xref: /openbmc/qemu/hw/core/loader.c (revision 10df8ff1)
1 /*
2  * QEMU Executable loader
3  *
4  * Copyright (c) 2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  *
24  * Gunzip functionality in this file is derived from u-boot:
25  *
26  * (C) Copyright 2008 Semihalf
27  *
28  * (C) Copyright 2000-2005
29  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
30  *
31  * This program is free software; you can redistribute it and/or
32  * modify it under the terms of the GNU General Public License as
33  * published by the Free Software Foundation; either version 2 of
34  * the License, or (at your option) any later version.
35  *
36  * This program is distributed in the hope that it will be useful,
37  * but WITHOUT ANY WARRANTY; without even the implied warranty of
38  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
39  * GNU General Public License for more details.
40  *
41  * You should have received a copy of the GNU General Public License along
42  * with this program; if not, see <http://www.gnu.org/licenses/>.
43  */
44 
45 #include "qemu/osdep.h"
46 #include "qapi/error.h"
47 #include "hw/hw.h"
48 #include "disas/disas.h"
49 #include "monitor/monitor.h"
50 #include "sysemu/sysemu.h"
51 #include "uboot_image.h"
52 #include "hw/loader.h"
53 #include "hw/nvram/fw_cfg.h"
54 #include "exec/memory.h"
55 #include "exec/address-spaces.h"
56 #include "hw/boards.h"
57 #include "qemu/cutils.h"
58 
59 #include <zlib.h>
60 
61 static int roms_loaded;
62 
63 /* return the size or -1 if error */
64 int64_t get_image_size(const char *filename)
65 {
66     int fd;
67     int64_t size;
68     fd = open(filename, O_RDONLY | O_BINARY);
69     if (fd < 0)
70         return -1;
71     size = lseek(fd, 0, SEEK_END);
72     close(fd);
73     return size;
74 }
75 
76 /* return the size or -1 if error */
77 ssize_t load_image_size(const char *filename, void *addr, size_t size)
78 {
79     int fd;
80     ssize_t actsize;
81 
82     fd = open(filename, O_RDONLY | O_BINARY);
83     if (fd < 0) {
84         return -1;
85     }
86 
87     actsize = read(fd, addr, size);
88     if (actsize < 0) {
89         close(fd);
90         return -1;
91     }
92     close(fd);
93 
94     return actsize;
95 }
96 
97 /* read()-like version */
98 ssize_t read_targphys(const char *name,
99                       int fd, hwaddr dst_addr, size_t nbytes)
100 {
101     uint8_t *buf;
102     ssize_t did;
103 
104     buf = g_malloc(nbytes);
105     did = read(fd, buf, nbytes);
106     if (did > 0)
107         rom_add_blob_fixed("read", buf, did, dst_addr);
108     g_free(buf);
109     return did;
110 }
111 
112 int load_image_targphys(const char *filename,
113                         hwaddr addr, uint64_t max_sz)
114 {
115     return load_image_targphys_as(filename, addr, max_sz, NULL);
116 }
117 
118 /* return the size or -1 if error */
119 int load_image_targphys_as(const char *filename,
120                            hwaddr addr, uint64_t max_sz, AddressSpace *as)
121 {
122     int size;
123 
124     size = get_image_size(filename);
125     if (size < 0 || size > max_sz) {
126         return -1;
127     }
128     if (size > 0) {
129         if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
130             return -1;
131         }
132     }
133     return size;
134 }
135 
136 int load_image_mr(const char *filename, MemoryRegion *mr)
137 {
138     int size;
139 
140     if (!memory_access_is_direct(mr, false)) {
141         /* Can only load an image into RAM or ROM */
142         return -1;
143     }
144 
145     size = get_image_size(filename);
146 
147     if (size < 0 || size > memory_region_size(mr)) {
148         return -1;
149     }
150     if (size > 0) {
151         if (rom_add_file_mr(filename, mr, -1) < 0) {
152             return -1;
153         }
154     }
155     return size;
156 }
157 
158 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
159                       const char *source)
160 {
161     const char *nulp;
162     char *ptr;
163 
164     if (buf_size <= 0) return;
165     nulp = memchr(source, 0, buf_size);
166     if (nulp) {
167         rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
168     } else {
169         rom_add_blob_fixed(name, source, buf_size, dest);
170         ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
171         *ptr = 0;
172     }
173 }
174 
175 /* A.OUT loader */
176 
177 struct exec
178 {
179   uint32_t a_info;   /* Use macros N_MAGIC, etc for access */
180   uint32_t a_text;   /* length of text, in bytes */
181   uint32_t a_data;   /* length of data, in bytes */
182   uint32_t a_bss;    /* length of uninitialized data area, in bytes */
183   uint32_t a_syms;   /* length of symbol table data in file, in bytes */
184   uint32_t a_entry;  /* start address */
185   uint32_t a_trsize; /* length of relocation info for text, in bytes */
186   uint32_t a_drsize; /* length of relocation info for data, in bytes */
187 };
188 
189 static void bswap_ahdr(struct exec *e)
190 {
191     bswap32s(&e->a_info);
192     bswap32s(&e->a_text);
193     bswap32s(&e->a_data);
194     bswap32s(&e->a_bss);
195     bswap32s(&e->a_syms);
196     bswap32s(&e->a_entry);
197     bswap32s(&e->a_trsize);
198     bswap32s(&e->a_drsize);
199 }
200 
201 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
202 #define OMAGIC 0407
203 #define NMAGIC 0410
204 #define ZMAGIC 0413
205 #define QMAGIC 0314
206 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
207 #define N_TXTOFF(x)							\
208     (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) :	\
209      (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
210 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
211 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
212 
213 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
214 
215 #define N_DATADDR(x, target_page_size) \
216     (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
217      : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
