xref: /openbmc/qemu/hw/core/loader.c (revision 136cb9cc)
1 /*
2  * QEMU Executable loader
3  *
4  * Copyright (c) 2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  *
24  * Gunzip functionality in this file is derived from u-boot:
25  *
26  * (C) Copyright 2008 Semihalf
27  *
28  * (C) Copyright 2000-2005
29  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
30  *
31  * This program is free software; you can redistribute it and/or
32  * modify it under the terms of the GNU General Public License as
33  * published by the Free Software Foundation; either version 2 of
34  * the License, or (at your option) any later version.
35  *
36  * This program is distributed in the hope that it will be useful,
37  * but WITHOUT ANY WARRANTY; without even the implied warranty of
38  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
39  * GNU General Public License for more details.
40  *
41  * You should have received a copy of the GNU General Public License along
42  * with this program; if not, see <http://www.gnu.org/licenses/>.
43  */
44 
45 #include "qemu/osdep.h"
46 #include "qemu/datadir.h"
47 #include "qemu/error-report.h"
48 #include "qapi/error.h"
49 #include "qapi/qapi-commands-machine.h"
50 #include "qapi/type-helpers.h"
51 #include "trace.h"
52 #include "hw/hw.h"
53 #include "disas/disas.h"
54 #include "migration/vmstate.h"
55 #include "monitor/monitor.h"
56 #include "sysemu/reset.h"
57 #include "sysemu/sysemu.h"
58 #include "uboot_image.h"
59 #include "hw/loader.h"
60 #include "hw/nvram/fw_cfg.h"
61 #include "exec/memory.h"
62 #include "hw/boards.h"
63 #include "qemu/cutils.h"
64 #include "sysemu/runstate.h"
65 #include "accel/tcg/debuginfo.h"
66 
67 #include <zlib.h>
68 
69 static int roms_loaded;
70 
71 /* return the size or -1 if error */
72 int64_t get_image_size(const char *filename)
73 {
74     int fd;
75     int64_t size;
76     fd = open(filename, O_RDONLY | O_BINARY);
77     if (fd < 0)
78         return -1;
79     size = lseek(fd, 0, SEEK_END);
80     close(fd);
81     return size;
82 }
83 
84 /* return the size or -1 if error */
85 ssize_t load_image_size(const char *filename, void *addr, size_t size)
86 {
87     int fd;
88     ssize_t actsize, l = 0;
89 
90     fd = open(filename, O_RDONLY | O_BINARY);
91     if (fd < 0) {
92         return -1;
93     }
94 
95     while ((actsize = read(fd, addr + l, size - l)) > 0) {
96         l += actsize;
97     }
98 
99     close(fd);
100 
101     return actsize < 0 ? -1 : l;
102 }
103 
104 /* read()-like version */
105 ssize_t read_targphys(const char *name,
106                       int fd, hwaddr dst_addr, size_t nbytes)
107 {
108     uint8_t *buf;
109     ssize_t did;
110 
111     buf = g_malloc(nbytes);
112     did = read(fd, buf, nbytes);
113     if (did > 0)
114         rom_add_blob_fixed("read", buf, did, dst_addr);
115     g_free(buf);
116     return did;
117 }
118 
119 ssize_t load_image_targphys(const char *filename,
120                             hwaddr addr, uint64_t max_sz)
121 {
122     return load_image_targphys_as(filename, addr, max_sz, NULL);
123 }
124 
125 /* return the size or -1 if error */
126 ssize_t load_image_targphys_as(const char *filename,
127                                hwaddr addr, uint64_t max_sz, AddressSpace *as)
128 {
129     ssize_t size;
130 
131     size = get_image_size(filename);
132     if (size < 0 || size > max_sz) {
133         return -1;
134     }
135     if (size > 0) {
136         if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
137             return -1;
138         }
139     }
140     return size;
141 }
142 
143 ssize_t load_image_mr(const char *filename, MemoryRegion *mr)
144 {
145     ssize_t size;
146 
147     if (!memory_access_is_direct(mr, false)) {
148         /* Can only load an image into RAM or ROM */
149         return -1;
150     }
151 
152     size = get_image_size(filename);
153 
154     if (size < 0 || size > memory_region_size(mr)) {
155         return -1;
156     }
157     if (size > 0) {
158         if (rom_add_file_mr(filename, mr, -1) < 0) {
159             return -1;
160         }
161     }
162     return size;
163 }
164 
165 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
166                       const char *source)
167 {
168     const char *nulp;
169     char *ptr;
170 
171     if (buf_size <= 0) return;
172     nulp = memchr(source, 0, buf_size);
173     if (nulp) {
174         rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
175     } else {
176         rom_add_blob_fixed(name, source, buf_size, dest);
177         ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
178         *ptr = 0;
179     }
180 }
181 
182 /* A.OUT loader */
183 
184 struct exec
185 {
186   uint32_t a_info;   /* Use macros N_MAGIC, etc for access */
187   uint32_t a_text;   /* length of text, in bytes */
188   uint32_t a_data;   /* length of data, in bytes */
189   uint32_t a_bss;    /* length of uninitialized data area, in bytes */
190   uint32_t a_syms;   /* length of symbol table data in file, in bytes */
191   uint32_t a_entry;  /* start address */
192   uint32_t a_trsize; /* length of relocation info for text, in bytes */
193   uint32_t a_drsize; /* length of relocation info for data, in bytes */
194 };
195 
196 static void bswap_ahdr(struct exec *e)
197 {
198     bswap32s(&e->a_info);
199     bswap32s(&e->a_text);
200     bswap32s(&e->a_data);
201     bswap32s(&e->a_bss);
202     bswap32s(&e->a_syms);
203     bswap32s(&e->a_entry);
204     bswap32s(&e->a_trsize);
205     bswap32s(&e->a_drsize);
206 }
207 
208 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
209 #define OMAGIC 0407
210 #define NMAGIC 0410
211 #define ZMAGIC 0413
212 #define QMAGIC 0314
213 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
214 #define N_TXTOFF(x)                                                 \
215     (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \
216      (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
217 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
218 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
219 
220 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
221 
222 #define N_DATADDR(x, target_page_size) \
223     (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
224      : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
225 
226 
227 ssize_t load_aout(const char *filename, hwaddr addr, int max_sz,
228                   int bswap_needed, hwaddr target_page_size)
229 {
230     int fd;
231     ssize_t size, ret;
232     struct exec e;
233     uint32_t magic;
234 
235     fd = open(filename, O_RDONLY | O_BINARY);
236     if (fd < 0)
237         return -1;
238 
239     size = read(fd, &e, sizeof(e));
240     if (size < 0)
241         goto fail;
242 
243     if (bswap_needed) {
244         bswap_ahdr(&e);
245     }
246 
247     magic = N_MAGIC(e);
248     switch (magic) {
249     case ZMAGIC:
250     case QMAGIC:
251     case OMAGIC:
252         if (e.a_text + e.a_data > max_sz)
253             goto fail;
254         lseek(fd, N_TXTOFF(e), SEEK_SET);
255         size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
256         if (size < 0)
257             goto fail;
258         break;
259     case NMAGIC:
