1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qemu/datadir.h" 47 #include "qapi/error.h" 48 #include "qapi/qapi-commands-machine.h" 49 #include "qapi/type-helpers.h" 50 #include "trace.h" 51 #include "hw/hw.h" 52 #include "disas/disas.h" 53 #include "migration/vmstate.h" 54 #include "monitor/monitor.h" 55 #include "sysemu/reset.h" 56 #include "sysemu/sysemu.h" 57 #include "uboot_image.h" 58 #include "hw/loader.h" 59 #include "hw/nvram/fw_cfg.h" 60 #include "exec/memory.h" 61 #include "hw/boards.h" 62 #include "qemu/cutils.h" 63 #include "sysemu/runstate.h" 64 65 #include <zlib.h> 66 67 static int roms_loaded; 68 69 /* return the size or -1 if error */ 70 int64_t get_image_size(const char *filename) 71 { 72 int fd; 73 int64_t size; 74 fd = open(filename, O_RDONLY | O_BINARY); 75 if (fd < 0) 76 return -1; 77 size = lseek(fd, 0, SEEK_END); 78 close(fd); 79 return size; 80 } 81 82 /* return the size or -1 if error */ 83 ssize_t load_image_size(const char *filename, void *addr, size_t size) 84 { 85 int fd; 86 ssize_t actsize, l = 0; 87 88 fd = open(filename, O_RDONLY | O_BINARY); 89 if (fd < 0) { 90 return -1; 91 } 92 93 while ((actsize = read(fd, addr + l, size - l)) > 0) { 94 l += actsize; 95 } 96 97 close(fd); 98 99 return actsize < 0 ? -1 : l; 100 } 101 102 /* read()-like version */ 103 ssize_t read_targphys(const char *name, 104 int fd, hwaddr dst_addr, size_t nbytes) 105 { 106 uint8_t *buf; 107 ssize_t did; 108 109 buf = g_malloc(nbytes); 110 did = read(fd, buf, nbytes); 111 if (did > 0) 112 rom_add_blob_fixed("read", buf, did, dst_addr); 113 g_free(buf); 114 return did; 115 } 116 117 ssize_t load_image_targphys(const char *filename, 118 hwaddr addr, uint64_t max_sz) 119 { 120 return load_image_targphys_as(filename, addr, max_sz, NULL); 121 } 122 123 /* return the size or -1 if error */ 124 ssize_t load_image_targphys_as(const char *filename, 125 hwaddr addr, uint64_t max_sz, AddressSpace *as) 126 { 127 ssize_t size; 128 129 size = get_image_size(filename); 130 if (size < 0 || size > max_sz) { 131 return -1; 132 } 133 if (size > 0) { 134 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 135 return -1; 136 } 137 } 138 return size; 139 } 140 141 ssize_t load_image_mr(const char *filename, MemoryRegion *mr) 142 { 143 ssize_t size; 144 145 if (!memory_access_is_direct(mr, false)) { 146 /* Can only load an image into RAM or ROM */ 147 return -1; 148 } 149 150 size = get_image_size(filename); 151 152 if (size < 0 || size > memory_region_size(mr)) { 153 return -1; 154 } 155 if (size > 0) { 156 if (rom_add_file_mr(filename, mr, -1) < 0) { 157 return -1; 158 } 159 } 160 return size; 161 } 162 163 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 164 const char *source) 165 { 166 const char *nulp; 167 char *ptr; 168 169 if (buf_size <= 0) return; 170 nulp = memchr(source, 0, buf_size); 171 if (nulp) { 172 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 173 } else { 174 rom_add_blob_fixed(name, source, buf_size, dest); 175 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 176 *ptr = 0; 177 } 178 } 179 180 /* A.OUT loader */ 181 182 struct exec 183 { 184 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 185 uint32_t a_text; /* length of text, in bytes */ 186 uint32_t a_data; /* length of data, in bytes */ 187 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 188 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 189 uint32_t a_entry; /* start address */ 190 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 191 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 192 }; 193 194 static void bswap_ahdr(struct exec *e) 195 { 196 bswap32s(&e->a_info); 197 bswap32s(&e->a_text); 198 bswap32s(&e->a_data); 199 bswap32s(&e->a_bss); 200 bswap32s(&e->a_syms); 201 bswap32s(&e->a_entry); 202 bswap32s(&e->a_trsize); 203 bswap32s(&e->a_drsize); 204 } 205 206 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 207 #define OMAGIC 0407 208 #define NMAGIC 0410 209 #define ZMAGIC 0413 210 #define QMAGIC 0314 211 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 212 #define N_TXTOFF(x) \ 213 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 214 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 215 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 216 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 217 218 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 219 220 #define N_DATADDR(x, target_page_size) \ 221 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 222 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 223 224 225 ssize_t load_aout(const char *filename, hwaddr addr, int max_sz, 226 int bswap_needed, hwaddr target_page_size) 227 { 228 int fd; 229 ssize_t size, ret; 230 struct exec e; 231 uint32_t magic; 232 233 fd = open(filename, O_RDONLY | O_BINARY); 234 if (fd < 0) 235 return -1; 236 237 size = read(fd, &e, sizeof(e)); 238 if (size < 0) 239 goto fail; 240 241 if (bswap_needed) { 242 bswap_ahdr(&e); 243 } 244 245 magic = N_MAGIC(e); 246 switch (magic) { 247 case ZMAGIC: 248 case QMAGIC: 249 case OMAGIC: 250 if (e.a_text + e.a_data > max_sz) 251 goto fail; 252 lseek(fd, N_TXTOFF(e), SEEK_SET); 253 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 254 if (size < 0) 255 goto fail; 256 break; 257 case NMAGIC: 258 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 259 goto fail; 260 lseek(fd, N_TXTOFF(e), SEEK_SET); 261 size = read_targphys(filename, fd, addr, e.a_text); 262 if (size < 0) 263 goto fail; 264 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 265 e.a_data); 266 if (ret < 0) 267 goto fail; 268 size += ret; 269 break; 270 default: 271 goto fail; 272 } 273 close(fd); 274 return size; 275 fail: 276 close(fd); 277 return -1; 278 } 279 280 /* ELF loader */ 281 282 static void *load_at(int fd, off_t offset, size_t size) 283 { 284 void *ptr; 285 if (lseek(fd, offset, SEEK_SET) < 0) 286 return NULL; 287 ptr = g_malloc(size); 288 if (read(fd, ptr, size) != size) { 289 g_free(ptr); 