218 
219 
220 int load_aout(const char *filename, hwaddr addr, int max_sz,
221               int bswap_needed, hwaddr target_page_size)
222 {
223     int fd;
224     ssize_t size, ret;
225     struct exec e;
226     uint32_t magic;
227 
228     fd = open(filename, O_RDONLY | O_BINARY);
229     if (fd < 0)
230         return -1;
231 
232     size = read(fd, &e, sizeof(e));
233     if (size < 0)
234         goto fail;
235 
236     if (bswap_needed) {
237         bswap_ahdr(&e);
238     }
239 
240     magic = N_MAGIC(e);
241     switch (magic) {
242     case ZMAGIC:
243     case QMAGIC:
244     case OMAGIC:
245         if (e.a_text + e.a_data > max_sz)
246             goto fail;
247         lseek(fd, N_TXTOFF(e), SEEK_SET);
248         size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
249         if (size < 0)
250             goto fail;
251         break;
252     case NMAGIC:
253         if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
254             goto fail;
255         lseek(fd, N_TXTOFF(e), SEEK_SET);
256         size = read_targphys(filename, fd, addr, e.a_text);
257         if (size < 0)
258             goto fail;
259         ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
260                             e.a_data);
261         if (ret < 0)
262             goto fail;
263         size += ret;
264         break;
265     default:
266         goto fail;
267     }
268     close(fd);
269     return size;
270  fail:
271     close(fd);
272     return -1;
273 }
274 
275 /* ELF loader */
276 
277 static void *load_at(int fd, off_t offset, size_t size)
278 {
279     void *ptr;
280     if (lseek(fd, offset, SEEK_SET) < 0)
281         return NULL;
282     ptr = g_malloc(size);
283     if (read(fd, ptr, size) != size) {
284         g_free(ptr);
285         return NULL;
286     }
287     return ptr;
288 }
289 
290 #ifdef ELF_CLASS
291 #undef ELF_CLASS
292 #endif
293 
294 #define ELF_CLASS   ELFCLASS32
295 #include "elf.h"
296 
297 #define SZ		32
298 #define elf_word        uint32_t
299 #define elf_sword        int32_t
300 #define bswapSZs	bswap32s
301 #include "hw/elf_ops.h"
302 
303 #undef elfhdr
304 #undef elf_phdr
305 #undef elf_shdr
306 #undef elf_sym
307 #undef elf_rela
308 #undef elf_note
309 #undef elf_word
310 #undef elf_sword
311 #undef bswapSZs
312 #undef SZ
313 #define elfhdr		elf64_hdr
314 #define elf_phdr	elf64_phdr
315 #define elf_note	elf64_note
316 #define elf_shdr	elf64_shdr
317 #define elf_sym		elf64_sym
318 #define elf_rela        elf64_rela
319 #define elf_word        uint64_t
320 #define elf_sword        int64_t
321 #define bswapSZs	bswap64s
322 #define SZ		64
323 #include "hw/elf_ops.h"
324 
325 const char *load_elf_strerror(int error)
326 {
327     switch (error) {
328     case 0:
329         return "No error";
330     case ELF_LOAD_FAILED:
331         return "Failed to load ELF";
332     case ELF_LOAD_NOT_ELF:
333         return "The image is not ELF";
334     case ELF_LOAD_WRONG_ARCH:
335         return "The image is from incompatible architecture";
336     case ELF_LOAD_WRONG_ENDIAN:
337         return "The image has incorrect endianness";
338     default:
339         return "Unknown error";
340     }
341 }
342 
343 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
344 {
345     int fd;
346     uint8_t e_ident_local[EI_NIDENT];
347     uint8_t *e_ident;
348     size_t hdr_size, off;
349     bool is64l;
350 
351     if (!hdr) {
352         hdr = e_ident_local;
353     }
354     e_ident = hdr;
355 
356     fd = open(filename, O_RDONLY | O_BINARY);
357     if (fd < 0) {
358         error_setg_errno(errp, errno, "Failed to open file: %s", filename);
359         return;
360     }
361     if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
362         error_setg_errno(errp, errno, "Failed to read file: %s", filename);
363         goto fail;
364     }
365     if (e_ident[0] != ELFMAG0 ||
366         e_ident[1] != ELFMAG1 ||
367         e_ident[2] != ELFMAG2 ||
368         e_ident[3] != ELFMAG3) {
369         error_setg(errp, "Bad ELF magic");
370         goto fail;
371     }
372 
373     is64l = e_ident[EI_CLASS] == ELFCLASS64;
374     hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
375     if (is64) {
376         *is64 = is64l;
377     }
378 
379     off = EI_NIDENT;
380     while (hdr != e_ident_local && off < hdr_size) {
381         size_t br = read(fd, hdr + off, hdr_size - off);
382         switch (br) {
383         case 0:
384             error_setg(errp, "File too short: %s", filename);
385             goto fail;
386         case -1:
387             error_setg_errno(errp, errno, "Failed to read file: %s",
388                              filename);
389             goto fail;
390         }
391         off += br;
392     }
393 
394 fail:
395     close(fd);
396 }
397 
398 /* return < 0 if error, otherwise the number of bytes loaded in memory */
399 int load_elf(const char *filename, uint64_t (*translate_fn)(void *, uint64_t),
400              void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
401              uint64_t *highaddr, int big_endian, int elf_machine,
402              int clear_lsb, int data_swab)
403 {
404     return load_elf_as(filename, translate_fn, translate_opaque, pentry,
405                        lowaddr, highaddr, big_endian, elf_machine, clear_lsb,
406                        data_swab, NULL);
407 }
408 
409 /* return < 0 if error, otherwise the number of bytes loaded in memory */
410 int load_elf_as(const char *filename,
411                 uint64_t (*translate_fn)(void *, uint64_t),
412                 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
413                 uint64_t *highaddr, int big_endian, int elf_machine,
414                 int clear_lsb, int data_swab, AddressSpace *as)
415 {
416     return load_elf_ram(filename, translate_fn, translate_opaque,
417                         pentry, lowaddr, highaddr, big_endian, elf_machine,
418                         clear_lsb, data_swab, as, true);