260         if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
261             goto fail;
262         lseek(fd, N_TXTOFF(e), SEEK_SET);
263         size = read_targphys(filename, fd, addr, e.a_text);
264         if (size < 0)
265             goto fail;
266         ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
267                             e.a_data);
268         if (ret < 0)
269             goto fail;
270         size += ret;
271         break;
272     default:
273         goto fail;
274     }
275     close(fd);
276     return size;
277  fail:
278     close(fd);
279     return -1;
280 }
281 
282 /* ELF loader */
283 
284 static void *load_at(int fd, off_t offset, size_t size)
285 {
286     void *ptr;
287     if (lseek(fd, offset, SEEK_SET) < 0)
288         return NULL;
289     ptr = g_malloc(size);
290     if (read(fd, ptr, size) != size) {
291         g_free(ptr);
292         return NULL;
293     }
294     return ptr;
295 }
296 
297 #ifdef ELF_CLASS
298 #undef ELF_CLASS
299 #endif
300 
301 #define ELF_CLASS   ELFCLASS32
302 #include "elf.h"
303 
304 #define SZ              32
305 #define elf_word        uint32_t
306 #define elf_sword       int32_t
307 #define bswapSZs        bswap32s
308 #include "hw/elf_ops.h"
309 
310 #undef elfhdr
311 #undef elf_phdr
312 #undef elf_shdr
313 #undef elf_sym
314 #undef elf_rela
315 #undef elf_note
316 #undef elf_word
317 #undef elf_sword
318 #undef bswapSZs
319 #undef SZ
320 #define elfhdr          elf64_hdr
321 #define elf_phdr        elf64_phdr
322 #define elf_note        elf64_note
323 #define elf_shdr        elf64_shdr
324 #define elf_sym         elf64_sym
325 #define elf_rela        elf64_rela
326 #define elf_word        uint64_t
327 #define elf_sword       int64_t
328 #define bswapSZs        bswap64s
329 #define SZ              64
330 #include "hw/elf_ops.h"
331 
332 const char *load_elf_strerror(ssize_t error)
333 {
334     switch (error) {
335     case 0:
336         return "No error";
337     case ELF_LOAD_FAILED:
338         return "Failed to load ELF";
339     case ELF_LOAD_NOT_ELF:
340         return "The image is not ELF";
341     case ELF_LOAD_WRONG_ARCH:
342         return "The image is from incompatible architecture";
343     case ELF_LOAD_WRONG_ENDIAN:
344         return "The image has incorrect endianness";
345     case ELF_LOAD_TOO_BIG:
346         return "The image segments are too big to load";
347     default:
348         return "Unknown error";
349     }
350 }
351 
352 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
353 {
354     int fd;
355     uint8_t e_ident_local[EI_NIDENT];
356     uint8_t *e_ident;
357     size_t hdr_size, off;
358     bool is64l;
359 
360     if (!hdr) {
361         hdr = e_ident_local;
362     }
363     e_ident = hdr;
364 
365     fd = open(filename, O_RDONLY | O_BINARY);
366     if (fd < 0) {
367         error_setg_errno(errp, errno, "Failed to open file: %s", filename);
368         return;
369     }
370     if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
371         error_setg_errno(errp, errno, "Failed to read file: %s", filename);
372         goto fail;
373     }
374     if (e_ident[0] != ELFMAG0 ||
375         e_ident[1] != ELFMAG1 ||
376         e_ident[2] != ELFMAG2 ||
377         e_ident[3] != ELFMAG3) {
378         error_setg(errp, "Bad ELF magic");
379         goto fail;
380     }
381 
382     is64l = e_ident[EI_CLASS] == ELFCLASS64;
383     hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
384     if (is64) {
385         *is64 = is64l;
386     }
387 
388     off = EI_NIDENT;
389     while (hdr != e_ident_local && off < hdr_size) {
390         size_t br = read(fd, hdr + off, hdr_size - off);
391         switch (br) {
392         case 0:
393             error_setg(errp, "File too short: %s", filename);
394             goto fail;
395         case -1:
396             error_setg_errno(errp, errno, "Failed to read file: %s",
397                              filename);
398             goto fail;
399         }
400         off += br;
401     }
402 
403 fail:
404     close(fd);
405 }
406 
407 /* return < 0 if error, otherwise the number of bytes loaded in memory */
408 ssize_t load_elf(const char *filename,
409                  uint64_t (*elf_note_fn)(void *, void *, bool),
410                  uint64_t (*translate_fn)(void *, uint64_t),
411                  void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
412                  uint64_t *highaddr, uint32_t *pflags, int big_endian,
413                  int elf_machine, int clear_lsb, int data_swab)
414 {
415     return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
416                        pentry, lowaddr, highaddr, pflags, big_endian,
417                        elf_machine, clear_lsb, data_swab, NULL);
418 }
419 
420 /* return < 0 if error, otherwise the number of bytes loaded in memory */
421 ssize_t load_elf_as(const char *filename,
422                     uint64_t (*elf_note_fn)(void *, void *, bool),
423                     uint64_t (*translate_fn)(void *, uint64_t),
424                     void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
425                     uint64_t *highaddr, uint32_t *pflags, int big_endian,
426                     int elf_machine, int clear_lsb, int data_swab,
427                     AddressSpace *as)
428 {
429     return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
430                         pentry, lowaddr, highaddr, pflags, big_endian,
431                         elf_machine, clear_lsb, data_swab, as, true);
432 }
433 
434 /* return < 0 if error, otherwise the number of bytes loaded in memory */
435 ssize_t load_elf_ram(const char *filename,
436                      uint64_t (*elf_note_fn)(void *, void *, bool),
437                      uint64_t (*translate_fn)(void *, uint64_t),
438                      void *translate_opaque, uint64_t *pentry,
439                      uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags,
440                      int big_endian, int elf_machine, int clear_lsb,
441                      int data_swab, AddressSpace *as, bool load_rom)
442 {
443     return load_elf_ram_sym(filename, elf_note_fn,
444                             translate_fn, translate_opaque,
445                             pentry, lowaddr, highaddr, pflags, big_endian,
446                             elf_machine, clear_lsb, data_swab, as,
447                             load_rom, NULL);
448 }
449 
450 /* return < 0 if error, otherwise the number of bytes loaded in memory */
451 ssize_t load_elf_ram_sym(const char *filename,
452                          uint64_t (*elf_note_fn)(void *, void *, bool),
453                          uint64_t (*translate_fn)(void *, uint64_t),
454                          void *translate_opaque, uint64_t *pentry,
455                          uint64_t *lowaddr, uint64_t *highaddr,
456                          uint32_t *pflags, int big_endian, int elf_machine,
457                          int clear_lsb, int data_swab,
458                          AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
459 {
460     int fd, data_order, target_data_order, must_swab;
461     ssize_t ret = ELF_LOAD_FAILED;
462     uint8_t e_ident[EI_NIDENT];
463 
464     fd = open(filename, O_RDONLY | O_BINARY);
