1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qapi/error.h" 47 #include "hw/hw.h" 48 #include "disas/disas.h" 49 #include "monitor/monitor.h" 50 #include "sysemu/sysemu.h" 51 #include "uboot_image.h" 52 #include "hw/loader.h" 53 #include "hw/nvram/fw_cfg.h" 54 #include "exec/memory.h" 55 #include "exec/address-spaces.h" 56 #include "hw/boards.h" 57 58 #include <zlib.h> 59 60 static int roms_loaded; 61 62 /* return the size or -1 if error */ 63 int get_image_size(const char *filename) 64 { 65 int fd, size; 66 fd = open(filename, O_RDONLY | O_BINARY); 67 if (fd < 0) 68 return -1; 69 size = lseek(fd, 0, SEEK_END); 70 close(fd); 71 return size; 72 } 73 74 /* return the size or -1 if error */ 75 /* deprecated, because caller does not specify buffer size! */ 76 int load_image(const char *filename, uint8_t *addr) 77 { 78 int fd, size; 79 fd = open(filename, O_RDONLY | O_BINARY); 80 if (fd < 0) 81 return -1; 82 size = lseek(fd, 0, SEEK_END); 83 if (size == -1) { 84 fprintf(stderr, "file %-20s: get size error: %s\n", 85 filename, strerror(errno)); 86 close(fd); 87 return -1; 88 } 89 90 lseek(fd, 0, SEEK_SET); 91 if (read(fd, addr, size) != size) { 92 close(fd); 93 return -1; 94 } 95 close(fd); 96 return size; 97 } 98 99 /* return the size or -1 if error */ 100 ssize_t load_image_size(const char *filename, void *addr, size_t size) 101 { 102 int fd; 103 ssize_t actsize; 104 105 fd = open(filename, O_RDONLY | O_BINARY); 106 if (fd < 0) { 107 return -1; 108 } 109 110 actsize = read(fd, addr, size); 111 if (actsize < 0) { 112 close(fd); 113 return -1; 114 } 115 close(fd); 116 117 return actsize; 118 } 119 120 /* read()-like version */ 121 ssize_t read_targphys(const char *name, 122 int fd, hwaddr dst_addr, size_t nbytes) 123 { 124 uint8_t *buf; 125 ssize_t did; 126 127 buf = g_malloc(nbytes); 128 did = read(fd, buf, nbytes); 129 if (did > 0) 130 rom_add_blob_fixed("read", buf, did, dst_addr); 131 g_free(buf); 132 return did; 133 } 134 135 /* return the size or -1 if error */ 136 int load_image_targphys(const char *filename, 137 hwaddr addr, uint64_t max_sz) 138 { 139 int size; 140 141 size = get_image_size(filename); 142 if (size > max_sz) { 143 return -1; 144 } 145 if (size > 0) { 146 rom_add_file_fixed(filename, addr, -1); 147 } 148 return size; 149 } 150 151 int load_image_mr(const char *filename, MemoryRegion *mr) 152 { 153 int size; 154 155 if (!memory_access_is_direct(mr, false)) { 156 /* Can only load an image into RAM or ROM */ 157 return -1; 158 } 159 160 size = get_image_size(filename); 161 162 if (size > memory_region_size(mr)) { 163 return -1; 164 } 165 if (size > 0) { 166 if (rom_add_file_mr(filename, mr, -1) < 0) { 167 return -1; 168 } 169 } 170 return size; 171 } 172 173 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 174 const char *source) 175 { 176 const char *nulp; 177 char *ptr; 178 179 if (buf_size <= 0) return; 180 nulp = memchr(source, 0, buf_size); 181 if (nulp) { 182 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 183 } else { 184 rom_add_blob_fixed(name, source, buf_size, dest); 185 ptr = rom_ptr(dest + buf_size - 1); 186 *ptr = 0; 187 } 188 } 189 190 /* A.OUT loader */ 191 192 struct exec 193 { 194 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 195 uint32_t a_text; /* length of text, in bytes */ 196 uint32_t a_data; /* length of data, in bytes */ 197 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 