419 }
420 
421 /* return < 0 if error, otherwise the number of bytes loaded in memory */
422 int load_elf_ram(const char *filename,
423                  uint64_t (*translate_fn)(void *, uint64_t),
424                  void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
425                  uint64_t *highaddr, int big_endian, int elf_machine,
426                  int clear_lsb, int data_swab, AddressSpace *as,
427                  bool load_rom)
428 {
429     return load_elf_ram_sym(filename, translate_fn, translate_opaque,
430                             pentry, lowaddr, highaddr, big_endian,
431                             elf_machine, clear_lsb, data_swab, as,
432                             load_rom, NULL);
433 }
434 
435 /* return < 0 if error, otherwise the number of bytes loaded in memory */
436 int load_elf_ram_sym(const char *filename,
437                      uint64_t (*translate_fn)(void *, uint64_t),
438                      void *translate_opaque, uint64_t *pentry,
439                      uint64_t *lowaddr, uint64_t *highaddr, int big_endian,
440                      int elf_machine, int clear_lsb, int data_swab,
441                      AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
442 {
443     int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED;
444     uint8_t e_ident[EI_NIDENT];
445 
446     fd = open(filename, O_RDONLY | O_BINARY);
447     if (fd < 0) {
448         perror(filename);
449         return -1;
450     }
451     if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
452         goto fail;
453     if (e_ident[0] != ELFMAG0 ||
454         e_ident[1] != ELFMAG1 ||
455         e_ident[2] != ELFMAG2 ||
456         e_ident[3] != ELFMAG3) {
457         ret = ELF_LOAD_NOT_ELF;
458         goto fail;
459     }
460 #ifdef HOST_WORDS_BIGENDIAN
461     data_order = ELFDATA2MSB;
462 #else
463     data_order = ELFDATA2LSB;
464 #endif
465     must_swab = data_order != e_ident[EI_DATA];
466     if (big_endian) {
467         target_data_order = ELFDATA2MSB;
468     } else {
469         target_data_order = ELFDATA2LSB;
470     }
471 
472     if (target_data_order != e_ident[EI_DATA]) {
473         ret = ELF_LOAD_WRONG_ENDIAN;
474         goto fail;
475     }
476 
477     lseek(fd, 0, SEEK_SET);
478     if (e_ident[EI_CLASS] == ELFCLASS64) {
479         ret = load_elf64(filename, fd, translate_fn, translate_opaque, must_swab,
480                          pentry, lowaddr, highaddr, elf_machine, clear_lsb,
481                          data_swab, as, load_rom, sym_cb);
482     } else {
483         ret = load_elf32(filename, fd, translate_fn, translate_opaque, must_swab,
484                          pentry, lowaddr, highaddr, elf_machine, clear_lsb,
485                          data_swab, as, load_rom, sym_cb);
486     }
487 
488  fail:
489     close(fd);
490     return ret;
491 }
492 
493 static void bswap_uboot_header(uboot_image_header_t *hdr)
494 {
495 #ifndef HOST_WORDS_BIGENDIAN
496     bswap32s(&hdr->ih_magic);
497     bswap32s(&hdr->ih_hcrc);
498     bswap32s(&hdr->ih_time);
499     bswap32s(&hdr->ih_size);
500     bswap32s(&hdr->ih_load);
501     bswap32s(&hdr->ih_ep);
502     bswap32s(&hdr->ih_dcrc);
503 #endif
504 }
505 
506 
507 #define ZALLOC_ALIGNMENT	16
508 
509 static void *zalloc(void *x, unsigned items, unsigned size)
510 {
511     void *p;
512 
513     size *= items;
514     size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
515 
516     p = g_malloc(size);
517 
518     return (p);
519 }
520 
521 static void zfree(void *x, void *addr)
522 {
523     g_free(addr);
524 }
525 
526 
527 #define HEAD_CRC	2
528 #define EXTRA_FIELD	4
529 #define ORIG_NAME	8
530 #define COMMENT		0x10
531 #define RESERVED	0xe0
532 
533 #define DEFLATED	8
534 
535 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
536 {
537     z_stream s;
538     ssize_t dstbytes;
539     int r, i, flags;
540 
541     /* skip header */
542     i = 10;
543     flags = src[3];
544     if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
545         puts ("Error: Bad gzipped data\n");
546         return -1;
547     }
548     if ((flags & EXTRA_FIELD) != 0)
549         i = 12 + src[10] + (src[11] << 8);
550     if ((flags & ORIG_NAME) != 0)
551         while (src[i++] != 0)
552             ;
553     if ((flags & COMMENT) != 0)
554         while (src[i++] != 0)
555             ;
556     if ((flags & HEAD_CRC) != 0)
557         i += 2;
558     if (i >= srclen) {
559         puts ("Error: gunzip out of data in header\n");
560         return -1;
561     }
562 
563     s.zalloc = zalloc;
564     s.zfree = zfree;
565 
566     r = inflateInit2(&s, -MAX_WBITS);
567     if (r != Z_OK) {
568         printf ("Error: inflateInit2() returned %d\n", r);
569         return (-1);
570     }
571     s.next_in = src + i;
572     s.avail_in = srclen - i;
573     s.next_out = dst;
574     s.avail_out = dstlen;
575     r = inflate(&s, Z_FINISH);
576     if (r != Z_OK && r != Z_STREAM_END) {
577         printf ("Error: inflate() returned %d\n", r);
578         return -1;
579     }
580     dstbytes = s.next_out - (unsigned char *) dst;
581     inflateEnd(&s);
582 
583     return dstbytes;
584 }
585 
586 /* Load a U-Boot image.  */
587 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
588                             int *is_linux, uint8_t image_type,
589                             uint64_t (*translate_fn)(void *, uint64_t),
590                             void *translate_opaque, AddressSpace *as)
591 {
592     int fd;
593     int size;
594     hwaddr address;
595     uboot_image_header_t h;
596     uboot_image_header_t *hdr = &h;
597     uint8_t *data = NULL;
598     int ret = -1;
599     int do_uncompress = 0;
600 
601     fd = open(filename, O_RDONLY | O_BINARY);
602     if (fd < 0)
603         return -1;
604 
605     size = read(fd, hdr, sizeof(uboot_image_header_t));
606     if (size < sizeof(uboot_image_header_t)) {
607         goto out;
608     }