290 return NULL; 291 } 292 return ptr; 293 } 294 295 #ifdef ELF_CLASS 296 #undef ELF_CLASS 297 #endif 298 299 #define ELF_CLASS ELFCLASS32 300 #include "elf.h" 301 302 #define SZ 32 303 #define elf_word uint32_t 304 #define elf_sword int32_t 305 #define bswapSZs bswap32s 306 #include "hw/elf_ops.h" 307 308 #undef elfhdr 309 #undef elf_phdr 310 #undef elf_shdr 311 #undef elf_sym 312 #undef elf_rela 313 #undef elf_note 314 #undef elf_word 315 #undef elf_sword 316 #undef bswapSZs 317 #undef SZ 318 #define elfhdr elf64_hdr 319 #define elf_phdr elf64_phdr 320 #define elf_note elf64_note 321 #define elf_shdr elf64_shdr 322 #define elf_sym elf64_sym 323 #define elf_rela elf64_rela 324 #define elf_word uint64_t 325 #define elf_sword int64_t 326 #define bswapSZs bswap64s 327 #define SZ 64 328 #include "hw/elf_ops.h" 329 330 const char *load_elf_strerror(ssize_t error) 331 { 332 switch (error) { 333 case 0: 334 return "No error"; 335 case ELF_LOAD_FAILED: 336 return "Failed to load ELF"; 337 case ELF_LOAD_NOT_ELF: 338 return "The image is not ELF"; 339 case ELF_LOAD_WRONG_ARCH: 340 return "The image is from incompatible architecture"; 341 case ELF_LOAD_WRONG_ENDIAN: 342 return "The image has incorrect endianness"; 343 case ELF_LOAD_TOO_BIG: 344 return "The image segments are too big to load"; 345 default: 346 return "Unknown error"; 347 } 348 } 349 350 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 351 { 352 int fd; 353 uint8_t e_ident_local[EI_NIDENT]; 354 uint8_t *e_ident; 355 size_t hdr_size, off; 356 bool is64l; 357 358 if (!hdr) { 359 hdr = e_ident_local; 360 } 361 e_ident = hdr; 362 363 fd = open(filename, O_RDONLY | O_BINARY); 364 if (fd < 0) { 365 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 366 return; 367 } 368 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 369 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 370 goto fail; 371 } 372 if (e_ident[0] != ELFMAG0 || 373 e_ident[1] != ELFMAG1 || 374 e_ident[2] != ELFMAG2 || 375 e_ident[3] != ELFMAG3) { 376 error_setg(errp, "Bad ELF magic"); 377 goto fail; 378 } 379 380 is64l = e_ident[EI_CLASS] == ELFCLASS64; 381 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 382 if (is64) { 383 *is64 = is64l; 384 } 385 386 off = EI_NIDENT; 387 while (hdr != e_ident_local && off < hdr_size) { 388 size_t br = read(fd, hdr + off, hdr_size - off); 389 switch (br) { 390 case 0: 391 error_setg(errp, "File too short: %s", filename); 392 goto fail; 393 case -1: 394 error_setg_errno(errp, errno, "Failed to read file: %s", 395 filename); 396 goto fail; 397 } 398 off += br; 399 } 400 401 fail: 402 close(fd); 403 } 404 405 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 406 ssize_t load_elf(const char *filename, 407 uint64_t (*elf_note_fn)(void *, void *, bool), 408 uint64_t (*translate_fn)(void *, uint64_t), 409 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 410 uint64_t *highaddr, uint32_t *pflags, int big_endian, 411 int elf_machine, int clear_lsb, int data_swab) 412 { 413 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 414 pentry, lowaddr, highaddr, pflags, big_endian, 415 elf_machine, clear_lsb, data_swab, NULL); 416 } 417 418 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 419 ssize_t load_elf_as(const char *filename, 420 uint64_t (*elf_note_fn)(void *, void *, bool), 421 uint64_t (*translate_fn)(void *, uint64_t), 422 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 423 uint64_t *highaddr, uint32_t *pflags, int big_endian, 424 int elf_machine, int clear_lsb, int data_swab, 425 AddressSpace *as) 426 { 427 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque, 428 pentry, lowaddr, highaddr, pflags, big_endian, 429 elf_machine, clear_lsb, data_swab, as, true); 430 } 431 432 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 433 ssize_t load_elf_ram(const char *filename, 434 uint64_t (*elf_note_fn)(void *, void *, bool), 435 uint64_t (*translate_fn)(void *, uint64_t), 436 void *translate_opaque, uint64_t *pentry, 437 uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags, 438 int big_endian, int elf_machine, int clear_lsb, 439 int data_swab, AddressSpace *as, bool load_rom) 440 { 441 return load_elf_ram_sym(filename, elf_note_fn, 442 translate_fn, translate_opaque, 443 pentry, lowaddr, highaddr, pflags, big_endian, 444 elf_machine, clear_lsb, data_swab, as, 445 load_rom, NULL); 446 } 447 448 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 449 ssize_t load_elf_ram_sym(const char *filename, 450 uint64_t (*elf_note_fn)(void *, void *, bool), 451 uint64_t (*translate_fn)(void *, uint64_t), 452 void *translate_opaque, uint64_t *pentry, 453 uint64_t *lowaddr, uint64_t *highaddr, 454 uint32_t *pflags, int big_endian, int elf_machine, 455 int clear_lsb, int data_swab, 456 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 457 { 458 int fd, data_order, target_data_order, must_swab; 459 ssize_t ret = ELF_LOAD_FAILED; 460 uint8_t e_ident[EI_NIDENT]; 461 462 fd = open(filename, O_RDONLY | O_BINARY); 463 if (fd < 0) { 464 perror(filename); 465 return -1; 466 } 467 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 468 goto fail; 469 if (e_ident[0] != ELFMAG0 || 470 e_ident[1] != ELFMAG1 || 471 e_ident[2] != ELFMAG2 || 472 e_ident[3] != ELFMAG3) { 473 ret = ELF_LOAD_NOT_ELF; 474 goto fail; 475 } 476 #if HOST_BIG_ENDIAN 477 data_order = ELFDATA2MSB; 478 #else 479 data_order = ELFDATA2LSB; 480 #endif 481 must_swab = data_order != e_ident[EI_DATA]; 482 if (big_endian) { 483 target_data_order = ELFDATA2MSB; 484 } else { 485 target_data_order = ELFDATA2LSB; 486 } 487 488 if (target_data_order != e_ident[EI_DATA]) { 489 ret = ELF_LOAD_WRONG_ENDIAN; 490 goto fail; 491 } 492 493 lseek(fd, 0, SEEK_SET); 494 if (e_ident[EI_CLASS] == ELFCLASS64) { 495 ret = load_elf64(filename, fd, elf_note_fn, 496 translate_fn, translate_opaque, must_swab, 497 pentry, lowaddr, highaddr, pflags, elf_machine, 498 clear_lsb, data_swab, as, load_rom, sym_cb); 499 } else { 500 