)) { 909 return 0; 910 } 911 912 header = (struct linux_efi_zboot_header *)*buffer; 913 914 /* ignore if this is not a Linux EFI zboot image */ 915 if (memcmp(&header->msdos_magic, EFI_PE_MSDOS_MAGIC, 2) != 0 || 916 memcmp(&header->zimg, "zimg", 4) != 0 || 917 memcmp(&header->linux_magic, EFI_PE_LINUX_MAGIC, 4) != 0) { 918 return 0; 919 } 920 921 if (strcmp(header->compression_type, "gzip") != 0) { 922 fprintf(stderr, 923 "unable to handle EFI zboot image with \"%.*s\" compression\n", 924 (int)sizeof(header->compression_type) - 1, 925 header->compression_type); 926 return -1; 927 } 928 929 ploff = ldl_le_p(&header->payload_offset); 930 plsize = ldl_le_p(&header->payload_size); 931 932 if (ploff < 0 || plsize < 0 || ploff + plsize > *size) { 933 fprintf(stderr, "unable to handle corrupt EFI zboot image\n"); 934 return -1; 935 } 936 937 data = g_malloc(LOAD_IMAGE_MAX_GUNZIP_BYTES); 938 bytes = gunzip(data, LOAD_IMAGE_MAX_GUNZIP_BYTES, *buffer + ploff, plsize); 939 if (bytes < 0) { 940 fprintf(stderr, "failed to decompress EFI zboot image\n"); 941 g_free(data); 942 return -1; 943 } 944 945 g_free(*buffer); 946 *buffer = g_realloc(data, bytes); 947 *size = bytes; 948 return bytes; 949 } 950 951 /* 952 * Functions for reboot-persistent memory regions. 953 * - used for vga bios and option roms. 954 * - also linux kernel (-kernel / -initrd). 955 */ 956 957 typedef struct Rom Rom; 958 959 struct Rom { 960 char *name; 961 char *path; 962 963 /* datasize is the amount of memory allocated in "data". If datasize is less 964 * than romsize, it means that the area from datasize to romsize is filled 965 * with zeros. 966 */ 967 size_t romsize; 968 size_t datasize; 969 970 uint8_t *data; 971 MemoryRegion *mr; 972 AddressSpace *as; 973 int isrom; 974 char *fw_dir; 975 char *fw_file; 976 GMappedFile *mapped_file; 977 978 bool committed; 979 980 hwaddr addr; 981 QTAILQ_ENTRY(Rom) next; 982 }; 983 984 static FWCfgState *fw_cfg; 985 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 986 987 /* 988 * rom->data can be heap-allocated or memory-mapped (e.g. when added with 989 * rom_add_elf_program()) 990 */ 991 static void rom_free_data(Rom *rom) 992 { 993 if (rom->mapped_file) { 994 g_mapped_file_unref(rom->mapped_file); 995 rom->mapped_file = NULL; 996 } else { 997 g_free(rom->data); 998 } 999 1000 rom->data = NULL; 1001 } 1002 1003 static void rom_free(Rom *rom) 1004 { 1005 rom_free_data(rom); 1006 g_free(rom->path); 1007 g_free(rom->name); 1008 g_free(rom->fw_dir); 1009 g_free(rom->fw_file); 1010 g_free(rom); 1011 } 1012 1013 static inline bool rom_order_compare(Rom *rom, Rom *item) 1014 { 1015 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 1016 (rom->as == item->as && rom->addr >= item->addr); 1017 } 1018 1019 static void rom_insert(Rom *rom) 1020 { 1021 Rom *item; 1022 1023 if (roms_loaded) { 1024 hw_error ("ROM images must be loaded at startup\n"); 1025 } 1026 1027 /* The user didn't specify an address space, this is the default */ 1028 if (!rom->as) { 1029 rom->as = &address_space_memory; 1030 } 1031 1032 rom->committed = false; 1033 1034 /* List is ordered by load address in the same address space */ 1035 QTAILQ_FOREACH(item, &roms, next) { 1036 if (rom_order_compare(rom, item)) { 1037 continue; 1038 } 1039 QTAILQ_INSERT_BEFORE(item, rom, next); 1040 return; 1041 } 1042 QTAILQ_INSERT_TAIL(&roms, rom, next); 1043 } 1044 1045 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 1046 { 1047 if (fw_cfg) { 1048 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 1049 } 1050 } 1051 1052 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 1053 { 1054 void *data; 1055 1056 rom->mr = g_malloc(sizeof(*rom->mr)); 1057 memory_region_init_resizeable_ram(rom->mr, owner, name, 1058 rom->datasize, rom->romsize, 1059 fw_cfg_resized, 1060 &error_fatal); 1061 memory_region_set_readonly(rom->mr, ro); 1062 vmstate_register_ram_global(rom->mr); 1063 1064 data = memory_region_get_ram_ptr(rom->mr); 1065 memcpy(data, rom->data, rom->datasize); 1066 1067 return data; 1068 } 1069 1070 ssize_t rom_add_file(const char *file, const char *fw_dir, 1071 hwaddr addr, int32_t bootindex, 1072 bool option_rom, MemoryRegion *mr, 1073 AddressSpace *as) 1074 { 1075 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1076 Rom *rom; 1077 ssize_t rc; 1078 int fd = -1; 1079 char devpath[100]; 1080 1081 if (as && mr) { 1082 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 1083 "not valid when loading a rom\n"); 1084 /* We haven't allocated anything so we don't need any cleanup */ 1085 return -1; 1086 } 1087 1088 rom = g_malloc0(sizeof(*rom)); 1089 rom->name = g_strdup(file); 1090 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 1091 rom->as = as; 1092 if (rom->path == NULL) { 1093 rom->path = g_strdup(file); 1094 } 1095 1096 fd = open(rom->path, O_RDONLY | O_BINARY); 1097 if (fd == -1) { 1098 fprintf(stderr, "Could not open option rom '%s': %s\n", 1099 rom->path, strerror(errno)); 1100 goto err; 1101 } 1102 1103 if (fw_dir) { 1104 rom->fw_dir = g_strdup(fw_dir); 1105 rom->fw_file = g_strdup(file); 1106 } 1107 rom->addr = addr; 1108 rom->romsize = lseek(fd, 0, SEEK_END); 1109 if (rom->romsize == -1) { 1110 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 1111 rom->name, strerror(errno)); 1112 goto err; 1113 } 1114 1115 rom->datasize = rom->romsize; 1116 rom->data = g_malloc0(rom->datasize); 1117 lseek(fd, 0, SEEK_SET); 1118 rc = read(fd, rom->data, rom->datasize); 1119 if (rc != rom->datasize) { 1120 fprintf(stderr, "rom: file %-20s: read error: rc=%zd (expected %zd)\n", 1121 rom->name, rc, rom->datasize); 1122 goto err; 1123 } 1124 close(fd); 1125 rom_insert(rom); 1126 if (rom->fw_file && fw_cfg) { 1127 const char *basename; 1128 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 1129 void *data; 1130 1131 basename = strrchr(rom->fw_file, '/'); 1132 if (basename) { 1133 basename++; 1134 } else { 1135 basename = rom->fw_file; 1136 } 1137 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 1138 basename); 1139 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1140 1141 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 1142 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 1143 } else { 1144 data = rom->data; 1145 } 1146 1147 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 1148 } else { 1149 if (mr) { 1150 rom->mr = mr; 1151 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 1152 } else { 1153 snprintf(devpath, sizeof(devpath), "/rom@" HWADDR_FMT_plx, addr); 1154 } 1155 } 1156 1157 add_boot_device_path(bootindex, NULL, devpath); 1158 return 0; 1159 1160 err: 1161 if (fd != -1) 1162 close(fd); 1163 1164 rom_free(rom); 1165 return -1; 1166 } 1167 1168 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1169 size_t max_len, hwaddr addr, const char *fw_file_name, 1170 FWCfgCallback fw_callback, void *callback_opaque, 1171 AddressSpace *as, bool read_only) 1172 { 1173 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1174 Rom *rom; 1175 MemoryRegion *mr = NULL; 1176 1177 rom = g_malloc0(sizeof(*rom)); 1178 rom->name = g_strdup(name); 1179 rom->as = as; 1180 rom->addr = addr; 1181 rom->romsize = max_len ? max_len : len; 1182 rom->datasize = len; 1183 g_assert(rom->romsize >= rom->datasize); 1184 rom->data = g_malloc0(rom->datasize); 1185 memcpy(rom->data, blob, len); 1186 rom_insert(rom); 1187 if (fw_file_name && fw_cfg) { 1188 char devpath[100]; 1189 void *data; 1190 1191 if (read_only) { 1192 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1193 } else { 1194 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1195 } 1196 1197 if (mc->rom_file_has_mr) { 1198 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1199 mr = rom->mr; 1200 } else { 1201 data = rom->data; 1202 } 1203 1204 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1205 fw_callback, NULL, callback_opaque, 1206 data, rom->datasize, read_only); 1207 } 1208 return mr; 1209 } 1210 1211 /* This function is specific for elf program because we don't need to allocate 1212 * all the rom. We just allocate the first part and the rest is just zeros. This 1213 * is why romsize and datasize are different. Also, this function takes its own 1214 * reference to "mapped_file", so we don't have to allocate and copy the buffer. 1215 */ 1216 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, 1217 size_t datasize, size_t romsize, hwaddr addr, 1218 AddressSpace *as) 1219 { 1220 Rom *rom; 1221 1222 rom = g_malloc0(sizeof(*rom)); 1223 rom->name = g_strdup(name); 1224 rom->addr = addr; 1225 rom->datasize = datasize; 1226 rom->romsize = romsize; 1227 rom->data = data; 1228 rom->as = as; 1229 1230 if (mapped_file && data) { 1231 g_mapped_file_ref(mapped_file); 1232 rom->mapped_file = mapped_file; 1233 } 1234 1235 rom_insert(rom); 1236 return 0; 1237 } 1238 1239 ssize_t rom_add_vga(const char *file) 1240 { 1241 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1242 } 1243 1244 ssize_t rom_add_option(const char *file, int32_t bootindex) 1245 { 1246 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1247 } 1248 1249 static void rom_reset(void *unused) 1250 { 1251 Rom *rom; 1252 1253 QTAILQ_FOREACH(rom, &roms, next) { 1254 if (rom->fw_file) { 1255 continue; 1256 } 1257 /* 1258 * We don't need to fill in the RAM with ROM data because we'll fill 1259 * the data in during the next incoming migration in all cases. Note 1260 * that some of those RAMs can actually be modified by the guest. 1261 */ 1262 if (runstate_check(RUN_STATE_INMIGRATE)) { 1263 if (rom->data && rom->isrom) { 1264 /* 1265 * Free it so that a rom_reset after migration doesn't 1266 * overwrite a potentially modified 'rom'. 1267 */ 1268 rom_free_data(rom); 1269 } 1270 continue; 1271 } 1272 1273 if (rom->data == NULL) { 1274 continue; 1275 } 1276 if (rom->mr) { 1277 void *host = memory_region_get_ram_ptr(rom->mr); 1278 memcpy(host, rom->data, rom->datasize); 1279 memset(host + rom->datasize, 0, rom->romsize - rom->datasize); 1280 } else { 1281 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1282 rom->data, rom->datasize); 1283 address_space_set(rom->as, rom->addr + rom->datasize, 0, 1284 rom->romsize - rom->datasize, 1285 MEMTXATTRS_UNSPECIFIED); 1286 } 1287 if (rom->isrom) { 1288 /* rom needs to be written only once */ 1289 rom_free_data(rom); 1290 } 1291 /* 1292 * The rom loader is really on the same level as firmware in the guest 1293 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1294 * that the instruction cache for that new region is clear, so that the 1295 * CPU definitely fetches its instructions from the just written data. 1296 */ 1297 cpu_flush_icache_range(rom->addr, rom->datasize); 1298 1299 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom); 1300 } 1301 } 1302 1303 /* Return true if two consecutive ROMs in the ROM list overlap */ 1304 static bool roms_overlap(Rom *last_rom, Rom *this_rom) 1305 { 1306 if (!last_rom) { 1307 return false; 1308 } 1309 return last_rom->as == this_rom->as && 1310 last_rom->addr + last_rom->romsize > this_rom->addr; 1311 } 1312 1313 static const char *rom_as_name(Rom *rom) 1314 { 1315 const char *name = rom->as ? rom->as->name : NULL; 1316 return name ?: "anonymous"; 1317 } 1318 1319 static void rom_print_overlap_error_header(void) 1320 { 1321 error_report("Some ROM regions are overlapping"); 1322 error_printf( 1323 "These ROM regions might have been loaded by " 1324 "direct user request or by default.\n" 1325 "They could be BIOS/firmware images, a guest kernel, " 1326 "initrd or some other file loaded into guest memory.\n" 1327 "Check whether you intended to load all this guest code, and " 1328 "whether it has been built to load to the correct addresses.\n"); 1329 } 1330 1331 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom) 1332 { 1333 error_printf( 1334 "\nThe following two regions overlap (in the %s address space):\n", 1335 rom_as_name(rom)); 1336 error_printf( 1337 " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n", 1338 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize); 1339 error_printf( 1340 " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n", 1341 rom->name, rom->addr, rom->addr + rom->romsize); 1342 } 1343 1344 int rom_check_and_register_reset(void) 1345 { 1346 MemoryRegionSection section; 1347 Rom *rom, *last_rom = NULL; 1348 bool found_overlap = false; 1349 1350 QTAILQ_FOREACH(rom, &roms, next) { 1351 if (rom->fw_file) { 1352 continue; 1353 } 1354 if (!rom->mr) { 1355 if (roms_overlap(last_rom, rom)) { 1356 if (!found_overlap) { 1357 found_overlap = true; 1358 rom_print_overlap_error_header(); 1359 } 1360 rom_print_one_overlap_error(last_rom, rom); 1361 /* Keep going through the list so we report all overlaps */ 1362 } 1363 last_rom = rom; 1364 } 1365 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1366 rom->addr, 1); 1367 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1368 memory_region_unref(section.mr); 1369 } 1370 if (found_overlap) { 1371 return -1; 1372 } 1373 1374 qemu_register_reset(rom_reset, NULL); 1375 roms_loaded = 1; 1376 return 0; 1377 } 1378 1379 void rom_set_fw(FWCfgState *f) 1380 { 1381 fw_cfg = f; 1382 } 1383 1384 void rom_set_order_override(int order) 1385 { 1386 if (!fw_cfg) 1387 return; 1388 fw_cfg_set_order_override(fw_cfg, order); 1389 } 1390 1391 void rom_reset_order_override(void) 1392 { 1393 if (!fw_cfg) 1394 return; 1395 fw_cfg_reset_order_override(fw_cfg); 1396 } 1397 1398 void rom_transaction_begin(void) 1399 { 1400 Rom *rom; 1401 1402 /* Ignore ROMs added without the transaction API */ 1403 QTAILQ_FOREACH(rom, &roms, next) { 1404 rom->committed = true; 1405 } 1406 } 1407 1408 void rom_transaction_end(bool commit) 1409 { 1410 Rom *rom; 1411 Rom *tmp; 1412 1413 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1414 if (rom->committed) { 1415 continue; 1416 } 1417 if (commit) { 1418 rom->committed = true; 1419 } else { 1420 QTAILQ_REMOVE(&roms, rom, next); 1421 rom_free(rom); 1422 } 1423 } 1424 } 1425 1426 static Rom *find_rom(hwaddr addr, size_t size) 1427 { 1428 Rom *rom; 1429 1430 QTAILQ_FOREACH(rom, &roms, next) { 1431 if (rom->fw_file) { 1432 continue; 1433 } 1434 if (rom->mr) { 1435 continue; 1436 } 1437 if (rom->addr > addr) { 1438 continue; 1439 } 1440 if (rom->addr + rom->romsize < addr + size) { 1441 continue; 1442 } 1443 return rom; 1444 } 1445 return NULL; 1446 } 1447 1448 typedef struct RomSec { 1449 hwaddr base; 1450 int se; /* start/end flag */ 1451 } RomSec; 1452 1453 1454 /* 1455 * Sort into address order. We break ties between rom-startpoints 1456 * and rom-endpoints in favour of the startpoint, by sorting the 0->1 1457 * transition before the 1->0 transition. Either way round would 1458 * work, but this way saves a little work later by avoiding 1459 * dealing with "gaps" of 0 length. 