465     if (fd < 0) {
466         perror(filename);
467         return -1;
468     }
469     if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
470         goto fail;
471     if (e_ident[0] != ELFMAG0 ||
472         e_ident[1] != ELFMAG1 ||
473         e_ident[2] != ELFMAG2 ||
474         e_ident[3] != ELFMAG3) {
475         ret = ELF_LOAD_NOT_ELF;
476         goto fail;
477     }
478 #if HOST_BIG_ENDIAN
479     data_order = ELFDATA2MSB;
480 #else
481     data_order = ELFDATA2LSB;
482 #endif
483     must_swab = data_order != e_ident[EI_DATA];
484     if (big_endian) {
485         target_data_order = ELFDATA2MSB;
486     } else {
487         target_data_order = ELFDATA2LSB;
488     }
489 
490     if (target_data_order != e_ident[EI_DATA]) {
491         ret = ELF_LOAD_WRONG_ENDIAN;
492         goto fail;
493     }
494 
495     lseek(fd, 0, SEEK_SET);
496     if (e_ident[EI_CLASS] == ELFCLASS64) {
497         ret = load_elf64(filename, fd, elf_note_fn,
498                          translate_fn, translate_opaque, must_swab,
499                          pentry, lowaddr, highaddr, pflags, elf_machine,
500                          clear_lsb, data_swab, as, load_rom, sym_cb);
501     } else {
502         ret = load_elf32(filename, fd, elf_note_fn,
503                          translate_fn, translate_opaque, must_swab,
504                          pentry, lowaddr, highaddr, pflags, elf_machine,
505                          clear_lsb, data_swab, as, load_rom, sym_cb);
506     }
507 
508     if (ret != ELF_LOAD_FAILED) {
509         debuginfo_report_elf(filename, fd, 0);
510     }
511 
512  fail:
513     close(fd);
514     return ret;
515 }
516 
517 static void bswap_uboot_header(uboot_image_header_t *hdr)
518 {
519 #if !HOST_BIG_ENDIAN
520     bswap32s(&hdr->ih_magic);
521     bswap32s(&hdr->ih_hcrc);
522     bswap32s(&hdr->ih_time);
523     bswap32s(&hdr->ih_size);
524     bswap32s(&hdr->ih_load);
525     bswap32s(&hdr->ih_ep);
526     bswap32s(&hdr->ih_dcrc);
527 #endif
528 }
529 
530 
531 #define ZALLOC_ALIGNMENT    16
532 
533 static void *zalloc(void *x, unsigned items, unsigned size)
534 {
535     void *p;
536 
537     size *= items;
538     size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
539 
540     p = g_malloc(size);
541 
542     return (p);
543 }
544 
545 static void zfree(void *x, void *addr)
546 {
547     g_free(addr);
548 }
549 
550 
551 #define HEAD_CRC    2
552 #define EXTRA_FIELD 4
553 #define ORIG_NAME   8
554 #define COMMENT     0x10
555 #define RESERVED    0xe0
556 
557 #define DEFLATED    8
558 
559 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
560 {
561     z_stream s;
562     ssize_t dstbytes;
563     int r, i, flags;
564 
565     /* skip header */
566     i = 10;
567     if (srclen < 4) {
568         goto toosmall;
569     }
570     flags = src[3];
571     if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
572         puts ("Error: Bad gzipped data\n");
573         return -1;
574     }
575     if ((flags & EXTRA_FIELD) != 0) {
576         if (srclen < 12) {
577             goto toosmall;
578         }
579         i = 12 + src[10] + (src[11] << 8);
580     }
581     if ((flags & ORIG_NAME) != 0) {
582         while (i < srclen && src[i++] != 0) {
583             /* do nothing */
584         }
585     }
586     if ((flags & COMMENT) != 0) {
587         while (i < srclen && src[i++] != 0) {
588             /* do nothing */
589         }
590     }
591     if ((flags & HEAD_CRC) != 0) {
592         i += 2;
593     }
594     if (i >= srclen) {
595         goto toosmall;
596     }
597 
598     s.zalloc = zalloc;
599     s.zfree = zfree;
600 
601     r = inflateInit2(&s, -MAX_WBITS);
602     if (r != Z_OK) {
603         printf ("Error: inflateInit2() returned %d\n", r);
604         return (-1);
605     }
606     s.next_in = src + i;
607     s.avail_in = srclen - i;
608     s.next_out = dst;
609     s.avail_out = dstlen;
610     r = inflate(&s, Z_FINISH);
611     if (r != Z_OK && r != Z_STREAM_END) {
612         printf ("Error: inflate() returned %d\n", r);
613         return -1;
614     }
615     dstbytes = s.next_out - (unsigned char *) dst;
616     inflateEnd(&s);
617 
618     return dstbytes;
619 
620 toosmall:
621     puts("Error: gunzip out of data in header\n");
622     return -1;
623 }
624 
625 /* Load a U-Boot image.  */
626 static ssize_t load_uboot_image(const char *filename, hwaddr *ep,
627                                 hwaddr *loadaddr, int *is_linux,
628                                 uint8_t image_type,
629                                 uint64_t (*translate_fn)(void *, uint64_t),
630                                 void *translate_opaque, AddressSpace *as)
631 {
632     int fd;
633     ssize_t size;
634     hwaddr address;
635     uboot_image_header_t h;
636     uboot_image_header_t *hdr = &h;
637     uint8_t *data = NULL;
638     int ret = -1;
639     int do_uncompress = 0;
640 
641     fd = open(filename, O_RDONLY | O_BINARY);
642     if (fd < 0)
643         return -1;
644 
645     size = read(fd, hdr, sizeof(uboot_image_header_t));
646     if (size < sizeof(uboot_image_header_t)) {
647         goto out;
648     }
649 
650     bswap_uboot_header(hdr);
651 
652     if (hdr->ih_magic != IH_MAGIC)
653         goto out;
654 
655     if (hdr->ih_type != image_type) {
656         if (!(image_type == IH_TYPE_KERNEL &&
657             hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
658             fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
659                     image_type);
660             goto out;
661         }
662     }
663 
664     /* TODO: Implement other image types.  */
665     switch (hdr->ih_type) {
666     case IH_TYPE_KERNEL_NOLOAD:
667         if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
668             fprintf(stderr, "this image format (kernel_noload) cannot be "
669                     "loaded on this machine type");
670             goto out;
671         }
672 
673         hdr->ih_load = *loadaddr + sizeof(*hdr);
674         hdr->ih_ep += hdr->ih_load;
675         /* fall through */
676     case IH_TYPE_KERNEL:
677         address = hdr->ih_load;
678         if (translate_fn) {
679             address = translate_fn(translate_opaque, address);
680         }
681         if (loadaddr) {
682             *loadaddr = hdr->ih_load;
683         }
684 
685         switch (hdr->ih_comp) {
686         case IH_COMP_NONE:
687             break;
688         case IH_COMP_GZIP:
689             do_uncompress = 1;
690             break;
691         default:
692             fprintf(stderr,
693                     "Unable to load u-boot images with compression type %d\n",
694                     hdr->ih_comp);
695             goto out;
696         }
697 
698         if (ep) {
699             *ep = hdr->ih_ep;
700         }
701 
702         /* TODO: Check CPU type.  */
703         if (is_linux) {
704             if (hdr->ih_os == IH_OS_LINUX) {
705                 *is_linux = 1;
706             } else if (hdr->ih_os == IH_OS_VXWORKS) {
707                 /*
708                  * VxWorks 7 uses the same boot interface as the Linux kernel
709                  * on Arm (64-bit only), PowerPC and RISC-V architectures.