ret = load_elf32(filename, fd, elf_note_fn, 501 translate_fn, translate_opaque, must_swab, 502 pentry, lowaddr, highaddr, pflags, elf_machine, 503 clear_lsb, data_swab, as, load_rom, sym_cb); 504 } 505 506 fail: 507 close(fd); 508 return ret; 509 } 510 511 static void bswap_uboot_header(uboot_image_header_t *hdr) 512 { 513 #if !HOST_BIG_ENDIAN 514 bswap32s(&hdr->ih_magic); 515 bswap32s(&hdr->ih_hcrc); 516 bswap32s(&hdr->ih_time); 517 bswap32s(&hdr->ih_size); 518 bswap32s(&hdr->ih_load); 519 bswap32s(&hdr->ih_ep); 520 bswap32s(&hdr->ih_dcrc); 521 #endif 522 } 523 524 525 #define ZALLOC_ALIGNMENT 16 526 527 static void *zalloc(void *x, unsigned items, unsigned size) 528 { 529 void *p; 530 531 size *= items; 532 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 533 534 p = g_malloc(size); 535 536 return (p); 537 } 538 539 static void zfree(void *x, void *addr) 540 { 541 g_free(addr); 542 } 543 544 545 #define HEAD_CRC 2 546 #define EXTRA_FIELD 4 547 #define ORIG_NAME 8 548 #define COMMENT 0x10 549 #define RESERVED 0xe0 550 551 #define DEFLATED 8 552 553 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 554 { 555 z_stream s; 556 ssize_t dstbytes; 557 int r, i, flags; 558 559 /* skip header */ 560 i = 10; 561 if (srclen < 4) { 562 goto toosmall; 563 } 564 flags = src[3]; 565 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 566 puts ("Error: Bad gzipped data\n"); 567 return -1; 568 } 569 if ((flags & EXTRA_FIELD) != 0) { 570 if (srclen < 12) { 571 goto toosmall; 572 } 573 i = 12 + src[10] + (src[11] << 8); 574 } 575 if ((flags & ORIG_NAME) != 0) { 576 while (i < srclen && src[i++] != 0) { 577 /* do nothing */ 578 } 579 } 580 if ((flags & COMMENT) != 0) { 581 while (i < srclen && src[i++] != 0) { 582 /* do nothing */ 583 } 584 } 585 if ((flags & HEAD_CRC) != 0) { 586 i += 2; 587 } 588 if (i >= srclen) { 589 goto toosmall; 590 } 591 592 s.zalloc = zalloc; 593 s.zfree = zfree; 594 595 r = inflateInit2(&s, -MAX_WBITS); 596 if (r != Z_OK) { 597 printf ("Error: inflateInit2() returned %d\n", r); 598 return (-1); 599 } 600 s.next_in = src + i; 601 s.avail_in = srclen - i; 602 s.next_out = dst; 603 s.avail_out = dstlen; 604 r = inflate(&s, Z_FINISH); 605 if (r != Z_OK && r != Z_STREAM_END) { 606 printf ("Error: inflate() returned %d\n", r); 607 return -1; 608 } 609 dstbytes = s.next_out - (unsigned char *) dst; 610 inflateEnd(&s); 611 612 return dstbytes; 613 614 toosmall: 615 puts("Error: gunzip out of data in header\n"); 616 return -1; 617 } 618 619 /* Load a U-Boot image. */ 620 static ssize_t load_uboot_image(const char *filename, hwaddr *ep, 621 hwaddr *loadaddr, int *is_linux, 622 uint8_t image_type, 623 uint64_t (*translate_fn)(void *, uint64_t), 624 void *translate_opaque, AddressSpace *as) 625 { 626 int fd; 627 ssize_t size; 628 hwaddr address; 629 uboot_image_header_t h; 630 uboot_image_header_t *hdr = &h; 631 uint8_t *data = NULL; 632 int ret = -1; 633 int do_uncompress = 0; 634 635 fd = open(filename, O_RDONLY | O_BINARY); 636 if (fd < 0) 637 return -1; 638 639 size = read(fd, hdr, sizeof(uboot_image_header_t)); 640 if (size < sizeof(uboot_image_header_t)) { 641 goto out; 642 } 643 644 bswap_uboot_header(hdr); 645 646 if (hdr->ih_magic != IH_MAGIC) 647 goto out; 648 649 if (hdr->ih_type != image_type) { 650 if (!(image_type == IH_TYPE_KERNEL && 651 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 652 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 653 image_type); 654 goto out; 655 } 656 } 657 658 /* TODO: Implement other image types. */ 659 switch (hdr->ih_type) { 660 case IH_TYPE_KERNEL_NOLOAD: 661 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 662 fprintf(stderr, "this image format (kernel_noload) cannot be " 663 "loaded on this machine type"); 664 goto out; 665 } 666 667 hdr->ih_load = *loadaddr + sizeof(*hdr); 668 hdr->ih_ep += hdr->ih_load; 669 /* fall through */ 670 case IH_TYPE_KERNEL: 671 address = hdr->ih_load; 672 if (translate_fn) { 673 address = translate_fn(translate_opaque, address); 674 } 675 if (loadaddr) { 676 *loadaddr = hdr->ih_load; 677 } 678 679 switch (hdr->ih_comp) { 680 case IH_COMP_NONE: 681 break; 682 case IH_COMP_GZIP: 683 do_uncompress = 1; 684 break; 685 default: 686 fprintf(stderr, 687 "Unable to load u-boot images with compression type %d\n", 688 hdr->ih_comp); 689 goto out; 690 } 691 692 if (ep) { 693 *ep = hdr->ih_ep; 694 } 695 696 /* TODO: Check CPU type. */ 697 if (is_linux) { 698 if (hdr->ih_os == IH_OS_LINUX) { 699 *is_linux = 1; 700 } else if (hdr->ih_os == IH_OS_VXWORKS) { 701 /* 702 * VxWorks 7 uses the same boot interface as the Linux kernel 703 * on Arm (64-bit only), PowerPC and RISC-V architectures. 704 */ 705 switch (hdr->ih_arch) { 706 case IH_ARCH_ARM64: 707 case IH_ARCH_PPC: 708 case IH_ARCH_RISCV: 709 *is_linux = 1; 710 break; 711 default: 712 *is_linux = 0; 713 break; 714 } 715 } else { 716 *is_linux = 0; 717 } 718 } 719 720 break; 721 case IH_TYPE_RAMDISK: 722 address = *loadaddr; 723 break; 724 default: 725 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 726 goto out; 727 } 728 729 data = g_malloc(hdr->ih_size); 730 731 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 732 fprintf(stderr, "Error reading file\n"); 733 goto out; 734 } 735 736 if (do_uncompress) { 737 uint8_t *compressed_data; 738 size_t max_bytes; 739 ssize_t bytes; 740 741 compressed_data = data; 742 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 743 data = g_malloc(max_bytes); 744 745 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 746 g_free(compressed_data); 747 if (bytes < 0) { 748 fprintf(stderr, "Unable to decompress gzipped image!