198 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 199 uint32_t a_entry; /* start address */ 200 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 201 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 202 }; 203 204 static void bswap_ahdr(struct exec *e) 205 { 206 bswap32s(&e->a_info); 207 bswap32s(&e->a_text); 208 bswap32s(&e->a_data); 209 bswap32s(&e->a_bss); 210 bswap32s(&e->a_syms); 211 bswap32s(&e->a_entry); 212 bswap32s(&e->a_trsize); 213 bswap32s(&e->a_drsize); 214 } 215 216 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 217 #define OMAGIC 0407 218 #define NMAGIC 0410 219 #define ZMAGIC 0413 220 #define QMAGIC 0314 221 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 222 #define N_TXTOFF(x) \ 223 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 224 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 225 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 226 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 227 228 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 229 230 #define N_DATADDR(x, target_page_size) \ 231 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 232 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 233 234 235 int load_aout(const char *filename, hwaddr addr, int max_sz, 236 int bswap_needed, hwaddr target_page_size) 237 { 238 int fd; 239 ssize_t size, ret; 240 struct exec e; 241 uint32_t magic; 242 243 fd = open(filename, O_RDONLY | O_BINARY); 244 if (fd < 0) 245 return -1; 246 247 size = read(fd, &e, sizeof(e)); 248 if (size < 0) 249 goto fail; 250 251 if (bswap_needed) { 252 bswap_ahdr(&e); 253 } 254 255 magic = N_MAGIC(e); 256 switch (magic) { 257 case ZMAGIC: 258 case QMAGIC: 259 case OMAGIC: 260 if (e.a_text + e.a_data > max_sz) 261 goto fail; 262 lseek(fd, N_TXTOFF(e), SEEK_SET); 263 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 264 if (size < 0) 265 goto fail; 266 break; 267 case NMAGIC: 268 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 269 goto fail; 270 lseek(fd, N_TXTOFF(e), SEEK_SET); 271 size = read_targphys(filename, fd, addr, e.a_text); 272 if (size < 0) 273 goto fail; 274 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 275 e.a_data); 276 if (ret < 0) 277 goto fail; 278 size += ret; 279 break; 280 default: 281 goto fail; 282 } 283 close(fd); 284 return size; 285 fail: 286 close(fd); 287 return -1; 288 } 289 290 /* ELF loader */ 291 292 static void *load_at(int fd, off_t offset, size_t size) 293 { 294 void *ptr; 295 if (lseek(fd, offset, SEEK_SET) < 0) 296 return NULL; 297 ptr = g_malloc(size); 298 if (read(fd, ptr, size) != size) { 299 g_free(ptr); 300 return NULL; 301 } 302 return ptr; 303 } 304 305 #ifdef ELF_CLASS 306 #undef ELF_CLASS 307 #endif 308 309 #define ELF_CLASS ELFCLASS32 310 #include "elf.h" 311 312 #define SZ 32 313 #define elf_word uint32_t 314 #define elf_sword int32_t 315 #define bswapSZs bswap32s 316 #include "hw/elf_ops.h" 317 318 #undef elfhdr 319 #undef elf_phdr 320 #undef elf_shdr 321 #undef elf_sym 322 #undef elf_rela 323 #undef elf_note 324 #undef elf_word 325 #undef elf_sword 326 #undef bswapSZs 327 #undef SZ 328 #define elfhdr elf64_hdr 329 #define elf_phdr elf64_phdr 330 #define elf_note elf64_note 331 #define elf_shdr elf64_shdr 332 #define elf_sym elf64_sym 333 #define elf_rela elf64_rela 334 #define elf_word uint64_t 335 #define elf_sword int64_t 336 #define bswapSZs bswap64s 337 #define SZ 64 338 #include "hw/elf_ops.h" 339 340 const char *load_elf_strerror(int error) 341 { 342 switch (error) { 343 case 0: 344 return "No error"; 345 case ELF_LOAD_FAILED: 346 return "Failed to load ELF"; 347 case ELF_LOAD_NOT_ELF: 348 return "The image is not ELF"; 349 case ELF_LOAD_WRONG_ARCH: 350 return "The image is from incompatible architecture"; 351 case ELF_LOAD_WRONG_ENDIAN: 352 return "The image has incorrect endianness"; 353 default: 354 return "Unknown error"; 355 } 356 } 357 358 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 359 { 360 int fd; 361 uint8_t e_ident_local[EI_NIDENT]; 362 uint8_t *e_ident; 363 size_t hdr_size, off; 364 bool is64l; 365 366 if (!hdr) { 367 hdr = e_ident_local; 368 } 369 e_ident = hdr; 370 371 fd = open(filename, O_RDONLY | O_BINARY); 372 if (fd < 0) { 373 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 374 return; 375 } 376 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 377 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 378 goto fail; 379 } 380 if (e_ident[0] != ELFMAG0 || 381 e_ident[1] != ELFMAG1 || 382 e_ident[2] != ELFMAG2 || 383 e_ident[3] != ELFMAG3) { 384 error_setg(errp, "Bad ELF magic"); 385 goto fail; 386 } 387 388 is64l = e_ident[EI_CLASS] == ELFCLASS64; 389 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 390 if (is64) { 391 *is64 = is64l; 392 } 393 394 off = EI_NIDENT; 395 while (hdr != e_ident_local && off < hdr_size) { 396 size_t br = read(fd, hdr + off, hdr_size - off); 397 switch (br) { 398 case 0: 399 error_setg(errp, "File too short: %s", filename); 400 goto fail; 401 case -1: 402 error_setg_errno(errp, errno, "Failed to read file: %s", 403 filename); 404 goto fail; 405 } 406 off += br; 407 } 408 409 fail: 410 close(fd); 411 } 412 413 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 414 int load_elf(const char *filename, uint64_t (*translate_fn)(void *, uint64_t), 415 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 416 uint64_t *highaddr, int big_endian, int elf_machine, 417 int clear_lsb, int data_swab) 418 { 419 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; 420 uint8_t e_ident[EI_NIDENT]; 421 422 fd = open(filename, O_RDONLY | O_BINARY); 423 if (fd < 0) { 424 perror(filename); 425 return -1; 426 } 427 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 428 goto fail; 429 if (e_ident[0] != ELFMAG0 || 430 e_ident[1] != ELFMAG1 || 431 e_ident[2] != ELFMAG2 || 432 e_ident[3] != ELFMAG3) { 433 ret = ELF_LOAD_NOT_ELF; 434 goto fail; 435 } 436 #ifdef HOST_WORDS_BIGENDIAN 437 data_order = ELFDATA2MSB; 438 #else 439 data_order = ELFDATA2LSB; 440 #endif 441 must_swab = data_order != e_ident[EI_DATA]; 442 if (big_endian) { 443 target_data_order = ELFDATA2MSB; 444 } else { 445 target_data_order = ELFDATA2LSB; 446 } 447 448 if (target_data_order != e_ident[EI_DATA]) { 449 ret = ELF_LOAD_WRONG_ENDIAN; 450 goto fail; 451 } 452 453 lseek(fd, 0, SEEK_SET); 454 if (e_ident[EI_CLASS] == ELFCLASS64) { 455 ret = load_elf64(filename, fd, translate_fn, translate_opaque, must_swab, 456 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 457 data_swab); 458 } else { 459 ret = load_elf32(filename, fd, translate_fn, translate_opaque, must_swab, 460 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 461 data_swab); 462 } 463 464 fail: 465 close(fd); 466 return ret; 467 } 468 469 static void