1460 */ 1461 static gint sort_secs(gconstpointer a, gconstpointer b) 1462 { 1463 RomSec *ra = (RomSec *) a; 1464 RomSec *rb = (RomSec *) b; 1465 1466 if (ra->base == rb->base) { 1467 return ra->se - rb->se; 1468 } 1469 return ra->base > rb->base ? 1 : -1; 1470 } 1471 1472 static GList *add_romsec_to_list(GList *secs, hwaddr base, int se) 1473 { 1474 RomSec *cand = g_new(RomSec, 1); 1475 cand->base = base; 1476 cand->se = se; 1477 return g_list_prepend(secs, cand); 1478 } 1479 1480 RomGap rom_find_largest_gap_between(hwaddr base, size_t size) 1481 { 1482 Rom *rom; 1483 RomSec *cand; 1484 RomGap res = {0, 0}; 1485 hwaddr gapstart = base; 1486 GList *it, *secs = NULL; 1487 int count = 0; 1488 1489 QTAILQ_FOREACH(rom, &roms, next) { 1490 /* Ignore blobs being loaded to special places */ 1491 if (rom->mr || rom->fw_file) { 1492 continue; 1493 } 1494 /* ignore anything finishing bellow base */ 1495 if (rom->addr + rom->romsize <= base) { 1496 continue; 1497 } 1498 /* ignore anything starting above the region */ 1499 if (rom->addr >= base + size) { 1500 continue; 1501 } 1502 1503 /* Save the start and end of each relevant ROM */ 1504 secs = add_romsec_to_list(secs, rom->addr, 1); 1505 1506 if (rom->addr + rom->romsize < base + size) { 1507 secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1); 1508 } 1509 } 1510 1511 /* sentinel */ 1512 secs = add_romsec_to_list(secs, base + size, 1); 1513 1514 secs = g_list_sort(secs, sort_secs); 1515 1516 for (it = g_list_first(secs); it; it = g_list_next(it)) { 1517 cand = (RomSec *) it->data; 1518 if (count == 0 && count + cand->se == 1) { 1519 size_t gap = cand->base - gapstart; 1520 if (gap > res.size) { 1521 res.base = gapstart; 1522 res.size = gap; 1523 } 1524 } else if (count == 1 && count + cand->se == 0) { 1525 gapstart = cand->base; 1526 } 1527 count += cand->se; 1528 } 1529 1530 g_list_free_full(secs, g_free); 1531 return res; 1532 } 1533 1534 /* 1535 * Copies memory from registered ROMs to dest. Any memory that is contained in 1536 * a ROM between addr and addr + size is copied. Note that this can involve 1537 * multiple ROMs, which need not start at addr and need not end at addr + size. 1538 */ 1539 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1540 { 1541 hwaddr end = addr + size; 1542 uint8_t *s, *d = dest; 1543 size_t l = 0; 1544 Rom *rom; 1545 1546 QTAILQ_FOREACH(rom, &roms, next) { 1547 if (rom->fw_file) { 1548 continue; 1549 } 1550 if (rom->mr) { 1551 continue; 1552 } 1553 if (rom->addr + rom->romsize < addr) { 1554 continue; 1555 } 1556 if (rom->addr > end || rom->addr < addr) { 1557 break; 1558 } 1559 1560 d = dest + (rom->addr - addr); 1561 s = rom->data; 1562 l = rom->datasize; 1563 1564 if ((d + l) > (dest + size)) { 1565 l = dest - d; 1566 } 1567 1568 if (l > 0) { 1569 memcpy(d, s, l); 1570 } 1571 1572 if (rom->romsize > rom->datasize) { 1573 /* If datasize is less than romsize, it means that we didn't 1574 * allocate all the ROM because the trailing data are only zeros. 1575 */ 1576 1577 d += l; 1578 l = rom->romsize - rom->datasize; 1579 1580 if ((d + l) > (dest + size)) { 1581 /* Rom size doesn't fit in the destination area. Adjust to avoid 1582 * overflow. 