\n"); 749 goto out; 750 } 751 hdr->ih_size = bytes; 752 } 753 754 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 755 756 ret = hdr->ih_size; 757 758 out: 759 g_free(data); 760 close(fd); 761 return ret; 762 } 763 764 ssize_t load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 765 int *is_linux, 766 uint64_t (*translate_fn)(void *, uint64_t), 767 void *translate_opaque) 768 { 769 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 770 translate_fn, translate_opaque, NULL); 771 } 772 773 ssize_t load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 774 int *is_linux, 775 uint64_t (*translate_fn)(void *, uint64_t), 776 void *translate_opaque, AddressSpace *as) 777 { 778 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 779 translate_fn, translate_opaque, as); 780 } 781 782 /* Load a ramdisk. */ 783 ssize_t load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 784 { 785 return load_ramdisk_as(filename, addr, max_sz, NULL); 786 } 787 788 ssize_t load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 789 AddressSpace *as) 790 { 791 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 792 NULL, NULL, as); 793 } 794 795 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 796 ssize_t load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 797 uint8_t **buffer) 798 { 799 uint8_t *compressed_data = NULL; 800 uint8_t *data = NULL; 801 gsize len; 802 ssize_t bytes; 803 int ret = -1; 804 805 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 806 NULL)) { 807 goto out; 808 } 809 810 /* Is it a gzip-compressed file? */ 811 if (len < 2 || 812 compressed_data[0] != 0x1f || 813 compressed_data[1] != 0x8b) { 814 goto out; 815 } 816 817 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 818 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 819 } 820 821 data = g_malloc(max_sz); 822 bytes = gunzip(data, max_sz, compressed_data, len); 823 if (bytes < 0) { 824 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 825 filename); 826 goto out; 827 } 828 829 /* trim to actual size and return to caller */ 830 *buffer = g_realloc(data, bytes); 831 ret = bytes; 832 /* ownership has been transferred to caller */ 833 data = NULL; 834 835 out: 836 g_free(compressed_data); 837 g_free(data); 838 return ret; 839 } 840 841 /* Load a gzip-compressed kernel. */ 842 ssize_t load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 843 { 844 ssize_t bytes; 845 uint8_t *data; 846 847 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 848 if (bytes != -1) { 849 rom_add_blob_fixed(filename, data, bytes, addr); 850 g_free(data); 851 } 852 return bytes; 853 } 854 855 /* 856 * Functions for reboot-persistent memory regions. 857 * - used for vga bios and option roms. 858 * - also linux kernel (-kernel / -initrd). 859 */ 860 861 typedef struct Rom Rom; 862 863 struct Rom { 864 char *name; 865 char *path; 866 867 /* datasize is the amount of memory allocated in "data". If datasize is less 868 * than romsize, it means that the area from datasize to romsize is filled 869 * with zeros. 870 */ 871 size_t romsize; 872 size_t datasize; 873 874 uint8_t *data; 875 MemoryRegion *mr; 876 AddressSpace *as; 877 int isrom; 878 char *fw_dir; 879 char *fw_file; 880 GMappedFile *mapped_file; 881 882 bool committed; 883 884 hwaddr addr; 885 QTAILQ_ENTRY(Rom) next; 886 }; 887 888 static FWCfgState *fw_cfg; 889 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 890 891 /* 892 * rom->data can be heap-allocated or memory-mapped (e.g. when added with 893 * rom_add_elf_program()) 894 */ 895 static void rom_free_data(Rom *rom) 896 { 897 if (rom->mapped_file) { 898 g_mapped_file_unref(rom->mapped_file); 899 rom->mapped_file = NULL; 900 } else { 901 g_free(rom->data); 902 } 903 904 rom->data = NULL; 905 } 906 907 static void rom_free(Rom *rom) 908 { 909 rom_free_data(rom); 910 g_free(rom->path); 911 g_free(rom->name); 912 g_free(rom->fw_dir); 913 g_free(rom->fw_file); 914 g_free(rom); 915 } 916 917 static inline bool rom_order_compare(Rom *rom, Rom *item) 918 { 919 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 920 (rom->as == item->as && rom->addr >= item->addr); 921 } 922 923 static void rom_insert(Rom *rom) 924 { 925 Rom *item; 926 927 if (roms_loaded) { 928 hw_error ("ROM images must be loaded at startup\n"); 929 } 930 931 /* The user didn't specify an address space, this is the default */ 932 if (!rom->as) { 933 rom->as = &address_space_memory; 934 } 935 936 rom->committed = false; 937 938 /* List is ordered by load address in the same address space */ 939 QTAILQ_FOREACH(item, &roms, next) { 940 if (rom_order_compare(rom, item)) { 941 continue; 942 } 943 QTAILQ_INSERT_BEFORE(item, rom, next); 944 return; 945 } 946 QTAILQ_INSERT_TAIL(&roms, rom, next); 947 } 948 949 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 950 { 951 if (fw_cfg) { 952 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 953 } 954 } 955 956 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 957 { 958 void *data; 959 960 rom->mr = g_malloc(sizeof(*rom->mr)); 961 memory_region_init_resizeable_ram(rom->mr, owner, name, 962 rom->datasize, rom->romsize, 963 fw_cfg_resized, 964 &error_fatal); 965 memory_region_set_readonly(rom->mr, ro); 966 vmstate_register_ram_global(rom->mr); 967 968 data = memory_region_get_ram_ptr(rom->mr); 969 memcpy(data, rom->data, rom->datasize); 970 971 return data; 972 } 973 974 ssize_t rom_add_file(const char *file, const char *fw_dir, 975 hwaddr addr, int32_t bootindex, 976 bool option_rom, MemoryRegion *mr, 977 AddressSpace *as) 978 { 979 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 980 Rom *rom; 981 ssize_t rc; 982 int fd = -1; 983 char devpath[100]; 984 985 if (as && mr) { 986 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 987 "not valid when loading a rom\n"); 988 /* We haven't allocated anything so we don't need any cleanup */ 989 return -1; 990 } 991 992 rom = g_malloc0(sizeof(*rom)); 993 rom->name = g_strdup(file); 994 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 995 rom->as = as; 996 if (rom->path == NULL) { 997 rom->path = g_strdup(file); 998 } 999 1000 fd = open(rom->path, O_RDONLY | O_BINARY); 1001 if (fd == -1) { 1002 fprintf(stderr, "Could not open option rom '%s': %s\n", 1003 rom->path, strerror(errno)); 1004 goto err; 1005 } 1006 1007 if (fw_dir) { 