609 
610     bswap_uboot_header(hdr);
611 
612     if (hdr->ih_magic != IH_MAGIC)
613         goto out;
614 
615     if (hdr->ih_type != image_type) {
616         if (!(image_type == IH_TYPE_KERNEL &&
617             hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
618             fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
619                     image_type);
620             goto out;
621         }
622     }
623 
624     /* TODO: Implement other image types.  */
625     switch (hdr->ih_type) {
626     case IH_TYPE_KERNEL_NOLOAD:
627         if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
628             fprintf(stderr, "this image format (kernel_noload) cannot be "
629                     "loaded on this machine type");
630             goto out;
631         }
632 
633         hdr->ih_load = *loadaddr + sizeof(*hdr);
634         hdr->ih_ep += hdr->ih_load;
635         /* fall through */
636     case IH_TYPE_KERNEL:
637         address = hdr->ih_load;
638         if (translate_fn) {
639             address = translate_fn(translate_opaque, address);
640         }
641         if (loadaddr) {
642             *loadaddr = hdr->ih_load;
643         }
644 
645         switch (hdr->ih_comp) {
646         case IH_COMP_NONE:
647             break;
648         case IH_COMP_GZIP:
649             do_uncompress = 1;
650             break;
651         default:
652             fprintf(stderr,
653                     "Unable to load u-boot images with compression type %d\n",
654                     hdr->ih_comp);
655             goto out;
656         }
657 
658         if (ep) {
659             *ep = hdr->ih_ep;
660         }
661 
662         /* TODO: Check CPU type.  */
663         if (is_linux) {
664             if (hdr->ih_os == IH_OS_LINUX) {
665                 *is_linux = 1;
666             } else {
667                 *is_linux = 0;
668             }
669         }
670 
671         break;
672     case IH_TYPE_RAMDISK:
673         address = *loadaddr;
674         break;
675     default:
676         fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
677         goto out;
678     }
679 
680     data = g_malloc(hdr->ih_size);
681 
682     if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
683         fprintf(stderr, "Error reading file\n");
684         goto out;
685     }
686 
687     if (do_uncompress) {
688         uint8_t *compressed_data;
689         size_t max_bytes;
690         ssize_t bytes;
691 
692         compressed_data = data;
693         max_bytes = UBOOT_MAX_GUNZIP_BYTES;
694         data = g_malloc(max_bytes);
695 
696         bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
697         g_free(compressed_data);
698         if (bytes < 0) {
699             fprintf(stderr, "Unable to decompress gzipped image!\n");
700             goto out;
701         }
702         hdr->ih_size = bytes;
703     }
704 
705     rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
706 
707     ret = hdr->ih_size;
708 
709 out:
710     g_free(data);
711     close(fd);
712     return ret;
713 }
714 
715 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
716                 int *is_linux,
717                 uint64_t (*translate_fn)(void *, uint64_t),
718                 void *translate_opaque)
719 {
720     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
721                             translate_fn, translate_opaque, NULL);
722 }
723 
724 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
725                    int *is_linux,
726                    uint64_t (*translate_fn)(void *, uint64_t),
727                    void *translate_opaque, AddressSpace *as)
728 {
729     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
730                             translate_fn, translate_opaque, as);
731 }
732 
733 /* Load a ramdisk.  */
734 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
735 {
736     return load_ramdisk_as(filename, addr, max_sz, NULL);
737 }
738 
739 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
740                     AddressSpace *as)
741 {
742     return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
743                             NULL, NULL, as);
744 }
745 
746 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
747 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
748                               uint8_t **buffer)
749 {
750     uint8_t *compressed_data = NULL;
751     uint8_t *data = NULL;
752     gsize len;
753     ssize_t bytes;
754     int ret = -1;
755 
756     if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
757                              NULL)) {
758         goto out;
759     }
760 
761     /* Is it a gzip-compressed file? */
762     if (len < 2 ||
763         compressed_data[0] != 0x1f ||
764         compressed_data[1] != 0x8b) {
765         goto out;
766     }
767 
768     if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
769         max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
770     }
771 
772     data = g_malloc(max_sz);
773     bytes = gunzip(data, max_sz, compressed_data, len);
774     if (bytes < 0) {
775         fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
776                 filename);
777         goto out;
778     }
779 
780     /* trim to actual size and return to caller */
781     *buffer = g_realloc(data, bytes);
782     ret = bytes;
783     /* ownership has been transferred to caller */
784     data = NULL;
785 
786  out:
787     g_free(compressed_data);
788     g_free(data);
789     return ret;
790 }
791 
792 /* Load a gzip-compressed kernel. */
793 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
794 {
795     int bytes;
796     uint8_t *data;
797 
798     bytes = load_image_gzipped_buffer(filename, max_sz, &data);
799     if (bytes != -1) {
800         rom_add_blob_fixed(filename, data, bytes, addr);
801         g_free(data);
802     }
803     return bytes;
804 }
805 
806 /*
807  * Functions for reboot-persistent memory regions.