bswap_uboot_header(uboot_image_header_t *hdr) 470 { 471 #ifndef HOST_WORDS_BIGENDIAN 472 bswap32s(&hdr->ih_magic); 473 bswap32s(&hdr->ih_hcrc); 474 bswap32s(&hdr->ih_time); 475 bswap32s(&hdr->ih_size); 476 bswap32s(&hdr->ih_load); 477 bswap32s(&hdr->ih_ep); 478 bswap32s(&hdr->ih_dcrc); 479 #endif 480 } 481 482 483 #define ZALLOC_ALIGNMENT 16 484 485 static void *zalloc(void *x, unsigned items, unsigned size) 486 { 487 void *p; 488 489 size *= items; 490 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 491 492 p = g_malloc(size); 493 494 return (p); 495 } 496 497 static void zfree(void *x, void *addr) 498 { 499 g_free(addr); 500 } 501 502 503 #define HEAD_CRC 2 504 #define EXTRA_FIELD 4 505 #define ORIG_NAME 8 506 #define COMMENT 0x10 507 #define RESERVED 0xe0 508 509 #define DEFLATED 8 510 511 /* This is the usual maximum in uboot, so if a uImage overflows this, it would 512 * overflow on real hardware too. */ 513 #define UBOOT_MAX_GUNZIP_BYTES (64 << 20) 514 515 static ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, 516 size_t srclen) 517 { 518 z_stream s; 519 ssize_t dstbytes; 520 int r, i, flags; 521 522 /* skip header */ 523 i = 10; 524 flags = src[3]; 525 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 526 puts ("Error: Bad gzipped data\n"); 527 return -1; 528 } 529 if ((flags & EXTRA_FIELD) != 0) 530 i = 12 + src[10] + (src[11] << 8); 531 if ((flags & ORIG_NAME) != 0) 532 while (src[i++] != 0) 533 ; 534 if ((flags & COMMENT) != 0) 535 while (src[i++] != 0) 536 ; 537 if ((flags & HEAD_CRC) != 0) 538 i += 2; 539 if (i >= srclen) { 540 puts ("Error: gunzip out of data in header\n"); 541 return -1; 542 } 543 544 s.zalloc = zalloc; 545 s.zfree = zfree; 546 547 r = inflateInit2(&s, -MAX_WBITS); 548 if (r != Z_OK) { 549 printf ("Error: inflateInit2() returned %d\n", r); 550 return (-1); 551 } 552 s.next_in = src + i; 553 s.avail_in = srclen - i; 554 s.next_out = dst; 555 s.avail_out = dstlen; 556 r = inflate(&s, Z_FINISH); 557 if (r != Z_OK && r != Z_STREAM_END) { 558 printf ("Error: inflate() returned %d\n", r); 559 return -1; 560 } 561 dstbytes = s.next_out - (unsigned char *) dst; 562 inflateEnd(&s); 563 564 return dstbytes; 565 } 566 567 /* Load a U-Boot image. */ 568 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 569 int *is_linux, uint8_t image_type, 570 uint64_t (*translate_fn)(void *, uint64_t), 571 void *translate_opaque) 572 { 573 int fd; 574 int size; 575 hwaddr address; 576 uboot_image_header_t h; 577 uboot_image_header_t *hdr = &h; 578 uint8_t *data = NULL; 579 int ret = -1; 580 int do_uncompress = 0; 581 582 fd = open(filename, O_RDONLY | O_BINARY); 583 if (fd < 0) 584 return -1; 585 586 size = read(fd, hdr, sizeof(uboot_image_header_t)); 587 if (size < 0) 588 goto out; 589 590 bswap_uboot_header(hdr); 591 592 if (hdr->ih_magic != IH_MAGIC) 593 goto out; 594 595 if (hdr->ih_type != image_type) { 596 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 597 image_type); 598 goto out; 599 } 600 601 /* TODO: Implement other image types. */ 602 switch (hdr->ih_type) { 603 case IH_TYPE_KERNEL: 604 address = hdr->ih_load; 605 if (translate_fn) { 606 address = translate_fn(translate_opaque, address); 607 } 608 if (loadaddr) { 609 *loadaddr = hdr->ih_load; 610 } 611 612 switch (hdr->ih_comp) { 613 case IH_COMP_NONE: 614 break; 615 case IH_COMP_GZIP: 616 do_uncompress = 1; 617 break; 618 