1008 rom->fw_dir = g_strdup(fw_dir); 1009 rom->fw_file = g_strdup(file); 1010 } 1011 rom->addr = addr; 1012 rom->romsize = lseek(fd, 0, SEEK_END); 1013 if (rom->romsize == -1) { 1014 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 1015 rom->name, strerror(errno)); 1016 goto err; 1017 } 1018 1019 rom->datasize = rom->romsize; 1020 rom->data = g_malloc0(rom->datasize); 1021 lseek(fd, 0, SEEK_SET); 1022 rc = read(fd, rom->data, rom->datasize); 1023 if (rc != rom->datasize) { 1024 fprintf(stderr, "rom: file %-20s: read error: rc=%zd (expected %zd)\n", 1025 rom->name, rc, rom->datasize); 1026 goto err; 1027 } 1028 close(fd); 1029 rom_insert(rom); 1030 if (rom->fw_file && fw_cfg) { 1031 const char *basename; 1032 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 1033 void *data; 1034 1035 basename = strrchr(rom->fw_file, '/'); 1036 if (basename) { 1037 basename++; 1038 } else { 1039 basename = rom->fw_file; 1040 } 1041 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 1042 basename); 1043 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1044 1045 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 1046 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 1047 } else { 1048 data = rom->data; 1049 } 1050 1051 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 1052 } else { 1053 if (mr) { 1054 rom->mr = mr; 1055 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 1056 } else { 1057 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 1058 } 1059 } 1060 1061 add_boot_device_path(bootindex, NULL, devpath); 1062 return 0; 1063 1064 err: 1065 if (fd != -1) 1066 close(fd); 1067 1068 rom_free(rom); 1069 return -1; 1070 } 1071 1072 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1073 size_t max_len, hwaddr addr, const char *fw_file_name, 1074 FWCfgCallback fw_callback, void *callback_opaque, 1075 AddressSpace *as, bool read_only) 1076 { 1077 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1078 Rom *rom; 1079 MemoryRegion *mr = NULL; 1080 1081 rom = g_malloc0(sizeof(*rom)); 1082 rom->name = g_strdup(name); 1083 rom->as = as; 1084 rom->addr = addr; 1085 rom->romsize = max_len ? max_len : len; 1086 rom->datasize = len; 1087 g_assert(rom->romsize >= rom->datasize); 1088 rom->data = g_malloc0(rom->datasize); 1089 memcpy(rom->data, blob, len); 1090 rom_insert(rom); 1091 if (fw_file_name && fw_cfg) { 1092 char devpath[100]; 1093 void *data; 1094 1095 if (read_only) { 1096 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1097 } else { 1098 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1099 } 1100 1101 if (mc->rom_file_has_mr) { 1102 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1103 mr = rom->mr; 1104 } else { 1105 data = rom->data; 1106 } 1107 1108 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1109 fw_callback, NULL, callback_opaque, 1110 data, rom->datasize, read_only); 1111 } 1112 return mr; 1113 } 1114 1115 /* This function is specific for elf program because we don't need to allocate 1116 * all the rom. We just allocate the first part and the rest is just zeros. This 1117 * is why romsize and datasize are different. Also, this function takes its own 1118 * reference to "mapped_file", so we don't have to allocate and copy the buffer. 1119 */ 1120 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, 1121 size_t datasize, size_t romsize, hwaddr addr, 1122 AddressSpace *as) 1123 { 1124 Rom *rom; 1125 1126 rom = g_malloc0(sizeof(*rom)); 1127 rom->name = g_strdup(name); 1128 rom->addr = addr; 1129 rom->datasize = datasize; 1130 rom->romsize = romsize; 1131 rom->data = data; 1132 rom->as = as; 1133 1134 if (mapped_file && data) { 1135 g_mapped_file_ref(mapped_file); 1136 rom->mapped_file = mapped_file; 1137 } 1138 1139 rom_insert(rom); 1140 return 0; 1141 } 1142 1143 ssize_t rom_add_vga(const char *file) 1144 { 1145 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1146 } 1147 1148 ssize_t rom_add_option(const char *file, int32_t bootindex) 1149 { 1150 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1151 } 1152 1153 static void rom_reset(void *unused) 1154 { 1155 Rom *rom; 1156 1157 QTAILQ_FOREACH(rom, &roms, next) { 1158 if (rom->fw_file) { 1159 continue; 1160 } 1161 /* 1162 * We don't need to fill in the RAM with ROM data because we'll fill 1163 * the data in during the next incoming migration in all cases. Note 1164 * that some of those RAMs can actually be modified by the guest. 1165 */ 1166 if (runstate_check(RUN_STATE_INMIGRATE)) { 1167 if (rom->data && rom->isrom) { 1168 /* 1169 * Free it so that a rom_reset after migration doesn't 1170 * overwrite a potentially modified 'rom'. 1171 */ 1172 rom_free_data(rom); 1173 } 1174 continue; 1175 } 1176 1177 if (rom->data == NULL) { 1178 continue; 1179 } 1180 if (rom->mr) { 1181 void *host = memory_region_get_ram_ptr(rom->mr); 1182 memcpy(host, rom->data, rom->datasize); 1183 memset(host + rom->datasize, 0, rom->romsize - rom->datasize); 1184 } else { 1185 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1186 rom->data, rom->datasize); 1187 address_space_set(rom->as, rom->addr + rom->datasize, 0, 1188 rom->romsize - rom->datasize, 1189 MEMTXATTRS_UNSPECIFIED); 1190 } 1191 if (rom->isrom) { 1192 /* rom needs to be written only once */ 1193 rom_free_data(rom); 1194 } 1195 /* 1196 * The rom loader is really on the same level as firmware in the guest 1197 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1198 * that the instruction cache for that new region is clear, so that the 1199 * CPU definitely fetches its instructions from the just written data. 1200 */ 1201 cpu_flush_icache_range(rom->addr, rom->datasize); 1202 1203 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom); 1204 } 1205 } 1206 1207 /* Return true if two consecutive ROMs in the ROM list overlap */ 1208 static bool roms_overlap(Rom *last_rom, Rom *this_rom) 1209 { 1210 if (!last_rom) { 1211 return false; 1212 } 1213 return last_rom->as == this_rom->as && 1214 last_rom->addr + last_rom->romsize > this_rom->addr; 1215 } 1216 1217 static const char *rom_as_name(Rom *rom) 1218 { 1219 const char *name = rom->as ? rom->as->name : NULL; 1220 return name ?: "anonymous"; 1221 } 1222 1223 static void rom_print_overlap_error_header(void) 1224 { 1225 error_report("Some ROM regions are overlapping"); 1226 error_printf( 1227 "These ROM regions might have been loaded by " 1228 "direct user request or by default.