710                  */
711                 switch (hdr->ih_arch) {
712                 case IH_ARCH_ARM64:
713                 case IH_ARCH_PPC:
714                 case IH_ARCH_RISCV:
715                     *is_linux = 1;
716                     break;
717                 default:
718                     *is_linux = 0;
719                     break;
720                 }
721             } else {
722                 *is_linux = 0;
723             }
724         }
725 
726         break;
727     case IH_TYPE_RAMDISK:
728         address = *loadaddr;
729         break;
730     default:
731         fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
732         goto out;
733     }
734 
735     data = g_malloc(hdr->ih_size);
736 
737     if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
738         fprintf(stderr, "Error reading file\n");
739         goto out;
740     }
741 
742     if (do_uncompress) {
743         uint8_t *compressed_data;
744         size_t max_bytes;
745         ssize_t bytes;
746 
747         compressed_data = data;
748         max_bytes = UBOOT_MAX_GUNZIP_BYTES;
749         data = g_malloc(max_bytes);
750 
751         bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
752         g_free(compressed_data);
753         if (bytes < 0) {
754             fprintf(stderr, "Unable to decompress gzipped image!\n");
755             goto out;
756         }
757         hdr->ih_size = bytes;
758     }
759 
760     rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
761 
762     ret = hdr->ih_size;
763 
764 out:
765     g_free(data);
766     close(fd);
767     return ret;
768 }
769 
770 ssize_t load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
771                     int *is_linux,
772                     uint64_t (*translate_fn)(void *, uint64_t),
773                     void *translate_opaque)
774 {
775     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
776                             translate_fn, translate_opaque, NULL);
777 }
778 
779 ssize_t load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
780                        int *is_linux,
781                        uint64_t (*translate_fn)(void *, uint64_t),
782                        void *translate_opaque, AddressSpace *as)
783 {
784     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
785                             translate_fn, translate_opaque, as);
786 }
787 
788 /* Load a ramdisk.  */
789 ssize_t load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
790 {
791     return load_ramdisk_as(filename, addr, max_sz, NULL);
792 }
793 
794 ssize_t load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
795                         AddressSpace *as)
796 {
797     return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
798                             NULL, NULL, as);
799 }
800 
801 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
802 ssize_t load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
803                                   uint8_t **buffer)
804 {
805     uint8_t *compressed_data = NULL;
806     uint8_t *data = NULL;
807     gsize len;
808     ssize_t bytes;
809     int ret = -1;
810 
811     if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
812                              NULL)) {
813         goto out;
814     }
815 
816     /* Is it a gzip-compressed file? */
817     if (len < 2 ||
818         compressed_data[0] != 0x1f ||
819         compressed_data[1] != 0x8b) {
820         goto out;
821     }
822 
823     if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
824         max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
825     }
826 
827     data = g_malloc(max_sz);
828     bytes = gunzip(data, max_sz, compressed_data, len);
829     if (bytes < 0) {
830         fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
831                 filename);
832         goto out;
833     }
834 
835     /* trim to actual size and return to caller */
836     *buffer = g_realloc(data, bytes);
837     ret = bytes;
838     /* ownership has been transferred to caller */
839     data = NULL;
840 
841  out:
842     g_free(compressed_data);
843     g_free(data);
844     return ret;
845 }
846 
847 /* Load a gzip-compressed kernel. */
848 ssize_t load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
849 {
850     ssize_t bytes;
851     uint8_t *data;
852 
853     bytes = load_image_gzipped_buffer(filename, max_sz, &data);
854     if (bytes != -1) {
855         rom_add_blob_fixed(filename, data, bytes, addr);
856         g_free(data);
857     }
858     return bytes;
859 }
860 
861 /* The PE/COFF MS-DOS stub magic number */
862 #define EFI_PE_MSDOS_MAGIC        "MZ"
863 
864 /*
865  * The Linux header magic number for a EFI PE/COFF
866  * image targeting an unspecified architecture.
867  */
868 #define EFI_PE_LINUX_MAGIC        "\xcd\x23\x82\x81"
869 
870 /*
871  * Bootable Linux kernel images may be packaged as EFI zboot images, which are
872  * self-decompressing executables when loaded via EFI. The compressed payload
873  * can also be extracted from the image and decompressed by a non-EFI loader.
874  *
875  * The de facto specification for this format is at the following URL:
876  *
877  * https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/firmware/efi/libstub/zboot-header.S
878  *
879  * This definition is based on Linux upstream commit 29636a5ce87beba.
880  */
881 struct linux_efi_zboot_header {
882     uint8_t     msdos_magic[2];         /* PE/COFF 'MZ' magic number */
883     uint8_t     reserved0[2];
884     uint8_t     zimg[4];                /* "zimg" for Linux EFI zboot images */
885     uint32_t    payload_offset;         /* LE offset to compressed payload */
886     uint32_t    payload_size;           /* LE size of the compressed payload */
887     uint8_t     reserved1[8];
888     char        compression_type[32];   /* Compression type, NUL terminated */
889     uint8_t     linux_magic[4];         /* Linux header magic */
890     uint32_t    pe_header_offset;       /* LE offset to the PE header */
891 };
892 
893 /*
894  * Check whether *buffer points to a Linux EFI zboot image in memory.
895  *
896  * If it does, attempt to decompress it to a new buffer, and free the old one.
897  * If any of this fails, return an error to the caller.
898  *
899  * If the image is not a Linux EFI zboot image, do nothing and return success.
900  */
901 ssize_t unpack_efi_zboot_image(uint8_t **buffer, int *size)
902 {
903     const struct linux_efi_zboot_header *header;
904     uint8_t *data = NULL;
905     int ploff, plsize;
906     ssize_t bytes;
907 
908     /* ignore if this is too small to be a EFI zboot image */
909     if (*size < sizeof(*header)) {
910         return 0;
911     }
912 
913     header = (struct linux_efi_zboot_header *)*buffer;
914 
915     /* ignore if this is not a Linux EFI zboot image */
916     if (memcmp(&header->msdos_magic, EFI_PE_MSDOS_MAGIC, 2) != 0 ||
917         memcmp(&header->zimg, "zimg", 4) != 0 ||
918         memcmp(&header->linux_magic, EFI_PE_LINUX_MAGIC, 4) != 0) {
919         return 0;
920     }
921 
922     if (strcmp(header->compression_type, "gzip") != 0) {
923         fprintf(stderr,
924                 "unable to handle EFI zboot image with \"%.*s\" compression\n",
925                 (int)sizeof(header->compression_type) - 1,
926                 header->compression_type);
927         return -1;
928     }
929 
930     ploff = ldl_le_p(&header->payload_offset);
931     plsize = ldl_le_p(&header->payload_size);
932 
933     if (ploff < 0 || plsize < 0 || ploff + plsize > *size) {
934         fprintf(stderr, "unable to handle corrupt EFI zboot image\n");
935         return -1;
936     }
937 
938     data = g_malloc(LOAD_IMAGE_MAX_GUNZIP_BYTES);
939     bytes = gunzip(data, LOAD_IMAGE_MAX_GUNZIP_BYTES, *buffer + ploff, plsize);
940     if (bytes < 0) {
941         fprintf(stderr, "failed to decompress EFI zboot image\n");
942         g_free(data);
943         return -1;
944     }
945 
946     g_free(*buffer);
947     *buffer = g_realloc(data, bytes);
948     *size = bytes;
949     return bytes;
950 }
951 
952 /*
953  * Functions for reboot-persistent memory regions.
954  *  - used for vga bios and option roms.
955  *  - also linux kernel (-kernel / -initrd).
956  */
957 
958 typedef struct Rom Rom;
959 
960 struct Rom {
961     char *name;
962     char *path;
963 
964     /* datasize is the amount of memory allocated in "data". If datasize is less
965      * than romsize, it means that the area from datasize to romsize is filled
966      * with zeros.