1583 */ 1584 l = dest - d; 1585 } 1586 1587 if (l > 0) { 1588 memset(d, 0x0, l); 1589 } 1590 } 1591 } 1592 1593 return (d + l) - dest; 1594 } 1595 1596 void *rom_ptr(hwaddr addr, size_t size) 1597 { 1598 Rom *rom; 1599 1600 rom = find_rom(addr, size); 1601 if (!rom || !rom->data) 1602 return NULL; 1603 return rom->data + (addr - rom->addr); 1604 } 1605 1606 typedef struct FindRomCBData { 1607 size_t size; /* Amount of data we want from ROM, in bytes */ 1608 MemoryRegion *mr; /* MR at the unaliased guest addr */ 1609 hwaddr xlat; /* Offset of addr within mr */ 1610 void *rom; /* Output: rom data pointer, if found */ 1611 } FindRomCBData; 1612 1613 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr, 1614 hwaddr offset_in_region, void *opaque) 1615 { 1616 FindRomCBData *cbdata = opaque; 1617 hwaddr alias_addr; 1618 1619 if (mr != cbdata->mr) { 1620 return false; 1621 } 1622 1623 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region; 1624 cbdata->rom = rom_ptr(alias_addr, cbdata->size); 1625 if (!cbdata->rom) { 1626 return false; 1627 } 1628 /* Found a match, stop iterating */ 1629 return true; 1630 } 1631 1632 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size) 1633 { 1634 /* 1635 * Find any ROM data for the given guest address range. If there 1636 * is a ROM blob then return a pointer to the host memory 1637 * corresponding to 'addr'; otherwise return NULL. 1638 * 1639 * We look not only for ROM blobs that were loaded directly to 1640 * addr, but also for ROM blobs that were loaded to aliases of 1641 * that memory at other addresses within the AddressSpace. 1642 * 1643 * Note that we do not check @as against the 'as' member in the 1644 * 'struct Rom' returned by rom_ptr(). The Rom::as is the 1645 * AddressSpace which the rom blob should be written to, whereas 1646 * our @as argument is the AddressSpace which we are (effectively) 1647 * reading from, and the same underlying RAM will often be visible 1648 * in multiple AddressSpaces. (A common example is a ROM blob 1649 * written to the 'system' address space but then read back via a 1650 * CPU's cpu->as pointer.) This does mean we might potentially 1651 * return a false-positive match if a ROM blob was loaded into an 1652 * AS which is entirely separate and distinct from the one we're 1653 * querying, but this issue exists also for rom_ptr() and hasn't 1654 * caused any problems in practice. 1655 */ 1656 FlatView *fv; 1657 void *rom; 1658 hwaddr len_unused; 1659 FindRomCBData cbdata = {}; 1660 1661 /* Easy case: there's data at the actual address */ 1662 rom = rom_ptr(addr, size); 1663 if (rom) { 1664 return rom; 1665 } 1666 1667 RCU_READ_LOCK_GUARD(); 1668 1669 fv = address_space_to_flatview(as); 1670 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused, 1671 false, MEMTXATTRS_UNSPECIFIED); 1672 if (!cbdata.mr) { 1673 /* Nothing at this address, so there can't be any aliasing */ 1674 return NULL; 1675 } 1676 cbdata.size = size; 1677 flatview_for_each_range(fv, find_rom_cb, &cbdata); 1678 return cbdata.rom; 1679 } 1680 1681 HumanReadableText *qmp_x_query_roms(Error **errp) 1682 { 1683 Rom *rom; 1684 g_autoptr(GString) buf = g_string_new(""); 1685 1686 QTAILQ_FOREACH(rom, &roms, next) { 1687 if (rom->mr) { 1688 g_string_append_printf(buf, "%s" 1689 " size=0x%06zx name=\"%s\"\n", 1690 memory_region_name(rom->mr), 1691 rom->romsize, 1692 rom->name); 1693 } else if (!rom->fw_file) { 1694 g_string_append_printf(buf, "addr=" HWADDR_FMT_plx 1695 " size=0x%06zx mem=%s name=\"%s\"\n", 1696 rom->addr, rom->romsize, 1697 rom->isrom ? "rom" : "ram", 1698 rom->name); 1699 } else { 1700 g_string_append_printf(buf, "fw=%s/%s" 1701 " size=0x%06zx name=\"%s\"\n", 1702 rom->fw_dir, 1703 rom->fw_file, 1704 rom->romsize, 1705 rom->name); 1706 } 1707 } 1708 1709 return human_readable_text_from_str(buf); 1710 } 1711 1712 typedef enum HexRecord HexRecord; 1713 enum HexRecord { 1714 DATA_RECORD = 0, 1715 EOF_RECORD, 1716 EXT_SEG_ADDR_RECORD, 1717 START_SEG_ADDR_RECORD, 1718 EXT_LINEAR_ADDR_RECORD, 1719 START_LINEAR_ADDR_RECORD, 1720 }; 1721 1722 /* Each record contains a 16-bit address which is combined with the upper 16 1723 * bits of the implicit "next address" to form a 32-bit address. 