default: 619 fprintf(stderr, 620 "Unable to load u-boot images with compression type %d\n", 621 hdr->ih_comp); 622 goto out; 623 } 624 625 if (ep) { 626 *ep = hdr->ih_ep; 627 } 628 629 /* TODO: Check CPU type. */ 630 if (is_linux) { 631 if (hdr->ih_os == IH_OS_LINUX) { 632 *is_linux = 1; 633 } else { 634 *is_linux = 0; 635 } 636 } 637 638 break; 639 case IH_TYPE_RAMDISK: 640 address = *loadaddr; 641 break; 642 default: 643 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 644 goto out; 645 } 646 647 data = g_malloc(hdr->ih_size); 648 649 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 650 fprintf(stderr, "Error reading file\n"); 651 goto out; 652 } 653 654 if (do_uncompress) { 655 uint8_t *compressed_data; 656 size_t max_bytes; 657 ssize_t bytes; 658 659 compressed_data = data; 660 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 661 data = g_malloc(max_bytes); 662 663 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 664 g_free(compressed_data); 665 if (bytes < 0) { 666 fprintf(stderr, "Unable to decompress gzipped image!\n"); 667 goto out; 668 } 669 hdr->ih_size = bytes; 670 } 671 672 rom_add_blob_fixed(filename, data, hdr->ih_size, address); 673 674 ret = hdr->ih_size; 675 676 out: 677 g_free(data); 678 close(fd); 679 return ret; 680 } 681 682 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 683 int *is_linux, 684 uint64_t (*translate_fn)(void *, uint64_t), 685 void *translate_opaque) 686 { 687 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 688 translate_fn, translate_opaque); 689 } 690 691 /* Load a ramdisk. */ 692 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 693 { 694 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 695 NULL, NULL); 696 } 697 698 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 699 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 700 uint8_t **buffer) 701 { 702 uint8_t *compressed_data = NULL; 703 uint8_t *data = NULL; 704 gsize len; 705 ssize_t bytes; 706 int ret = -1; 707 708 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 709 NULL)) { 710 goto out; 711 } 712 713 /* Is it a gzip-compressed file? */ 714 if (len < 2 || 715 compressed_data[0] != 0x1f || 716 compressed_data[1] != 0x8b) { 717 goto out; 718 } 719 720 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 721 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 722 } 723 724 data = g_malloc(max_sz); 725 bytes = gunzip(data, max_sz, compressed_data, len); 726 if (bytes < 0) { 727 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 728 filename); 729 goto out; 730 } 731 732 /* trim to actual size and return to caller */ 733 *buffer = g_realloc(data, bytes); 734 ret = bytes; 735 /* ownership has been transferred to caller */ 736 data = NULL; 737 738 out: 739 g_free(compressed_data); 740 g_free(data); 741 return ret; 742 } 743 744 /* Load a gzip-compressed kernel. */ 745 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 746 { 747 int bytes; 748 uint8_t *data; 749 750 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 751 if (bytes != -1) { 752 rom_add_blob_fixed(filename, data, bytes, addr); 753 g_free(data); 754 } 755 return bytes; 756 } 757 758 /* 759 * Functions for reboot-persistent memory regions. 760 * - used for vga bios and option roms. 761 * - also linux kernel (-kernel / -initrd). 