967      */
968     size_t romsize;
969     size_t datasize;
970 
971     uint8_t *data;
972     MemoryRegion *mr;
973     AddressSpace *as;
974     int isrom;
975     char *fw_dir;
976     char *fw_file;
977     GMappedFile *mapped_file;
978 
979     bool committed;
980 
981     hwaddr addr;
982     QTAILQ_ENTRY(Rom) next;
983 };
984 
985 static FWCfgState *fw_cfg;
986 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
987 
988 /*
989  * rom->data can be heap-allocated or memory-mapped (e.g. when added with
990  * rom_add_elf_program())
991  */
992 static void rom_free_data(Rom *rom)
993 {
994     if (rom->mapped_file) {
995         g_mapped_file_unref(rom->mapped_file);
996         rom->mapped_file = NULL;
997     } else {
998         g_free(rom->data);
999     }
1000 
1001     rom->data = NULL;
1002 }
1003 
1004 static void rom_free(Rom *rom)
1005 {
1006     rom_free_data(rom);
1007     g_free(rom->path);
1008     g_free(rom->name);
1009     g_free(rom->fw_dir);
1010     g_free(rom->fw_file);
1011     g_free(rom);
1012 }
1013 
1014 static inline bool rom_order_compare(Rom *rom, Rom *item)
1015 {
1016     return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
1017            (rom->as == item->as && rom->addr >= item->addr);
1018 }
1019 
1020 static void rom_insert(Rom *rom)
1021 {
1022     Rom *item;
1023 
1024     if (roms_loaded) {
1025         hw_error ("ROM images must be loaded at startup\n");
1026     }
1027 
1028     /* The user didn't specify an address space, this is the default */
1029     if (!rom->as) {
1030         rom->as = &address_space_memory;
1031     }
1032 
1033     rom->committed = false;
1034 
1035     /* List is ordered by load address in the same address space */
1036     QTAILQ_FOREACH(item, &roms, next) {
1037         if (rom_order_compare(rom, item)) {
1038             continue;
1039         }
1040         QTAILQ_INSERT_BEFORE(item, rom, next);
1041         return;
1042     }
1043     QTAILQ_INSERT_TAIL(&roms, rom, next);
1044 }
1045 
1046 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
1047 {
1048     if (fw_cfg) {
1049         fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
1050     }
1051 }
1052 
1053 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
1054 {
1055     void *data;
1056 
1057     rom->mr = g_malloc(sizeof(*rom->mr));
1058     memory_region_init_resizeable_ram(rom->mr, owner, name,
1059                                       rom->datasize, rom->romsize,
1060                                       fw_cfg_resized,
1061                                       &error_fatal);
1062     memory_region_set_readonly(rom->mr, ro);
1063     vmstate_register_ram_global(rom->mr);
1064 
1065     data = memory_region_get_ram_ptr(rom->mr);
1066     memcpy(data, rom->data, rom->datasize);
1067 
1068     return data;
1069 }
1070 
1071 ssize_t rom_add_file(const char *file, const char *fw_dir,
1072                      hwaddr addr, int32_t bootindex,
1073                      bool option_rom, MemoryRegion *mr,
1074                      AddressSpace *as)
1075 {
1076     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1077     Rom *rom;
1078     ssize_t rc;
1079     int fd = -1;
1080     char devpath[100];
1081 
1082     if (as && mr) {
1083         fprintf(stderr, "Specifying an Address Space and Memory Region is " \
1084                 "not valid when loading a rom\n");
1085         /* We haven't allocated anything so we don't need any cleanup */
1086         return -1;
1087     }
1088 
1089     rom = g_malloc0(sizeof(*rom));
1090     rom->name = g_strdup(file);
1091     rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
1092     rom->as = as;
1093     if (rom->path == NULL) {
1094         rom->path = g_strdup(file);
1095     }
1096 
1097     fd = open(rom->path, O_RDONLY | O_BINARY);
1098     if (fd == -1) {
1099         fprintf(stderr, "Could not open option rom '%s': %s\n",
1100                 rom->path, strerror(errno));
1101         goto err;
1102     }
1103 
1104     if (fw_dir) {
1105         rom->fw_dir  = g_strdup(fw_dir);
1106         rom->fw_file = g_strdup(file);
1107     }
1108     rom->addr     = addr;
1109     rom->romsize  = lseek(fd, 0, SEEK_END);
1110     if (rom->romsize == -1) {
1111         fprintf(stderr, "rom: file %-20s: get size error: %s\n",
1112                 rom->name, strerror(errno));
1113         goto err;
1114     }
1115 
1116     rom->datasize = rom->romsize;
1117     rom->data     = g_malloc0(rom->datasize);
1118     lseek(fd, 0, SEEK_SET);
1119     rc = read(fd, rom->data, rom->datasize);
1120     if (rc != rom->datasize) {
1121         fprintf(stderr, "rom: file %-20s: read error: rc=%zd (expected %zd)\n",
1122                 rom->name, rc, rom->datasize);
1123         goto err;
1124     }
1125     close(fd);
1126     rom_insert(rom);
1127     if (rom->fw_file && fw_cfg) {
1128         const char *basename;
1129         char fw_file_name[FW_CFG_MAX_FILE_PATH];
1130         void *data;
1131 
1132         basename = strrchr(rom->fw_file, '/');
1133         if (basename) {
1134             basename++;
1135         } else {
1136             basename = rom->fw_file;
1137         }
1138         snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
1139                  basename);
1140         snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1141 
1142         if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
1143             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
1144         } else {
1145             data = rom->data;
1146         }
1147 
1148         fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
1149     } else {
1150         if (mr) {
1151             rom->mr = mr;
1152             snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1153         } else {
1154             snprintf(devpath, sizeof(devpath), "/rom@" HWADDR_FMT_plx, addr);
1155         }
1156     }
1157 
1158     add_boot_device_path(bootindex, NULL, devpath);
1159     return 0;
1160 
1161 err:
1162     if (fd != -1)
1163         close(fd);
1164 
1165     rom_free(rom);
1166     return -1;
1167 }
1168 
1169 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1170                    size_t max_len, hwaddr addr, const char *fw_file_name,
1171                    FWCfgCallback fw_callback, void *callback_opaque,
1172                    AddressSpace *as, bool read_only)
1173 {
1174     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1175     Rom *rom;
1176     MemoryRegion *mr = NULL;
1177 
1178     rom           = g_malloc0(sizeof(*rom));
1179     rom->name     = g_strdup(name);
1180     rom->as       = as;
1181     rom->addr     = addr;
1182     rom->romsize  = max_len ? max_len : len;
1183     rom->datasize = len;
1184     g_assert(rom->romsize >= rom->datasize);
1185     rom->data     = g_malloc0(rom->datasize);
1186     memcpy(rom->data, blob, len);
1187     rom_insert(rom);
1188     if (fw_file_name && fw_cfg) {
1189         char devpath[100];
1190         void *data;
1191 
1192         if (read_only) {
1193             snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1194         } else {
1195             snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1196         }
1197 
1198         if (mc->rom_file_has_mr) {
1199             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1200             mr = rom->mr;
1201         } else {
1202             data = rom->data;
1203         }
1204 
1205         fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1206                                  fw_callback, NULL, callback_opaque,
1207                                  data, rom->datasize, read_only);
1208     }
1209     return mr;
1210 }
1211 
1212 /* This function is specific for elf program because we don't need to allocate
1213  * all the rom. We just allocate the first part and the rest is just zeros. This
1214  * is why romsize and datasize are different. Also, this function takes its own
1215  * reference to "mapped_file", so we don't have to allocate and copy the buffer.
1216  */
1217 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
1218                         size_t datasize, size_t romsize, hwaddr addr,
1219                         AddressSpace *as)
1220 {
1221     Rom *rom;
1222 
1223     rom           = g_malloc0(sizeof(*rom));
1224     rom->name     = g_strdup(name);
1225     rom->addr     = addr;
1226     rom->datasize = datasize;
1227     rom->romsize  = romsize;
1228     rom->data     = data;
1229     rom->as       = as;
1230 
1231     if (mapped_file && data) {
1232         g_mapped_file_ref(mapped_file);
1233         rom->mapped_file = mapped_file;
1234     }
1235 
1236     rom_insert(rom);
1237     return 0;
1238 }
1239 
1240 ssize_t rom_add_vga(const char *file)
1241 {
1242     return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1243 }
1244 
1245 ssize_t rom_add_option(const char *file, int32_t bootindex)
1246 {
1247     return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1248 }
1249 
1250 static void rom_reset(void *unused)
1251 {
1252     Rom *rom;
1253 
1254     QTAILQ_FOREACH(rom, &roms, next) {
1255         if (rom->fw_file) {
1256             continue;
1257         }
1258         /*
1259          * We don't need to fill in the RAM with ROM data because we'll fill
1260          * the data in during the next incoming migration in all cases.  Note
1261          * that some of those RAMs can actually be modified by the guest.