1724 */ 1725 #define NEXT_ADDR_MASK 0xffff0000 1726 1727 #define DATA_FIELD_MAX_LEN 0xff 1728 #define LEN_EXCEPT_DATA 0x5 1729 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1730 * sizeof(checksum) */ 1731 typedef struct { 1732 uint8_t byte_count; 1733 uint16_t address; 1734 uint8_t record_type; 1735 uint8_t data[DATA_FIELD_MAX_LEN]; 1736 uint8_t checksum; 1737 } HexLine; 1738 1739 /* return 0 or -1 if error */ 1740 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1741 uint32_t *index, const bool in_process) 1742 { 1743 /* +-------+---------------+-------+---------------------+--------+ 1744 * | byte | |record | | | 1745 * | count | address | type | data |checksum| 1746 * +-------+---------------+-------+---------------------+--------+ 1747 * ^ ^ ^ ^ ^ ^ 1748 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1749 */ 1750 uint8_t value = 0; 1751 uint32_t idx = *index; 1752 /* ignore space */ 1753 if (g_ascii_isspace(c)) { 1754 return true; 1755 } 1756 if (!g_ascii_isxdigit(c) || !in_process) { 1757 return false; 1758 } 1759 value = g_ascii_xdigit_value(c); 1760 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1761 if (idx < 2) { 1762 line->byte_count |= value; 1763 } else if (2 <= idx && idx < 6) { 1764 line->address <<= 4; 1765 line->address += g_ascii_xdigit_value(c); 1766 } else if (6 <= idx && idx < 8) { 1767 line->record_type |= value; 1768 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1769 line->data[(idx - 8) >> 1] |= value; 1770 } else if (8 + 2 * line->byte_count <= idx && 1771 idx < 10 + 2 * line->byte_count) { 1772 line->checksum |= value; 1773 } else { 1774 return false; 1775 } 1776 *our_checksum += value; 1777 ++(*index); 1778 return true; 1779 } 1780 1781 typedef struct { 1782 const char *filename; 1783 HexLine line; 1784 uint8_t *bin_buf; 1785 hwaddr *start_addr; 1786 int total_size; 1787 uint32_t next_address_to_write; 1788 uint32_t current_address; 1789 uint32_t current_rom_index; 1790 uint32_t rom_start_address; 1791 AddressSpace *as; 1792 bool complete; 1793 } HexParser; 1794 1795 /* return size or -1 if error */ 1796 static int handle_record_type(HexParser *parser) 1797 { 1798 HexLine *line = &(parser->line); 1799 switch (line->record_type) { 1800 case DATA_RECORD: 1801 parser->current_address = 1802 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1803 /* verify this is a contiguous block of memory */ 1804 if (parser->current_address != parser->next_address_to_write) { 1805 if (parser->current_rom_index != 0) { 1806 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1807 parser->current_rom_index, 1808 parser->rom_start_address, parser->as); 1809 } 1810 parser->rom_start_address = parser->current_address; 1811 parser->current_rom_index = 0; 1812 } 1813 1814 /* copy from line buffer to output bin_buf */ 1815 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1816 line->byte_count); 1817 parser->current_rom_index += line->byte_count; 1818 parser->total_size += line->byte_count; 1819 /* save next address to write */ 1820 parser->next_address_to_write = 1821 parser->current_address + line->byte_count; 1822 break; 1823 1824 case EOF_RECORD: 1825 if (parser->current_rom_index != 0) { 1826 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1827 parser->current_rom_index, 1828 parser->rom_start_address, parser->as); 1829 } 1830 parser->complete = true; 1831 return parser->total_size; 1832 case EXT_SEG_ADDR_RECORD: 1833 case EXT_LINEAR_ADDR_RECORD: 1834 if (line->byte_count != 2 && line->address != 0) { 1835 return -1; 1836 } 1837 1838 if (parser->current_rom_index != 0) { 1839 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1840 parser->current_rom_index, 1841 parser->rom_start_address, parser->as); 1842 } 1843 1844 /* save next address to write, 1845 * in case of non-contiguous block of memory */ 1846 parser->next_address_to_write = (line->data[0] << 12) | 1847 (line->data[1] << 4); 1848 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1849 parser->next_address_to_write <<= 12; 1850 } 1851 1852 parser->rom_start_address = parser->next_address_to_write; 1853 parser->current_rom_index = 0; 1854 break; 1855 1856 case START_SEG_ADDR_RECORD: 1857 if (line->byte_count != 4 && line->address != 0) { 1858 return -1; 1859 } 1860 1861 /* x86 16-bit CS:IP segmented addressing */ 1862 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1863 ((line->data[2] << 8) | line->data[3]); 1864 break; 1865 1866 case START_LINEAR_ADDR_RECORD: 1867 if (line->byte_count != 4 && line->address != 0) { 1868 return -1; 1869 } 1870 1871 *(parser->start_addr) = ldl_be_p(line->data); 1872 break; 1873 1874 default: 1875 return -1; 1876 } 1877 1878 return parser->total_size; 1879 } 1880 1881 /* return size or -1 if error */ 1882 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1883 size_t hex_blob_size, AddressSpace *as) 1884 { 1885 bool in_process = false; /* avoid re-enter and 1886 * check whether record begin with ':' */ 1887 uint8_t *end = hex_blob + hex_blob_size; 1888 uint8_t our_checksum = 0; 1889 uint32_t record_index = 0; 1890 HexParser parser = { 1891 .filename = filename, 1892 .bin_buf = g_malloc(hex_blob_size), 1893 .start_addr = addr, 1894 .as = as, 1895 .complete = false 1896 }; 1897 1898 rom_transaction_begin(); 1899 1900 for (; hex_blob < end && !parser.complete; ++hex_blob) { 1901 switch (*hex_blob) { 1902 case '\r': 1903 case '\n': 1904 if (!in_process) { 1905 break; 1906 } 1907 1908 in_process = false; 1909 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1910 record_index || 1911 our_checksum != 0) { 1912 parser.total_size = -1; 1913 goto out; 1914 } 1915 1916 if (handle_record_type(&parser) == -1) { 1917 parser.total_size = -1; 1918 goto out; 1919 } 1920 break; 1921 1922 /* start of a new record. */ 1923 case ':': 1924 memset(&parser.line, 0, sizeof(HexLine)); 1925 in_process = true; 1926 record_index = 0; 1927 break; 1928 1929 /* decoding lines */ 1930 default: 1931 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1932 &record_index, in_process)) { 1933 parser.total_size = -1; 1934 goto out; 1935 } 1936 break; 1937 } 1938 } 1939 1940 out: 1941 g_free(parser.bin_buf); 1942 rom_transaction_end(parser.total_size != -1); 1943 return parser.total_size; 1944 } 1945 1946 /* return size or -1 if error */ 1947 ssize_t load_targphys_hex_as(const char *filename, hwaddr *entry, 1948 AddressSpace *as) 1949 { 1950 gsize hex_blob_size; 1951 gchar *hex_blob; 1952 ssize_t total_size = 0; 1953 1954 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1955 return -1; 1956 } 1957 1958 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1959 hex_blob_size, as); 1960 1961 g_free(hex_blob); 1962 return total_size; 1963 } 1964