762 */ 763 764 typedef struct Rom Rom; 765 766 struct Rom { 767 char *name; 768 char *path; 769 770 /* datasize is the amount of memory allocated in "data". If datasize is less 771 * than romsize, it means that the area from datasize to romsize is filled 772 * with zeros. 773 */ 774 size_t romsize; 775 size_t datasize; 776 777 uint8_t *data; 778 MemoryRegion *mr; 779 int isrom; 780 char *fw_dir; 781 char *fw_file; 782 783 hwaddr addr; 784 QTAILQ_ENTRY(Rom) next; 785 }; 786 787 static FWCfgState *fw_cfg; 788 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 789 790 static void rom_insert(Rom *rom) 791 { 792 Rom *item; 793 794 if (roms_loaded) { 795 hw_error ("ROM images must be loaded at startup\n"); 796 } 797 798 /* list is ordered by load address */ 799 QTAILQ_FOREACH(item, &roms, next) { 800 if (rom->addr >= item->addr) 801 continue; 802 QTAILQ_INSERT_BEFORE(item, rom, next); 803 return; 804 } 805 QTAILQ_INSERT_TAIL(&roms, rom, next); 806 } 807 808 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 809 { 810 if (fw_cfg) { 811 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 812 } 813 } 814 815 static void *rom_set_mr(Rom *rom, Object *owner, const char *name) 816 { 817 void *data; 818 819 rom->mr = g_malloc(sizeof(*rom->mr)); 820 memory_region_init_resizeable_ram(rom->mr, owner, name, 821 rom->datasize, rom->romsize, 822 fw_cfg_resized, 823 &error_fatal); 824 memory_region_set_readonly(rom->mr, true); 825 vmstate_register_ram_global(rom->mr); 826 827 data = memory_region_get_ram_ptr(rom->mr); 828 memcpy(data, rom->data, rom->datasize); 829 830 return data; 831 } 832 833 int rom_add_file(const char *file, const char *fw_dir, 834 hwaddr addr, int32_t bootindex, 835 bool option_rom, MemoryRegion *mr) 836 { 837 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 838 Rom *rom; 839 int rc, fd = -1; 840 char devpath[100]; 841 842 rom = g_malloc0(sizeof(*rom)); 843 rom->name = g_strdup(file); 844 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 845 if (rom->path == NULL) { 846 rom->path = g_strdup(file); 847 } 848 849 fd = open(rom->path, O_RDONLY | O_BINARY); 850 if (fd == -1) { 851 fprintf(stderr, "Could not open option rom '%s': %s\n", 852 rom->path, strerror(errno)); 853 goto err; 854 } 855 856 if (fw_dir) { 857 rom->fw_dir = g_strdup(fw_dir); 858 rom->fw_file = g_strdup(file); 859 } 860 rom->addr = addr; 861 rom->romsize = lseek(fd, 0, SEEK_END); 862 if (rom->romsize == -1) { 863 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 864 rom->name, strerror(errno)); 865 goto err; 866 } 867 868 rom->datasize = rom->romsize; 869 rom->data = g_malloc0(rom->datasize); 870 lseek(fd, 0, SEEK_SET); 871 rc = read(fd, rom->data, rom->datasize); 872 if (rc != rom->datasize) { 873 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 874 rom->name, rc, rom->datasize); 875 goto err; 876 } 877 close(fd); 878 rom_insert(rom); 879 if (rom->fw_file && fw_cfg) { 880 const char *basename; 881 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 882 void *data; 883 884 basename = strrchr(rom->fw_file, '/'); 885 if (basename) { 886 basename++; 887 } else { 888 basename = rom->fw_file; 889 } 890 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 891 basename); 892 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 893 894 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 895 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath); 896 } else { 897 data = rom->data; 898 } 899 900 