1262          */
1263         if (runstate_check(RUN_STATE_INMIGRATE)) {
1264             if (rom->data && rom->isrom) {
1265                 /*
1266                  * Free it so that a rom_reset after migration doesn't
1267                  * overwrite a potentially modified 'rom'.
1268                  */
1269                 rom_free_data(rom);
1270             }
1271             continue;
1272         }
1273 
1274         if (rom->data == NULL) {
1275             continue;
1276         }
1277         if (rom->mr) {
1278             void *host = memory_region_get_ram_ptr(rom->mr);
1279             memcpy(host, rom->data, rom->datasize);
1280             memset(host + rom->datasize, 0, rom->romsize - rom->datasize);
1281         } else {
1282             address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1283                                     rom->data, rom->datasize);
1284             address_space_set(rom->as, rom->addr + rom->datasize, 0,
1285                               rom->romsize - rom->datasize,
1286                               MEMTXATTRS_UNSPECIFIED);
1287         }
1288         if (rom->isrom) {
1289             /* rom needs to be written only once */
1290             rom_free_data(rom);
1291         }
1292         /*
1293          * The rom loader is really on the same level as firmware in the guest
1294          * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1295          * that the instruction cache for that new region is clear, so that the
1296          * CPU definitely fetches its instructions from the just written data.
1297          */
1298         cpu_flush_icache_range(rom->addr, rom->datasize);
1299 
1300         trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom);
1301     }
1302 }
1303 
1304 /* Return true if two consecutive ROMs in the ROM list overlap */
1305 static bool roms_overlap(Rom *last_rom, Rom *this_rom)
1306 {
1307     if (!last_rom) {
1308         return false;
1309     }
1310     return last_rom->as == this_rom->as &&
1311         last_rom->addr + last_rom->romsize > this_rom->addr;
1312 }
1313 
1314 static const char *rom_as_name(Rom *rom)
1315 {
1316     const char *name = rom->as ? rom->as->name : NULL;
1317     return name ?: "anonymous";
1318 }
1319 
1320 static void rom_print_overlap_error_header(void)
1321 {
1322     error_report("Some ROM regions are overlapping");
1323     error_printf(
1324         "These ROM regions might have been loaded by "
1325         "direct user request or by default.\n"
1326         "They could be BIOS/firmware images, a guest kernel, "
1327         "initrd or some other file loaded into guest memory.\n"
1328         "Check whether you intended to load all this guest code, and "
1329         "whether it has been built to load to the correct addresses.\n");
1330 }
1331 
1332 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom)
1333 {
1334     error_printf(
1335         "\nThe following two regions overlap (in the %s address space):\n",
1336         rom_as_name(rom));
1337     error_printf(
1338         "  %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n",
1339         last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize);
1340     error_printf(
1341         "  %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n",
1342         rom->name, rom->addr, rom->addr + rom->romsize);
1343 }
1344 
1345 int rom_check_and_register_reset(void)
1346 {
1347     MemoryRegionSection section;
1348     Rom *rom, *last_rom = NULL;
1349     bool found_overlap = false;
1350 
1351     QTAILQ_FOREACH(rom, &roms, next) {
1352         if (rom->fw_file) {
1353             continue;
1354         }
1355         if (!rom->mr) {
1356             if (roms_overlap(last_rom, rom)) {
1357                 if (!found_overlap) {
1358                     found_overlap = true;
1359                     rom_print_overlap_error_header();
1360                 }
1361                 rom_print_one_overlap_error(last_rom, rom);
1362                 /* Keep going through the list so we report all overlaps */
1363             }
1364             last_rom = rom;
1365         }
1366         section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1367                                      rom->addr, 1);
1368         rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1369         memory_region_unref(section.mr);
1370     }
1371     if (found_overlap) {
1372         return -1;
1373     }
1374 
1375     qemu_register_reset(rom_reset, NULL);
1376     roms_loaded = 1;
1377     return 0;
1378 }
1379 
1380 void rom_set_fw(FWCfgState *f)
1381 {
1382     fw_cfg = f;
1383 }
1384 
1385 void rom_set_order_override(int order)
1386 {
1387     if (!fw_cfg)
1388         return;
1389     fw_cfg_set_order_override(fw_cfg, order);
1390 }
1391 
1392 void rom_reset_order_override(void)
1393 {
1394     if (!fw_cfg)
1395         return;
1396     fw_cfg_reset_order_override(fw_cfg);
1397 }
1398 
1399 void rom_transaction_begin(void)
1400 {
1401     Rom *rom;
1402 
1403     /* Ignore ROMs added without the transaction API */
1404     QTAILQ_FOREACH(rom, &roms, next) {
1405         rom->committed = true;
1406     }
1407 }
1408 
1409 void rom_transaction_end(bool commit)
1410 {
1411     Rom *rom;
1412     Rom *tmp;
1413 
1414     QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1415         if (rom->committed) {
1416             continue;
1417         }
1418         if (commit) {
1419             rom->committed = true;
1420         } else {
1421             QTAILQ_REMOVE(&roms, rom, next);
1422             rom_free(rom);
1423         }
1424     }
1425 }
1426 
1427 static Rom *find_rom(hwaddr addr, size_t size)
1428 {
1429     Rom *rom;
1430 
1431     QTAILQ_FOREACH(rom, &roms, next) {
1432         if (rom->fw_file) {
1433             continue;
1434         }
1435         if (rom->mr) {
1436             continue;
1437         }
1438         if (rom->addr > addr) {
1439             continue;
1440         }
1441         if (rom->addr + rom->romsize < addr + size) {
1442             continue;
1443         }
1444         return rom;
1445     }
1446     return NULL;
1447 }
1448 
1449 typedef struct RomSec {
1450     hwaddr base;
1451     int se; /* start/end flag */
1452 } RomSec;
1453 
1454 
1455 /*
1456  * Sort into address order. We break ties between rom-startpoints
1457  * and rom-endpoints in favour of the startpoint, by sorting the 0->1
1458  * transition before the 1->0 transition. Either way round would
1459  * work, but this way saves a little work later by avoiding
1460  * dealing with "gaps" of 0 length.