808  *  - used for vga bios and option roms.
809  *  - also linux kernel (-kernel / -initrd).
810  */
811 
812 typedef struct Rom Rom;
813 
814 struct Rom {
815     char *name;
816     char *path;
817 
818     /* datasize is the amount of memory allocated in "data". If datasize is less
819      * than romsize, it means that the area from datasize to romsize is filled
820      * with zeros.
821      */
822     size_t romsize;
823     size_t datasize;
824 
825     uint8_t *data;
826     MemoryRegion *mr;
827     AddressSpace *as;
828     int isrom;
829     char *fw_dir;
830     char *fw_file;
831 
832     bool committed;
833 
834     hwaddr addr;
835     QTAILQ_ENTRY(Rom) next;
836 };
837 
838 static FWCfgState *fw_cfg;
839 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
840 
841 /* rom->data must be heap-allocated (do not use with rom_add_elf_program()) */
842 static void rom_free(Rom *rom)
843 {
844     g_free(rom->data);
845     g_free(rom->path);
846     g_free(rom->name);
847     g_free(rom->fw_dir);
848     g_free(rom->fw_file);
849     g_free(rom);
850 }
851 
852 static inline bool rom_order_compare(Rom *rom, Rom *item)
853 {
854     return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
855            (rom->as == item->as && rom->addr >= item->addr);
856 }
857 
858 static void rom_insert(Rom *rom)
859 {
860     Rom *item;
861 
862     if (roms_loaded) {
863         hw_error ("ROM images must be loaded at startup\n");
864     }
865 
866     /* The user didn't specify an address space, this is the default */
867     if (!rom->as) {
868         rom->as = &address_space_memory;
869     }
870 
871     rom->committed = false;
872 
873     /* List is ordered by load address in the same address space */
874     QTAILQ_FOREACH(item, &roms, next) {
875         if (rom_order_compare(rom, item)) {
876             continue;
877         }
878         QTAILQ_INSERT_BEFORE(item, rom, next);
879         return;
880     }
881     QTAILQ_INSERT_TAIL(&roms, rom, next);
882 }
883 
884 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
885 {
886     if (fw_cfg) {
887         fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
888     }
889 }
890 
891 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
892 {
893     void *data;
894 
895     rom->mr = g_malloc(sizeof(*rom->mr));
896     memory_region_init_resizeable_ram(rom->mr, owner, name,
897                                       rom->datasize, rom->romsize,
898                                       fw_cfg_resized,
899                                       &error_fatal);
900     memory_region_set_readonly(rom->mr, ro);
901     vmstate_register_ram_global(rom->mr);
902 
903     data = memory_region_get_ram_ptr(rom->mr);
904     memcpy(data, rom->data, rom->datasize);
905 
906     return data;
907 }
908 
909 int rom_add_file(const char *file, const char *fw_dir,
910                  hwaddr addr, int32_t bootindex,
911                  bool option_rom, MemoryRegion *mr,
912                  AddressSpace *as)
913 {
914     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
915     Rom *rom;
916     int rc, fd = -1;
917     char devpath[100];
918 
919     if (as && mr) {
920         fprintf(stderr, "Specifying an Address Space and Memory Region is " \
921                 "not valid when loading a rom\n");
922         /* We haven't allocated anything so we don't need any cleanup */
923         return -1;
924     }
925 
926     rom = g_malloc0(sizeof(*rom));
927     rom->name = g_strdup(file);
928     rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
929     rom->as = as;
930     if (rom->path == NULL) {
931         rom->path = g_strdup(file);
932     }
933 
934     fd = open(rom->path, O_RDONLY | O_BINARY);
935     if (fd == -1) {
936         fprintf(stderr, "Could not open option rom '%s': %s\n",
937                 rom->path, strerror(errno));
938         goto err;
939     }
940 
941     if (fw_dir) {
942         rom->fw_dir  = g_strdup(fw_dir);
943         rom->fw_file = g_strdup(file);
944     }
945     rom->addr     = addr;
946     rom->romsize  = lseek(fd, 0, SEEK_END);
947     if (rom->romsize == -1) {
948         fprintf(stderr, "rom: file %-20s: get size error: %s\n",
949                 rom->name, strerror(errno));
950         goto err;
951     }
952 
953     rom->datasize = rom->romsize;
954     rom->data     = g_malloc0(rom->datasize);
955     lseek(fd, 0, SEEK_SET);
956     rc = read(fd, rom->data, rom->datasize);
957     if (rc != rom->datasize) {
958         fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
959                 rom->name, rc, rom->datasize);
960         goto err;
961     }
962     close(fd);
963     rom_insert(rom);
964     if (rom->fw_file && fw_cfg) {
965         const char *basename;
966         char fw_file_name[FW_CFG_MAX_FILE_PATH];
967         void *data;
968 
969         basename = strrchr(rom->fw_file, '/');
970         if (basename) {
971             basename++;
972         } else {
973             basename = rom->fw_file;
974         }
975         snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
976                  basename);
977         snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
978 
979         if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
980             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
981         } else {
982             data = rom->data;
983         }
984 
985         fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
986     } else {
987         if (mr) {
988             rom->mr = mr;
989             snprintf(devpath, sizeof(devpath), "/rom@%s", file);
990         } else {
991             snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
992         }
993     }
994 
995     add_boot_device_path(bootindex, NULL, devpath);
996     return 0;
997 
998 err:
999     if (fd != -1)
1000         close(fd);
1001 
1002     rom_free(rom);
1003     return -1;
1004 }
1005 
1006 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1007                    size_t max_len, hwaddr addr, const char *fw_file_name,
1008                    FWCfgCallback fw_callback, void *callback_opaque,
1009                    AddressSpace *as, bool read_only)
1010 {
1011     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1012     Rom *rom;
1013     MemoryRegion *mr = NULL;
1014 
1015     rom           = g_malloc0(sizeof(*rom));
1016     rom->name     = g_strdup(name);
1017     rom->as       = as;
1018     rom->addr     = addr;
1019     rom->romsize  = max_len ? max_len : len;
1020     rom->datasize = len;
1021     rom->data     = g_malloc0(rom->datasize);
1022     memcpy(rom->data, blob, len);
1023     rom_insert(rom);
1024     if (fw_file_name && fw_cfg) {
1025         char devpath[100];
1026         void *data;
1027 
1028         if (read_only) {
1029             snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1030         } else {
1031             snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1032         }
1033 
1034         if (mc->rom_file_has_mr) {
1035             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1036             mr = rom->mr;
1037         } else {
1038             data = rom->data;
1039         }
1040 
1041         fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1042                                  fw_callback, NULL, callback_opaque,
1043                                  data, rom->datasize, read_only);
1044     }
1045     return mr;
1046 }
1047 
1048 /* This function is specific for elf program because we don't need to allocate
1049  * all the rom. We just allocate the first part and the rest is just zeros. This
1050  * is why romsize and datasize are different. Also, this function seize the
1051  * memory ownership of "data", so we don't have to allocate and copy the buffer.