\n" 1229 "They could be BIOS/firmware images, a guest kernel, " 1230 "initrd or some other file loaded into guest memory.\n" 1231 "Check whether you intended to load all this guest code, and " 1232 "whether it has been built to load to the correct addresses.\n"); 1233 } 1234 1235 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom) 1236 { 1237 error_printf( 1238 "\nThe following two regions overlap (in the %s address space):\n", 1239 rom_as_name(rom)); 1240 error_printf( 1241 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n", 1242 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize); 1243 error_printf( 1244 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n", 1245 rom->name, rom->addr, rom->addr + rom->romsize); 1246 } 1247 1248 int rom_check_and_register_reset(void) 1249 { 1250 MemoryRegionSection section; 1251 Rom *rom, *last_rom = NULL; 1252 bool found_overlap = false; 1253 1254 QTAILQ_FOREACH(rom, &roms, next) { 1255 if (rom->fw_file) { 1256 continue; 1257 } 1258 if (!rom->mr) { 1259 if (roms_overlap(last_rom, rom)) { 1260 if (!found_overlap) { 1261 found_overlap = true; 1262 rom_print_overlap_error_header(); 1263 } 1264 rom_print_one_overlap_error(last_rom, rom); 1265 /* Keep going through the list so we report all overlaps */ 1266 } 1267 last_rom = rom; 1268 } 1269 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1270 rom->addr, 1); 1271 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1272 memory_region_unref(section.mr); 1273 } 1274 if (found_overlap) { 1275 return -1; 1276 } 1277 1278 qemu_register_reset(rom_reset, NULL); 1279 roms_loaded = 1; 1280 return 0; 1281 } 1282 1283 void rom_set_fw(FWCfgState *f) 1284 { 1285 fw_cfg = f; 1286 } 1287 1288 void rom_set_order_override(int order) 1289 { 1290 if (!fw_cfg) 1291 return; 1292 fw_cfg_set_order_override(fw_cfg, order); 1293 } 1294 1295 void rom_reset_order_override(void) 1296 { 1297 if (!fw_cfg) 1298 return; 1299 fw_cfg_reset_order_override(fw_cfg); 1300 } 1301 1302 void rom_transaction_begin(void) 1303 { 1304 Rom *rom; 1305 1306 /* Ignore ROMs added without the transaction API */ 1307 QTAILQ_FOREACH(rom, &roms, next) { 1308 rom->committed = true; 1309 } 1310 } 1311 1312 void rom_transaction_end(bool commit) 1313 { 1314 Rom *rom; 1315 Rom *tmp; 1316 1317 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1318 if (rom->committed) { 1319 continue; 1320 } 1321 if (commit) { 1322 rom->committed = true; 1323 } else { 1324 QTAILQ_REMOVE(&roms, rom, next); 1325 rom_free(rom); 1326 } 1327 } 1328 } 1329 1330 static Rom *find_rom(hwaddr addr, size_t size) 1331 { 1332 Rom *rom; 1333 1334 QTAILQ_FOREACH(rom, &roms, next) { 1335 if (rom->fw_file) { 1336 continue; 1337 } 1338 if (rom->mr) { 1339 continue; 1340 } 1341 if (rom->addr > addr) { 1342 continue; 1343 } 1344 if (rom->addr + rom->romsize < addr + size) { 1345 continue; 1346 } 1347 return rom; 1348 } 1349 return NULL; 1350 } 1351 1352 typedef struct RomSec { 1353 hwaddr base; 1354 int se; /* start/end flag */ 1355 } RomSec; 1356 1357 1358 /* 1359 * Sort into address order. We break ties between rom-startpoints 1360 * and rom-endpoints in favour of the startpoint, by sorting the 0->1 1361 * transition before the 1->0 transition. Either way round would 1362 * work, but this way saves a little work later by avoiding 1363 * dealing with "gaps" of 0 length. 1364 */ 1365 static gint sort_secs(gconstpointer a, gconstpointer b) 1366 { 1367 RomSec *ra = (RomSec *) a; 1368 RomSec *rb = (RomSec *) b; 1369 1370 if (ra->base == rb->base) { 1371 return ra->se - rb->se; 1372 } 1373 return ra->base > rb->base ? 1 : -1; 1374 } 1375 1376 static GList *add_romsec_to_list(GList *secs, hwaddr base, int se) 1377 { 1378 RomSec *cand = g_new(RomSec, 1); 1379 cand->base = base; 1380 cand->se = se; 1381 return g_list_prepend(secs, cand); 1382 } 1383 1384 RomGap rom_find_largest_gap_between(hwaddr base, size_t size) 1385 { 1386 Rom *rom; 1387 RomSec *cand; 1388 RomGap res = {0, 0}; 1389 hwaddr gapstart = base; 1390 GList *it, *secs = NULL; 1391 int count = 0; 1392 1393 QTAILQ_FOREACH(rom, &roms, next) { 1394 /* Ignore blobs being loaded to special places */ 1395 if (rom->mr || rom->fw_file) { 1396 continue; 1397 } 1398 /* ignore anything finishing bellow base */ 1399 if (rom->addr + rom->romsize <= base) { 1400 continue; 1401 } 1402 /* ignore anything starting above the region */ 1403 if (rom->addr >= base + size) { 1404 continue; 1405 } 1406 1407 /* Save the start and end of each relevant ROM */ 1408 secs = add_romsec_to_list(secs, rom->addr, 1); 1409 1410 if (rom->addr + rom->romsize < base + size) { 1411 secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1); 1412 } 1413 } 1414 1415 /* sentinel */ 1416 secs = add_romsec_to_list(secs, base + size, 1); 1417 1418 secs = g_list_sort(secs, sort_secs); 1419 1420 for (it = g_list_first(secs); it; it = g_list_next(it)) { 1421 cand = (RomSec *) it->data; 1422 if (count == 0 && count + cand->se == 1) { 1423 size_t gap = cand->base - gapstart; 1424 if (gap > res.size) { 1425 res.base = gapstart; 1426 res.size = gap; 1427 } 1428 } else if (count == 1 && count + cand->se == 0) { 1429 gapstart = cand->base; 1430 } 1431 count += cand->se; 1432 } 1433 1434 g_list_free_full(secs, g_free); 1435 return res; 1436 } 1437 1438 /* 1439 * Copies memory from registered ROMs to dest. Any memory that is contained in 1440 * a ROM between addr and addr + size is copied. Note that this can involve 1441 * multiple ROMs, which need not start at addr and need not end at addr + size. 1442 */ 1443 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1444 { 1445 hwaddr end = addr + size; 1446 uint8_t *s, *d = dest; 1447 size_t l = 0; 1448 Rom *rom; 1449 1450 QTAILQ_FOREACH(rom, &roms, next) { 1451 if (rom->fw_file) { 1452 continue; 1453 } 1454 if (rom->mr) { 1455 continue; 1456 } 1457 if (rom->addr + rom->romsize < addr) { 1458 continue; 1459 } 1460 if (rom->addr > end || rom->addr < addr) { 1461 break; 1462 } 1463 1464 d = dest + (rom->addr - addr); 1465 s = rom->data; 1466 l = rom->datasize; 1467 1468 if ((d + l) > (dest + size)) { 1469 l = dest - d; 1470 } 1471 1472 if (l > 0) { 1473 memcpy(d, s, l); 1474 } 1475 1476 if (rom->romsize > rom->datasize) { 1477 /* If datasize is less than romsize, it means that we didn't 1478 * allocate all the ROM because the trailing data are only zeros. 