1461  */
1462 static gint sort_secs(gconstpointer a, gconstpointer b)
1463 {
1464     RomSec *ra = (RomSec *) a;
1465     RomSec *rb = (RomSec *) b;
1466 
1467     if (ra->base == rb->base) {
1468         return ra->se - rb->se;
1469     }
1470     return ra->base > rb->base ? 1 : -1;
1471 }
1472 
1473 static GList *add_romsec_to_list(GList *secs, hwaddr base, int se)
1474 {
1475    RomSec *cand = g_new(RomSec, 1);
1476    cand->base = base;
1477    cand->se = se;
1478    return g_list_prepend(secs, cand);
1479 }
1480 
1481 RomGap rom_find_largest_gap_between(hwaddr base, size_t size)
1482 {
1483     Rom *rom;
1484     RomSec *cand;
1485     RomGap res = {0, 0};
1486     hwaddr gapstart = base;
1487     GList *it, *secs = NULL;
1488     int count = 0;
1489 
1490     QTAILQ_FOREACH(rom, &roms, next) {
1491         /* Ignore blobs being loaded to special places */
1492         if (rom->mr || rom->fw_file) {
1493             continue;
1494         }
1495         /* ignore anything finishing below base */
1496         if (rom->addr + rom->romsize <= base) {
1497             continue;
1498         }
1499         /* ignore anything starting above the region */
1500         if (rom->addr >= base + size) {
1501             continue;
1502         }
1503 
1504         /* Save the start and end of each relevant ROM */
1505         secs = add_romsec_to_list(secs, rom->addr, 1);
1506 
1507         if (rom->addr + rom->romsize < base + size) {
1508             secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1);
1509         }
1510     }
1511 
1512     /* sentinel */
1513     secs = add_romsec_to_list(secs, base + size, 1);
1514 
1515     secs = g_list_sort(secs, sort_secs);
1516 
1517     for (it = g_list_first(secs); it; it = g_list_next(it)) {
1518         cand = (RomSec *) it->data;
1519         if (count == 0 && count + cand->se == 1) {
1520             size_t gap = cand->base - gapstart;
1521             if (gap > res.size) {
1522                 res.base = gapstart;
1523                 res.size = gap;
1524             }
1525         } else if (count == 1 && count + cand->se == 0) {
1526             gapstart = cand->base;
1527         }
1528         count += cand->se;
1529     }
1530 
1531     g_list_free_full(secs, g_free);
1532     return res;
1533 }
1534 
1535 /*
1536  * Copies memory from registered ROMs to dest. Any memory that is contained in
1537  * a ROM between addr and addr + size is copied. Note that this can involve
1538  * multiple ROMs, which need not start at addr and need not end at addr + size.
1539  */
1540 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1541 {
1542     hwaddr end = addr + size;
1543     uint8_t *s, *d = dest;
1544     size_t l = 0;
1545     Rom *rom;
1546 
1547     QTAILQ_FOREACH(rom, &roms, next) {
1548         if (rom->fw_file) {
1549             continue;
1550         }
1551         if (rom->mr) {
1552             continue;
1553         }
1554         if (rom->addr + rom->romsize < addr) {
1555             continue;
1556         }
1557         if (rom->addr > end || rom->addr < addr) {
1558             break;
1559         }
1560 
1561         d = dest + (rom->addr - addr);
1562         s = rom->data;
1563         l = rom->datasize;
1564 
1565         if ((d + l) > (dest + size)) {
1566             l = dest - d;
1567         }
1568 
1569         if (l > 0) {
1570             memcpy(d, s, l);
1571         }
1572 
1573         if (rom->romsize > rom->datasize) {
1574             /* If datasize is less than romsize, it means that we didn't
1575              * allocate all the ROM because the trailing data are only zeros.
1576              */
1577 
1578             d += l;
1579             l = rom->romsize - rom->datasize;
1580 
1581             if ((d + l) > (dest + size)) {
1582                 /* Rom size doesn't fit in the destination area. Adjust to avoid
1583                  * overflow.
1584                  */
1585                 l = dest - d;
1586             }
1587 
1588             if (l > 0) {
1589                 memset(d, 0x0, l);
1590             }
1591         }
1592     }
1593 
1594     return (d + l) - dest;
1595 }
1596 
1597 void *rom_ptr(hwaddr addr, size_t size)
1598 {
1599     Rom *rom;
1600 
1601     rom = find_rom(addr, size);
1602     if (!rom || !rom->data)
1603         return NULL;
1604     return rom->data + (addr - rom->addr);
1605 }
1606 
1607 typedef struct FindRomCBData {
1608     size_t size; /* Amount of data we want from ROM, in bytes */
1609     MemoryRegion *mr; /* MR at the unaliased guest addr */
1610     hwaddr xlat; /* Offset of addr within mr */
1611     void *rom; /* Output: rom data pointer, if found */
1612 } FindRomCBData;
1613 
1614 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr,
1615                         hwaddr offset_in_region, void *opaque)
1616 {
1617     FindRomCBData *cbdata = opaque;
1618     hwaddr alias_addr;
1619 
1620     if (mr != cbdata->mr) {
1621         return false;
1622     }
1623 
1624     alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region;
1625     cbdata->rom = rom_ptr(alias_addr, cbdata->size);
1626     if (!cbdata->rom) {
1627         return false;
1628     }
1629     /* Found a match, stop iterating */
1630     return true;
1631 }
1632 
1633 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size)
1634 {
1635     /*
1636      * Find any ROM data for the given guest address range.  If there
1637      * is a ROM blob then return a pointer to the host memory
1638      * corresponding to 'addr'; otherwise return NULL.
1639      *
1640      * We look not only for ROM blobs that were loaded directly to
1641      * addr, but also for ROM blobs that were loaded to aliases of
1642      * that memory at other addresses within the AddressSpace.
1643      *
1644      * Note that we do not check @as against the 'as' member in the
1645      * 'struct Rom' returned by rom_ptr(). The Rom::as is the
1646      * AddressSpace which the rom blob should be written to, whereas
1647      * our @as argument is the AddressSpace which we are (effectively)
1648      * reading from, and the same underlying RAM will often be visible
1649      * in multiple AddressSpaces. (A common example is a ROM blob
1650      * written to the 'system' address space but then read back via a
1651      * CPU's cpu->as pointer.) This does mean we might potentially
1652      * return a false-positive match if a ROM blob was loaded into an
1653      * AS which is entirely separate and distinct from the one we're
1654      * querying, but this issue exists also for rom_ptr() and hasn't
1655      * caused any problems in practice.
1656      */
1657     FlatView *fv;
1658     void *rom;
1659     hwaddr len_unused;
1660     FindRomCBData cbdata = {};
1661 
1662     /* Easy case: there's data at the actual address */
1663     rom = rom_ptr(addr, size);
1664     if (rom) {
1665         return rom;
1666     }
1667 
1668     RCU_READ_LOCK_GUARD();
1669 
1670     fv = address_space_to_flatview(as);
1671     cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused,
1672                                    false, MEMTXATTRS_UNSPECIFIED);
1673     if (!cbdata.mr) {
1674         /* Nothing at this address, so there can't be any aliasing */
1675         return NULL;
1676     }
1677     cbdata.size = size;
1678     flatview_for_each_range(fv, find_rom_cb, &cbdata);
1679     return cbdata.rom;
1680 }
1681 
1682 HumanReadableText *qmp_x_query_roms(Error **errp)
1683 {
1684     Rom *rom;
1685     g_autoptr(GString) buf = g_string_new("");
1686 
1687     QTAILQ_FOREACH(rom, &roms, next) {
1688         if (rom->mr) {
1689             g_string_append_printf(buf, "%s"
1690                                    " size=0x%06zx name=\"%s\"\n",
1691                                    memory_region_name(rom->mr),
1692                                    rom->romsize,
1693                                    rom->name);
1694         } else if (!rom->fw_file) {
1695             g_string_append_printf(buf, "addr=" HWADDR_FMT_plx
1696                                    " size=0x%06zx mem=%s name=\"%s\"\n",
1697                                    rom->addr, rom->romsize,
1698                                    rom->isrom ? "rom" : "ram",
1699                                    rom->name);
1700         } else {
1701             g_string_append_printf(buf, "fw=%s/%s"
1702                                    " size=0x%06zx name=\"%s\"\n",
1703                                    rom->fw_dir,
1704                                    rom->fw_file,
1705                                    rom->romsize,
1706                                    rom->name);
1707         }
1708     }
1709 
1710     return human_readable_text_from_str(buf);
1711 }
1712 
1713 typedef enum HexRecord HexRecord;
1714 enum HexRecord {
1715     DATA_RECORD = 0,
1716     EOF_RECORD,
1717     EXT_SEG_ADDR_RECORD,
1718     START_SEG_ADDR_RECORD,
1719     EXT_LINEAR_ADDR_RECORD,
1720     START_LINEAR_ADDR_RECORD,
1721 };
1722 
1723 /* Each record contains a 16-bit address which is combined with the upper 16
1724  * bits of the implicit "next address" to form a 32-bit address.