1052  */
1053 int rom_add_elf_program(const char *name, void *data, size_t datasize,
1054                         size_t romsize, hwaddr addr, AddressSpace *as)
1055 {
1056     Rom *rom;
1057 
1058     rom           = g_malloc0(sizeof(*rom));
1059     rom->name     = g_strdup(name);
1060     rom->addr     = addr;
1061     rom->datasize = datasize;
1062     rom->romsize  = romsize;
1063     rom->data     = data;
1064     rom->as       = as;
1065     rom_insert(rom);
1066     return 0;
1067 }
1068 
1069 int rom_add_vga(const char *file)
1070 {
1071     return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1072 }
1073 
1074 int rom_add_option(const char *file, int32_t bootindex)
1075 {
1076     return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1077 }
1078 
1079 static void rom_reset(void *unused)
1080 {
1081     Rom *rom;
1082 
1083     QTAILQ_FOREACH(rom, &roms, next) {
1084         if (rom->fw_file) {
1085             continue;
1086         }
1087         if (rom->data == NULL) {
1088             continue;
1089         }
1090         if (rom->mr) {
1091             void *host = memory_region_get_ram_ptr(rom->mr);
1092             memcpy(host, rom->data, rom->datasize);
1093         } else {
1094             address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1095                                     rom->data, rom->datasize);
1096         }
1097         if (rom->isrom) {
1098             /* rom needs to be written only once */
1099             g_free(rom->data);
1100             rom->data = NULL;
1101         }
1102         /*
1103          * The rom loader is really on the same level as firmware in the guest
1104          * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1105          * that the instruction cache for that new region is clear, so that the
1106          * CPU definitely fetches its instructions from the just written data.
1107          */
1108         cpu_flush_icache_range(rom->addr, rom->datasize);
1109     }
1110 }
1111 
1112 int rom_check_and_register_reset(void)
1113 {
1114     hwaddr addr = 0;
1115     MemoryRegionSection section;
1116     Rom *rom;
1117     AddressSpace *as = NULL;
1118 
1119     QTAILQ_FOREACH(rom, &roms, next) {
1120         if (rom->fw_file) {
1121             continue;
1122         }
1123         if (!rom->mr) {
1124             if ((addr > rom->addr) && (as == rom->as)) {
1125                 fprintf(stderr, "rom: requested regions overlap "
1126                         "(rom %s. free=0x" TARGET_FMT_plx
1127                         ", addr=0x" TARGET_FMT_plx ")\n",
1128                         rom->name, addr, rom->addr);
1129                 return -1;
1130             }
1131             addr  = rom->addr;
1132             addr += rom->romsize;
1133             as = rom->as;
1134         }
1135         section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1136                                      rom->addr, 1);
1137         rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1138         memory_region_unref(section.mr);
1139     }
1140     qemu_register_reset(rom_reset, NULL);
1141     roms_loaded = 1;
1142     return 0;
1143 }
1144 
1145 void rom_set_fw(FWCfgState *f)
1146 {
1147     fw_cfg = f;
1148 }
1149 
1150 void rom_set_order_override(int order)
1151 {
1152     if (!fw_cfg)
1153         return;
1154     fw_cfg_set_order_override(fw_cfg, order);
1155 }
1156 
1157 void rom_reset_order_override(void)
1158 {
1159     if (!fw_cfg)
1160         return;
1161     fw_cfg_reset_order_override(fw_cfg);
1162 }
1163 
1164 void rom_transaction_begin(void)
1165 {
1166     Rom *rom;
1167 
1168     /* Ignore ROMs added without the transaction API */
1169     QTAILQ_FOREACH(rom, &roms, next) {
1170         rom->committed = true;
1171     }
1172 }
1173 
1174 void rom_transaction_end(bool commit)
1175 {
1176     Rom *rom;
1177     Rom *tmp;
1178 
1179     QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1180         if (rom->committed) {
1181             continue;
1182         }
1183         if (commit) {
1184             rom->committed = true;
1185         } else {
1186             QTAILQ_REMOVE(&roms, rom, next);
1187             rom_free(rom);
1188         }
1189     }
1190 }
1191 
1192 static Rom *find_rom(hwaddr addr, size_t size)
1193 {
1194     Rom *rom;
1195 
1196     QTAILQ_FOREACH(rom, &roms, next) {
1197         if (rom->fw_file) {
1198             continue;
1199         }
1200         if (rom->mr) {
1201             continue;
1202         }
1203         if (rom->addr > addr) {
1204             continue;
1205         }
1206         if (rom->addr + rom->romsize < addr + size) {
1207             continue;
1208         }
1209         return rom;
1210     }
1211     return NULL;
1212 }
1213 
1214 /*
1215  * Copies memory from registered ROMs to dest. Any memory that is contained in
1216  * a ROM between addr and addr + size is copied. Note that this can involve
1217  * multiple ROMs, which need not start at addr and need not end at addr + size.