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 901 } else { 902 if (mr) { 903 rom->mr = mr; 904 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 905 } else { 906 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 907 } 908 } 909 910 add_boot_device_path(bootindex, NULL, devpath); 911 return 0; 912 913 err: 914 if (fd != -1) 915 close(fd); 916 g_free(rom->data); 917 g_free(rom->path); 918 g_free(rom->name); 919 g_free(rom); 920 return -1; 921 } 922 923 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 924 size_t max_len, hwaddr addr, const char *fw_file_name, 925 FWCfgReadCallback fw_callback, void *callback_opaque) 926 { 927 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 928 Rom *rom; 929 MemoryRegion *mr = NULL; 930 931 rom = g_malloc0(sizeof(*rom)); 932 rom->name = g_strdup(name); 933 rom->addr = addr; 934 rom->romsize = max_len ? max_len : len; 935 rom->datasize = len; 936 rom->data = g_malloc0(rom->datasize); 937 memcpy(rom->data, blob, len); 938 rom_insert(rom); 939 if (fw_file_name && fw_cfg) { 940 char devpath[100]; 941 void *data; 942 943 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 944 945 if (mc->rom_file_has_mr) { 946 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath); 947 mr = rom->mr; 948 } else { 949 data = rom->data; 950 } 951 952 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 953 fw_callback, callback_opaque, 954 data, rom->datasize); 955 } 956 return mr; 957 } 958 959 /* This function is specific for elf program because we don't need to allocate 960 * all the rom. We just allocate the first part and the rest is just zeros. This 961 * is why romsize and datasize are different. Also, this function seize the 962 * memory ownership of "data", so we don't have to allocate and copy the buffer. 963 */ 964 int rom_add_elf_program(const char *name, void *data, size_t datasize, 965 size_t romsize, hwaddr addr) 966 { 967 Rom *rom; 968 969 rom = g_malloc0(sizeof(*rom)); 970 rom->name = g_strdup(name); 971 rom->addr = addr; 972 rom->datasize = datasize; 973 rom->romsize = romsize; 974 rom->data = data; 975 rom_insert(rom); 976 return 0; 977 } 978 979 int rom_add_vga(const char *file) 980 { 981 return rom_add_file(file, "vgaroms", 0, -1, true, NULL); 982 } 983 984 int rom_add_option(const char *file, int32_t bootindex) 985 { 986 return rom_add_file(file, "genroms", 0, bootindex, true, NULL); 987 } 988 989 static void rom_reset(void *unused) 990 { 991 Rom *rom; 992 993 QTAILQ_FOREACH(rom, &roms, next) { 994 if (rom->fw_file) { 995 continue; 996 } 997 if (rom->data == NULL) { 998 continue; 999 } 1000 if (rom->mr) { 1001 void *host = memory_region_get_ram_ptr(rom->mr); 1002 memcpy(host, rom->data, rom->datasize); 1003 } else { 1004 cpu_physical_memory_write_rom(&address_space_memory, 1005 rom->addr, rom->data, rom->datasize); 1006 } 1007 if (rom->isrom) { 1008 /* rom needs to be written only once */ 1009 g_free(rom->data); 1010 rom->data = NULL; 1011 } 1012 /* 1013 * The rom loader is really on the same level as firmware in the guest 1014 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1015 * that the instruction cache for that new region is clear, so that the 1016 * CPU definitely fetches its instructions from the just written data. 1017 */ 1018 cpu_flush_icache_range(rom->addr, rom->datasize); 1019 } 1020 } 1021 1022 int rom_check_and_register_reset(void) 1023 { 1024 