1725  */
1726 #define NEXT_ADDR_MASK 0xffff0000
1727 
1728 #define DATA_FIELD_MAX_LEN 0xff
1729 #define LEN_EXCEPT_DATA 0x5
1730 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1731  *       sizeof(checksum) */
1732 typedef struct {
1733     uint8_t byte_count;
1734     uint16_t address;
1735     uint8_t record_type;
1736     uint8_t data[DATA_FIELD_MAX_LEN];
1737     uint8_t checksum;
1738 } HexLine;
1739 
1740 /* return 0 or -1 if error */
1741 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1742                          uint32_t *index, const bool in_process)
1743 {
1744     /* +-------+---------------+-------+---------------------+--------+
1745      * | byte  |               |record |                     |        |
1746      * | count |    address    | type  |        data         |checksum|
1747      * +-------+---------------+-------+---------------------+--------+
1748      * ^       ^               ^       ^                     ^        ^
1749      * |1 byte |    2 bytes    |1 byte |     0-255 bytes     | 1 byte |
1750      */
1751     uint8_t value = 0;
1752     uint32_t idx = *index;
1753     /* ignore space */
1754     if (g_ascii_isspace(c)) {
1755         return true;
1756     }
1757     if (!g_ascii_isxdigit(c) || !in_process) {
1758         return false;
1759     }
1760     value = g_ascii_xdigit_value(c);
1761     value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1762     if (idx < 2) {
1763         line->byte_count |= value;
1764     } else if (2 <= idx && idx < 6) {
1765         line->address <<= 4;
1766         line->address += g_ascii_xdigit_value(c);
1767     } else if (6 <= idx && idx < 8) {
1768         line->record_type |= value;
1769     } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1770         line->data[(idx - 8) >> 1] |= value;
1771     } else if (8 + 2 * line->byte_count <= idx &&
1772                idx < 10 + 2 * line->byte_count) {
1773         line->checksum |= value;
1774     } else {
1775         return false;
1776     }
1777     *our_checksum += value;
1778     ++(*index);
1779     return true;
1780 }
1781 
1782 typedef struct {
1783     const char *filename;
1784     HexLine line;
1785     uint8_t *bin_buf;
1786     hwaddr *start_addr;
1787     int total_size;
1788     uint32_t next_address_to_write;
1789     uint32_t current_address;
1790     uint32_t current_rom_index;
1791     uint32_t rom_start_address;
1792     AddressSpace *as;
1793     bool complete;
1794 } HexParser;
1795 
1796 /* return size or -1 if error */
1797 static int handle_record_type(HexParser *parser)
1798 {
1799     HexLine *line = &(parser->line);
1800     switch (line->record_type) {
1801     case DATA_RECORD:
1802         parser->current_address =
1803             (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1804         /* verify this is a contiguous block of memory */
1805         if (parser->current_address != parser->next_address_to_write) {
1806             if (parser->current_rom_index != 0) {
1807                 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1808                                       parser->current_rom_index,
1809                                       parser->rom_start_address, parser->as);
1810             }
1811             parser->rom_start_address = parser->current_address;
1812             parser->current_rom_index = 0;
1813         }
1814 
1815         /* copy from line buffer to output bin_buf */
1816         memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1817                line->byte_count);
1818         parser->current_rom_index += line->byte_count;
1819         parser->total_size += line->byte_count;
1820         /* save next address to write */
1821         parser->next_address_to_write =
1822             parser->current_address + line->byte_count;
1823         break;
1824 
1825     case EOF_RECORD:
1826         if (parser->current_rom_index != 0) {
1827             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1828                                   parser->current_rom_index,
1829                                   parser->rom_start_address, parser->as);
1830         }
1831         parser->complete = true;
1832         return parser->total_size;
1833     case EXT_SEG_ADDR_RECORD:
1834     case EXT_LINEAR_ADDR_RECORD:
1835         if (line->byte_count != 2 && line->address != 0) {
1836             return -1;
1837         }
1838 
1839         if (parser->current_rom_index != 0) {
1840             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1841                                   parser->current_rom_index,
1842                                   parser->rom_start_address, parser->as);
1843         }
1844 
1845         /* save next address to write,
1846          * in case of non-contiguous block of memory */
1847         parser->next_address_to_write = (line->data[0] << 12) |
1848                                         (line->data[1] << 4);
1849         if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1850             parser->next_address_to_write <<= 12;
1851         }
1852 
1853         parser->rom_start_address = parser->next_address_to_write;
1854         parser->current_rom_index = 0;
1855         break;
1856 
1857     case START_SEG_ADDR_RECORD:
1858         if (line->byte_count != 4 && line->address != 0) {
1859             return -1;
1860         }
1861 
1862         /* x86 16-bit CS:IP segmented addressing */
1863         *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1864                                 ((line->data[2] << 8) | line->data[3]);
1865         break;
1866 
1867     case START_LINEAR_ADDR_RECORD:
1868         if (line->byte_count != 4 && line->address != 0) {
1869             return -1;
1870         }
1871 
1872         *(parser->start_addr) = ldl_be_p(line->data);
1873         break;
1874 
1875     default:
1876         return -1;
1877     }
1878 
1879     return parser->total_size;
1880 }
1881 
1882 /* return size or -1 if error */
1883 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1884                           size_t hex_blob_size, AddressSpace *as)
1885 {
1886     bool in_process = false; /* avoid re-enter and
1887                               * check whether record begin with ':' */
1888     uint8_t *end = hex_blob + hex_blob_size;
1889     uint8_t our_checksum = 0;
1890     uint32_t record_index = 0;
1891     HexParser parser = {
1892         .filename = filename,
1893         .bin_buf = g_malloc(hex_blob_size),
1894         .start_addr = addr,
1895         .as = as,
1896         .complete = false
1897     };
1898 
1899     rom_transaction_begin();
1900 
1901     for (; hex_blob < end && !parser.complete; ++hex_blob) {
1902         switch (*hex_blob) {
1903         case '\r':
1904         case '\n':
1905             if (!in_process) {
1906                 break;
1907             }
1908 
1909             in_process = false;
1910             if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1911                     record_index ||
1912                 our_checksum != 0) {
1913                 parser.total_size = -1;
1914                 goto out;
1915             }
1916 
1917             if (handle_record_type(&parser) == -1) {
1918                 parser.total_size = -1;
1919                 goto out;
1920             }
1921             break;
1922 
1923         /* start of a new record. */
1924         case ':':
1925             memset(&parser.line, 0, sizeof(HexLine));
1926             in_process = true;
1927             record_index = 0;
1928             break;
1929 
1930         /* decoding lines */
1931         default:
1932             if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1933                               &record_index, in_process)) {
1934                 parser.total_size = -1;
1935                 goto out;
1936             }
1937             break;
1938         }
1939     }
1940 
1941 out:
1942     g_free(parser.bin_buf);
1943     rom_transaction_end(parser.total_size != -1);
1944     return parser.total_size;
1945 }
1946 
1947 /* return size or -1 if error */
1948 ssize_t load_targphys_hex_as(const char *filename, hwaddr *entry,
1949                              AddressSpace *as)
1950 {
1951     gsize hex_blob_size;
1952     gchar *hex_blob;
1953     ssize_t total_size = 0;
1954 
1955     if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1956         return -1;
1957     }
1958 
1959     total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1960                                 hex_blob_size, as);
1961 
1962     g_free(hex_blob);
1963     return total_size;
1964 }
1965