1218  */
1219 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1220 {
1221     hwaddr end = addr + size;
1222     uint8_t *s, *d = dest;
1223     size_t l = 0;
1224     Rom *rom;
1225 
1226     QTAILQ_FOREACH(rom, &roms, next) {
1227         if (rom->fw_file) {
1228             continue;
1229         }
1230         if (rom->mr) {
1231             continue;
1232         }
1233         if (rom->addr + rom->romsize < addr) {
1234             continue;
1235         }
1236         if (rom->addr > end) {
1237             break;
1238         }
1239 
1240         d = dest + (rom->addr - addr);
1241         s = rom->data;
1242         l = rom->datasize;
1243 
1244         if ((d + l) > (dest + size)) {
1245             l = dest - d;
1246         }
1247 
1248         if (l > 0) {
1249             memcpy(d, s, l);
1250         }
1251 
1252         if (rom->romsize > rom->datasize) {
1253             /* If datasize is less than romsize, it means that we didn't
1254              * allocate all the ROM because the trailing data are only zeros.
1255              */
1256 
1257             d += l;
1258             l = rom->romsize - rom->datasize;
1259 
1260             if ((d + l) > (dest + size)) {
1261                 /* Rom size doesn't fit in the destination area. Adjust to avoid
1262                  * overflow.
1263                  */
1264                 l = dest - d;
1265             }
1266 
1267             if (l > 0) {
1268                 memset(d, 0x0, l);
1269             }
1270         }
1271     }
1272 
1273     return (d + l) - dest;
1274 }
1275 
1276 void *rom_ptr(hwaddr addr, size_t size)
1277 {
1278     Rom *rom;
1279 
1280     rom = find_rom(addr, size);
1281     if (!rom || !rom->data)
1282         return NULL;
1283     return rom->data + (addr - rom->addr);
1284 }
1285 
1286 void hmp_info_roms(Monitor *mon, const QDict *qdict)
1287 {
1288     Rom *rom;
1289 
1290     QTAILQ_FOREACH(rom, &roms, next) {
1291         if (rom->mr) {
1292             monitor_printf(mon, "%s"
1293                            " size=0x%06zx name=\"%s\"\n",
1294                            memory_region_name(rom->mr),
1295                            rom->romsize,
1296                            rom->name);
1297         } else if (!rom->fw_file) {
1298             monitor_printf(mon, "addr=" TARGET_FMT_plx
1299                            " size=0x%06zx mem=%s name=\"%s\"\n",
1300                            rom->addr, rom->romsize,
1301                            rom->isrom ? "rom" : "ram",
1302                            rom->name);
1303         } else {
1304             monitor_printf(mon, "fw=%s/%s"
1305                            " size=0x%06zx name=\"%s\"\n",
1306                            rom->fw_dir,
1307                            rom->fw_file,
1308                            rom->romsize,
1309                            rom->name);
1310         }
1311     }
1312 }
1313 
1314 typedef enum HexRecord HexRecord;
1315 enum HexRecord {
1316     DATA_RECORD = 0,
1317     EOF_RECORD,
1318     EXT_SEG_ADDR_RECORD,
1319     START_SEG_ADDR_RECORD,
1320     EXT_LINEAR_ADDR_RECORD,
1321     START_LINEAR_ADDR_RECORD,
1322 };
1323 
1324 /* Each record contains a 16-bit address which is combined with the upper 16
1325  * bits of the implicit "next address" to form a 32-bit address.