hwaddr addr = 0; 1025 MemoryRegionSection section; 1026 Rom *rom; 1027 1028 QTAILQ_FOREACH(rom, &roms, next) { 1029 if (rom->fw_file) { 1030 continue; 1031 } 1032 if (addr > rom->addr) { 1033 fprintf(stderr, "rom: requested regions overlap " 1034 "(rom %s. free=0x" TARGET_FMT_plx 1035 ", addr=0x" TARGET_FMT_plx ")\n", 1036 rom->name, addr, rom->addr); 1037 return -1; 1038 } 1039 addr = rom->addr; 1040 addr += rom->romsize; 1041 section = memory_region_find(get_system_memory(), rom->addr, 1); 1042 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1043 memory_region_unref(section.mr); 1044 } 1045 qemu_register_reset(rom_reset, NULL); 1046 roms_loaded = 1; 1047 return 0; 1048 } 1049 1050 void rom_set_fw(FWCfgState *f) 1051 { 1052 fw_cfg = f; 1053 } 1054 1055 static Rom *find_rom(hwaddr addr) 1056 { 1057 Rom *rom; 1058 1059 QTAILQ_FOREACH(rom, &roms, next) { 1060 if (rom->fw_file) { 1061 continue; 1062 } 1063 if (rom->mr) { 1064 continue; 1065 } 1066 if (rom->addr > addr) { 1067 continue; 1068 } 1069 if (rom->addr + rom->romsize < addr) { 1070 continue; 1071 } 1072 return rom; 1073 } 1074 return NULL; 1075 } 1076 1077 /* 1078 * Copies memory from registered ROMs to dest. Any memory that is contained in 1079 * a ROM between addr and addr + size is copied. Note that this can involve 1080 * multiple ROMs, which need not start at addr and need not end at addr + size. 1081 */ 1082 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1083 { 1084 hwaddr end = addr + size; 1085 uint8_t *s, *d = dest; 1086 size_t l = 0; 1087 Rom *rom; 1088 1089 QTAILQ_FOREACH(rom, &roms, next) { 1090 if (rom->fw_file) { 1091 continue; 1092 } 1093 if (rom->mr) { 1094 continue; 1095 } 1096 if (rom->addr + rom->romsize < addr) { 1097 continue; 1098 } 1099 if (rom->addr > end) { 1100 break; 1101 } 1102 1103 d = dest + (rom->addr - addr); 1104 s = rom->data; 1105 l = rom->datasize; 1106 1107 if ((d + l) > (dest + size)) { 1108 l = dest - d; 1109 } 1110 1111 if (l > 0) { 1112 memcpy(d, s, l); 1113 } 1114 1115 if (rom->romsize > rom->datasize) { 1116 /* If datasize is less than romsize, it means that we didn't 1117 * allocate all the ROM because the trailing data are only zeros. 1118 */ 1119 1120 d += l; 1121 l = rom->romsize - rom->datasize; 1122 1123 if ((d + l) > (dest + size)) { 1124 /* Rom size doesn't fit in the destination area. Adjust to avoid 1125 * overflow. 1126 */ 1127 l = dest - d; 1128 } 1129 1130 if (l > 0) { 1131 memset(d, 0x0, l); 1132 } 1133 } 1134 } 1135 1136 return (d + l) - dest; 1137 } 1138 1139 void *rom_ptr(hwaddr addr) 1140 { 1141 Rom *rom; 1142 1143 rom = find_rom(addr); 1144 if (!rom || !rom->data) 1145 return NULL; 1146 return rom->data + (addr - rom->addr); 1147 } 1148 1149 void hmp_info_roms(Monitor *mon, const QDict *qdict) 1150 { 1151 Rom *rom; 1152 1153 QTAILQ_FOREACH(rom, &roms, next) { 1154 if (rom->mr) { 1155 monitor_printf(mon, "%s" 1156 " size=0x%06zx name=\"%s\"\n", 1157 memory_region_name(rom->mr), 1158 rom->romsize, 1159 rom->name); 1160 } else if (!rom->fw_file) { 1161 monitor_printf(mon, "addr=" TARGET_FMT_plx 1162 " size=0x%06zx mem=%s name=\"%s\"\n", 1163 rom->addr, rom->romsize, 1164 rom->isrom ? "rom" : "ram", 1165 rom->name); 1166 } else { 1167 monitor_printf(mon, "fw=%s/%s" 1168 " size=0x%06zx name=\"%s\"\n", 1169 rom->fw_dir, 1170 rom->fw_file, 1171 rom->romsize, 1172 rom->name); 1173 } 1174 } 1175 } 1176