1479 */ 1480 1481 d += l; 1482 l = rom->romsize - rom->datasize; 1483 1484 if ((d + l) > (dest + size)) { 1485 /* Rom size doesn't fit in the destination area. Adjust to avoid 1486 * overflow. 1487 */ 1488 l = dest - d; 1489 } 1490 1491 if (l > 0) { 1492 memset(d, 0x0, l); 1493 } 1494 } 1495 } 1496 1497 return (d + l) - dest; 1498 } 1499 1500 void *rom_ptr(hwaddr addr, size_t size) 1501 { 1502 Rom *rom; 1503 1504 rom = find_rom(addr, size); 1505 if (!rom || !rom->data) 1506 return NULL; 1507 return rom->data + (addr - rom->addr); 1508 } 1509 1510 typedef struct FindRomCBData { 1511 size_t size; /* Amount of data we want from ROM, in bytes */ 1512 MemoryRegion *mr; /* MR at the unaliased guest addr */ 1513 hwaddr xlat; /* Offset of addr within mr */ 1514 void *rom; /* Output: rom data pointer, if found */ 1515 } FindRomCBData; 1516 1517 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr, 1518 hwaddr offset_in_region, void *opaque) 1519 { 1520 FindRomCBData *cbdata = opaque; 1521 hwaddr alias_addr; 1522 1523 if (mr != cbdata->mr) { 1524 return false; 1525 } 1526 1527 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region; 1528 cbdata->rom = rom_ptr(alias_addr, cbdata->size); 1529 if (!cbdata->rom) { 1530 return false; 1531 } 1532 /* Found a match, stop iterating */ 1533 return true; 1534 } 1535 1536 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size) 1537 { 1538 /* 1539 * Find any ROM data for the given guest address range. If there 1540 * is a ROM blob then return a pointer to the host memory 1541 * corresponding to 'addr'; otherwise return NULL. 1542 * 1543 * We look not only for ROM blobs that were loaded directly to 1544 * addr, but also for ROM blobs that were loaded to aliases of 1545 * that memory at other addresses within the AddressSpace. 1546 * 1547 * Note that we do not check @as against the 'as' member in the 1548 * 'struct Rom' returned by rom_ptr(). The Rom::as is the 1549 * AddressSpace which the rom blob should be written to, whereas 1550 * our @as argument is the AddressSpace which we are (effectively) 1551 * reading from, and the same underlying RAM will often be visible 1552 * in multiple AddressSpaces. (A common example is a ROM blob 1553 * written to the 'system' address space but then read back via a 1554 * CPU's cpu->as pointer.) This does mean we might potentially 1555 * return a false-positive match if a ROM blob was loaded into an 1556 * AS which is entirely separate and distinct from the one we're 1557 * querying, but this issue exists also for rom_ptr() and hasn't 1558 * caused any problems in practice. 1559 */ 1560 FlatView *fv; 1561 void *rom; 1562 hwaddr len_unused; 1563 FindRomCBData cbdata = {}; 1564 1565 /* Easy case: there's data at the actual address */ 1566 rom = rom_ptr(addr, size); 1567 if (rom) { 1568 return rom; 1569 } 1570 1571 RCU_READ_LOCK_GUARD(); 1572 1573 fv = address_space_to_flatview(as); 1574 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused, 1575 false, MEMTXATTRS_UNSPECIFIED); 1576 if (!cbdata.mr) { 1577 /* Nothing at this address, so there can't be any aliasing */ 1578 return NULL; 1579 } 1580 cbdata.size = size; 1581 flatview_for_each_range(fv, find_rom_cb, &cbdata); 1582 return cbdata.rom; 1583 } 1584 1585 HumanReadableText *qmp_x_query_roms(Error **errp) 1586 { 1587 Rom *rom; 1588 g_autoptr(GString) buf = g_string_new(""); 1589 1590 QTAILQ_FOREACH(rom, &roms, next) { 1591 if (rom->mr) { 1592 g_string_append_printf(buf, "%s" 1593 " size=0x%06zx name=\"%s\"\n", 1594 memory_region_name(rom->mr), 1595 rom->romsize, 1596 rom->name); 1597 } else if (!rom->fw_file) { 1598 g_string_append_printf(buf, "addr=" TARGET_FMT_plx 1599 " size=0x%06zx mem=%s name=\"%s\"\n", 1600 rom->addr, rom->romsize, 1601 rom->isrom ? "rom" : "ram", 1602 rom->name); 1603 } else { 1604 g_string_append_printf(buf, "fw=%s/%s" 1605 " size=0x%06zx name=\"%s\"\n", 1606 rom->fw_dir, 1607 rom->fw_file, 1608 rom->romsize, 1609 rom->name); 1610 } 1611 } 1612 1613 return human_readable_text_from_str(buf); 1614 } 1615 1616 typedef enum HexRecord HexRecord; 1617 enum HexRecord { 1618 DATA_RECORD = 0, 1619 EOF_RECORD, 1620 EXT_SEG_ADDR_RECORD, 1621 START_SEG_ADDR_RECORD, 1622 EXT_LINEAR_ADDR_RECORD, 1623 START_LINEAR_ADDR_RECORD, 1624 }; 1625 1626 /* Each record contains a 16-bit address which is combined with the upper 16 1627 * bits of the implicit "next address" to form a 32-bit address. 