1326  */
1327 #define NEXT_ADDR_MASK 0xffff0000
1328 
1329 #define DATA_FIELD_MAX_LEN 0xff
1330 #define LEN_EXCEPT_DATA 0x5
1331 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1332  *       sizeof(checksum) */
1333 typedef struct {
1334     uint8_t byte_count;
1335     uint16_t address;
1336     uint8_t record_type;
1337     uint8_t data[DATA_FIELD_MAX_LEN];
1338     uint8_t checksum;
1339 } HexLine;
1340 
1341 /* return 0 or -1 if error */
1342 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1343                          uint32_t *index, const bool in_process)
1344 {
1345     /* +-------+---------------+-------+---------------------+--------+
1346      * | byte  |               |record |                     |        |
1347      * | count |    address    | type  |        data         |checksum|
1348      * +-------+---------------+-------+---------------------+--------+
1349      * ^       ^               ^       ^                     ^        ^
1350      * |1 byte |    2 bytes    |1 byte |     0-255 bytes     | 1 byte |
1351      */
1352     uint8_t value = 0;
1353     uint32_t idx = *index;
1354     /* ignore space */
1355     if (g_ascii_isspace(c)) {
1356         return true;
1357     }
1358     if (!g_ascii_isxdigit(c) || !in_process) {
1359         return false;
1360     }
1361     value = g_ascii_xdigit_value(c);
1362     value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1363     if (idx < 2) {
1364         line->byte_count |= value;
1365     } else if (2 <= idx && idx < 6) {
1366         line->address <<= 4;
1367         line->address += g_ascii_xdigit_value(c);
1368     } else if (6 <= idx && idx < 8) {
1369         line->record_type |= value;
1370     } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1371         line->data[(idx - 8) >> 1] |= value;
1372     } else if (8 + 2 * line->byte_count <= idx &&
1373                idx < 10 + 2 * line->byte_count) {
1374         line->checksum |= value;
1375     } else {
1376         return false;
1377     }
1378     *our_checksum += value;
1379     ++(*index);
1380     return true;
1381 }
1382 
1383 typedef struct {
1384     const char *filename;
1385     HexLine line;
1386     uint8_t *bin_buf;
1387     hwaddr *start_addr;
1388     int total_size;
1389     uint32_t next_address_to_write;
1390     uint32_t current_address;
1391     uint32_t current_rom_index;
1392     uint32_t rom_start_address;
1393     AddressSpace *as;
1394 } HexParser;
1395 
1396 /* return size or -1 if error */
1397 static int handle_record_type(HexParser *parser)
1398 {
1399     HexLine *line = &(parser->line);
1400     switch (line->record_type) {
1401     case DATA_RECORD:
1402         parser->current_address =
1403             (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1404         /* verify this is a contiguous block of memory */
1405         if (parser->current_address != parser->next_address_to_write) {
1406             if (parser->current_rom_index != 0) {
1407                 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1408                                       parser->current_rom_index,
1409                                       parser->rom_start_address, parser->as);
1410             }
1411             parser->rom_start_address = parser->current_address;
1412             parser->current_rom_index = 0;
1413         }
1414 
1415         /* copy from line buffer to output bin_buf */
1416         memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1417                line->byte_count);
1418         parser->current_rom_index += line->byte_count;
1419         parser->total_size += line->byte_count;
1420         /* save next address to write */
1421         parser->next_address_to_write =
1422             parser->current_address + line->byte_count;
1423         break;
1424 
1425     case EOF_RECORD:
1426         if (parser->current_rom_index != 0) {
1427             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1428                                   parser->current_rom_index,
1429                                   parser->rom_start_address, parser->as);
1430         }
1431         return parser->total_size;
1432     case EXT_SEG_ADDR_RECORD:
1433     case EXT_LINEAR_ADDR_RECORD:
1434         if (line->byte_count != 2 && line->address != 0) {
1435             return -1;
1436         }
1437 
1438         if (parser->current_rom_index != 0) {
1439             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1440                                   parser->current_rom_index,
1441                                   parser->rom_start_address, parser->as);
1442         }
1443 
1444         /* save next address to write,
1445          * in case of non-contiguous block of memory */
1446         parser->next_address_to_write = (line->data[0] << 12) |
1447                                         (line->data[1] << 4);
1448         if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1449             parser->next_address_to_write <<= 12;
1450         }
1451 
1452         parser->rom_start_address = parser->next_address_to_write;
1453         parser->current_rom_index = 0;
1454         break;
1455 
1456     case START_SEG_ADDR_RECORD:
1457         if (line->byte_count != 4 && line->address != 0) {
1458             return -1;
1459         }
1460 
1461         /* x86 16-bit CS:IP segmented addressing */
1462         *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1463                                 ((line->data[2] << 8) | line->data[3]);
1464         break;
1465 
1466     case START_LINEAR_ADDR_RECORD:
1467         if (line->byte_count != 4 && line->address != 0) {
1468             return -1;
1469         }
1470 
1471         *(parser->start_addr) = ldl_be_p(line->data);
1472         break;
1473 
1474     default:
1475         return -1;
1476     }
1477 
1478     return parser->total_size;
1479 }
1480 
1481 /* return size or -1 if error */
1482 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1483                           size_t hex_blob_size, AddressSpace *as)
1484 {
1485     bool in_process = false; /* avoid re-enter and
1486                               * check whether record begin with ':' */
1487     uint8_t *end = hex_blob + hex_blob_size;
1488     uint8_t our_checksum = 0;
1489     uint32_t record_index = 0;
1490     HexParser parser = {
1491         .filename = filename,
1492         .bin_buf = g_malloc(hex_blob_size),
1493         .start_addr = addr,
1494         .as = as,
1495     };
1496 
1497     rom_transaction_begin();
1498 
1499     for (; hex_blob < end; ++hex_blob) {
1500         switch (*hex_blob) {
1501         case '\r':
1502         case '\n':
1503             if (!in_process) {
1504                 break;
1505             }
1506 
1507             in_process = false;
1508             if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1509                     record_index ||
1510                 our_checksum != 0) {
1511                 parser.total_size = -1;
1512                 goto out;
1513             }
1514 
1515             if (handle_record_type(&parser) == -1) {
1516                 parser.total_size = -1;
1517                 goto out;
1518             }
1519             break;
1520 
1521         /* start of a new record. */
1522         case ':':
1523             memset(&parser.line, 0, sizeof(HexLine));
1524             in_process = true;
1525             record_index = 0;
1526             break;
1527 
1528         /* decoding lines */
1529         default:
1530             if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1531                               &record_index, in_process)) {
1532                 parser.total_size = -1;
1533                 goto out;
1534             }
1535             break;
1536         }
1537     }
1538 
1539 out:
1540     g_free(parser.bin_buf);
1541     rom_transaction_end(parser.total_size != -1);
1542     return parser.total_size;
1543 }
1544 
1545 /* return size or -1 if error */
1546 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as)
1547 {
1548     gsize hex_blob_size;
1549     gchar *hex_blob;
1550     int total_size = 0;
1551 
1552     if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1553         return -1;
1554     }
1555 
1556     total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1557                                 hex_blob_size, as);
1558 
1559     g_free(hex_blob);
1560     return total_size;
1561 }
1562