1628 */ 1629 #define NEXT_ADDR_MASK 0xffff0000 1630 1631 #define DATA_FIELD_MAX_LEN 0xff 1632 #define LEN_EXCEPT_DATA 0x5 1633 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1634 * sizeof(checksum) */ 1635 typedef struct { 1636 uint8_t byte_count; 1637 uint16_t address; 1638 uint8_t record_type; 1639 uint8_t data[DATA_FIELD_MAX_LEN]; 1640 uint8_t checksum; 1641 } HexLine; 1642 1643 /* return 0 or -1 if error */ 1644 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1645 uint32_t *index, const bool in_process) 1646 { 1647 /* +-------+---------------+-------+---------------------+--------+ 1648 * | byte | |record | | | 1649 * | count | address | type | data |checksum| 1650 * +-------+---------------+-------+---------------------+--------+ 1651 * ^ ^ ^ ^ ^ ^ 1652 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1653 */ 1654 uint8_t value = 0; 1655 uint32_t idx = *index; 1656 /* ignore space */ 1657 if (g_ascii_isspace(c)) { 1658 return true; 1659 } 1660 if (!g_ascii_isxdigit(c) || !in_process) { 1661 return false; 1662 } 1663 value = g_ascii_xdigit_value(c); 1664 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1665 if (idx < 2) { 1666 line->byte_count |= value; 1667 } else if (2 <= idx && idx < 6) { 1668 line->address <<= 4; 1669 line->address += g_ascii_xdigit_value(c); 1670 } else if (6 <= idx && idx < 8) { 1671 line->record_type |= value; 1672 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1673 line->data[(idx - 8) >> 1] |= value; 1674 } else if (8 + 2 * line->byte_count <= idx && 1675 idx < 10 + 2 * line->byte_count) { 1676 line->checksum |= value; 1677 } else { 1678 return false; 1679 } 1680 *our_checksum += value; 1681 ++(*index); 1682 return true; 1683 } 1684 1685 typedef struct { 1686 const char *filename; 1687 HexLine line; 1688 uint8_t *bin_buf; 1689 hwaddr *start_addr; 1690 int total_size; 1691 uint32_t next_address_to_write; 1692 uint32_t current_address; 1693 uint32_t current_rom_index; 1694 uint32_t rom_start_address; 1695 AddressSpace *as; 1696 bool complete; 1697 } HexParser; 1698 1699 /* return size or -1 if error */ 1700 static int handle_record_type(HexParser *parser) 1701 { 1702 HexLine *line = &(parser->line); 1703 switch (line->record_type) { 1704 case DATA_RECORD: 1705 parser->current_address = 1706 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1707 /* verify this is a contiguous block of memory */ 1708 if (parser->current_address != parser->next_address_to_write) { 1709 if (parser->current_rom_index != 0) { 1710 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1711 parser->current_rom_index, 1712 parser->rom_start_address, parser->as); 1713 } 1714 parser->rom_start_address = parser->current_address; 1715 parser->current_rom_index = 0; 1716 } 1717 1718 /* copy from line buffer to output bin_buf */ 1719 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1720 line->byte_count); 1721 parser->current_rom_index += line->byte_count; 1722 parser->total_size += line->byte_count; 1723 /* save next address to write */ 1724 parser->next_address_to_write = 1725 parser->current_address + line->byte_count; 1726 break; 1727 1728 case EOF_RECORD: 1729 if (parser->current_rom_index != 0) { 1730 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1731 parser->current_rom_index, 1732 parser->rom_start_address, parser->as); 1733 } 1734 parser->complete = true; 1735 return parser->total_size; 1736 case EXT_SEG_ADDR_RECORD: 1737 case EXT_LINEAR_ADDR_RECORD: 1738 if (line->byte_count != 2 && line->address != 0) { 1739 return -1; 1740 } 1741 1742 if (parser->current_rom_index != 0) { 1743 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1744 parser->current_rom_index, 1745 parser->rom_start_address, parser->as); 1746 } 1747 1748 /* save next address to write, 1749 * in case of non-contiguous block of memory */ 1750 parser->next_address_to_write = (line->data[0] << 12) | 1751 (line->data[1] << 4); 1752 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1753 parser->next_address_to_write <<= 12; 1754 } 1755 1756 parser->rom_start_address = parser->next_address_to_write; 1757 parser->current_rom_index = 0; 1758 break; 1759 1760 case START_SEG_ADDR_RECORD: 1761 if (line->byte_count != 4 && line->address != 0) { 1762 return -1; 1763 } 1764 1765 /* x86 16-bit CS:IP segmented addressing */ 1766 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1767 ((line->data[2] << 8) | line->data[3]); 1768 break; 1769 1770 case START_LINEAR_ADDR_RECORD: 1771 if (line->byte_count != 4 && line->address != 0) { 1772 return -1; 1773 } 1774 1775 *(parser->start_addr) = ldl_be_p(line->data); 1776 break; 1777 1778 default: 1779 return -1; 1780 } 1781 1782 return parser->total_size; 1783 } 1784 1785 /* return size or -1 if error */ 1786 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1787 size_t hex_blob_size, AddressSpace *as) 1788 { 1789 bool in_process = false; /* avoid re-enter and 1790 * check whether record begin with ':' */ 1791 uint8_t *end = hex_blob + hex_blob_size; 1792 uint8_t our_checksum = 0; 1793 uint32_t record_index = 0; 1794 HexParser parser = { 1795 .filename = filename, 1796 .bin_buf = g_malloc(hex_blob_size), 1797 .start_addr = addr, 1798 .as = as, 1799 .complete = false 1800 }; 1801 1802 rom_transaction_begin(); 1803 1804 for (; hex_blob < end && !parser.complete; ++hex_blob) { 1805 switch (*hex_blob) { 1806 case '\r': 1807 case '\n': 1808 if (!in_process) { 1809 break; 1810 } 1811 1812 in_process = false; 1813 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1814 record_index || 1815 our_checksum != 0) { 1816 parser.total_size = -1; 1817 goto out; 1818 } 1819 1820 if (handle_record_type(&parser) == -1) { 1821 parser.total_size = -1; 1822 goto out; 1823 } 1824 break; 1825 1826 /* start of a new record. */ 1827 case ':': 1828 memset(&parser.line, 0, sizeof(HexLine)); 1829 in_process = true; 1830 record_index = 0; 1831 break; 1832 1833 /* decoding lines */ 1834 default: 1835 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1836 &record_index, in_process)) { 1837 parser.total_size = -1; 1838 goto out; 1839 } 1840 break; 1841 } 1842 } 1843 1844 out: 1845 g_free(parser.bin_buf); 1846 rom_transaction_end(parser.total_size != -1); 1847 return parser.total_size; 1848 } 1849 1850 /* return size or -1 if error */ 1851 ssize_t load_targphys_hex_as(const char *filename, hwaddr *entry, 1852 AddressSpace *as) 1853 { 1854 gsize hex_blob_size; 1855 gchar *hex_blob; 1856 ssize_t total_size = 0; 1857 1858 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1859 return -1; 1860 } 1861 1862 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1863 hex_blob_size, as); 1864 1865 g_free(hex_blob); 1866 return total_size; 1867 } 1868