1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "hw/hw.h" 46 #include "disas/disas.h" 47 #include "monitor/monitor.h" 48 #include "sysemu/sysemu.h" 49 #include "uboot_image.h" 50 #include "hw/loader.h" 51 #include "hw/nvram/fw_cfg.h" 52 #include "exec/memory.h" 53 #include "exec/address-spaces.h" 54 55 #include <zlib.h> 56 57 bool rom_file_in_ram = true; 58 59 static int roms_loaded; 60 61 /* return the size or -1 if error */ 62 int get_image_size(const char *filename) 63 { 64 int fd, size; 65 fd = open(filename, O_RDONLY | O_BINARY); 66 if (fd < 0) 67 return -1; 68 size = lseek(fd, 0, SEEK_END); 69 close(fd); 70 return size; 71 } 72 73 /* return the size or -1 if error */ 74 /* deprecated, because caller does not specify buffer size! */ 75 int load_image(const char *filename, uint8_t *addr) 76 { 77 int fd, size; 78 fd = open(filename, O_RDONLY | O_BINARY); 79 if (fd < 0) 80 return -1; 81 size = lseek(fd, 0, SEEK_END); 82 lseek(fd, 0, SEEK_SET); 83 if (read(fd, addr, size) != size) { 84 close(fd); 85 return -1; 86 } 87 close(fd); 88 return size; 89 } 90 91 /* read()-like version */ 92 ssize_t read_targphys(const char *name, 93 int fd, hwaddr dst_addr, size_t nbytes) 94 { 95 uint8_t *buf; 96 ssize_t did; 97 98 buf = g_malloc(nbytes); 99 did = read(fd, buf, nbytes); 100 if (did > 0) 101 rom_add_blob_fixed("read", buf, did, dst_addr); 102 g_free(buf); 103 return did; 104 } 105 106 /* return the size or -1 if error */ 107 int load_image_targphys(const char *filename, 108 hwaddr addr, uint64_t max_sz) 109 { 110 int size; 111 112 size = get_image_size(filename); 113 if (size > max_sz) { 114 return -1; 115 } 116 if (size > 0) { 117 rom_add_file_fixed(filename, addr, -1); 118 } 119 return size; 120 } 121 122 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 123 const char *source) 124 { 125 const char *nulp; 126 char *ptr; 127 128 if (buf_size <= 0) return; 129 nulp = memchr(source, 0, buf_size); 130 if (nulp) { 131 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 132 } else { 133 rom_add_blob_fixed(name, source, buf_size, dest); 134 ptr = rom_ptr(dest + buf_size - 1); 135 *ptr = 0; 136 } 137 } 138 139 /* A.OUT loader */ 140 141 struct exec 142 { 143 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 144 uint32_t a_text; /* length of text, in bytes */ 145 uint32_t a_data; /* length of data, in bytes */ 146 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 147 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 148 uint32_t a_entry; /* start address */ 149 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 150 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 151 }; 152 153 static void bswap_ahdr(struct exec *e) 154 { 155 bswap32s(&e->a_info); 156 bswap32s(&e->a_text); 157 bswap32s(&e->a_data); 158 bswap32s(&e->a_bss); 159 bswap32s(&e->a_syms); 160 bswap32s(&e->a_entry); 161 bswap32s(&e->a_trsize); 162 bswap32s(&e->a_drsize); 163 } 164 165 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 166 #define OMAGIC 0407 167 #define NMAGIC 0410 168 #define ZMAGIC 0413 169 #define QMAGIC 0314 170 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 171 #define N_TXTOFF(x) \ 172 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 173 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 174 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 175 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 176 177 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 178 179 #define N_DATADDR(x, target_page_size) \ 180 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 181 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 182 183 184 int load_aout(const char *filename, hwaddr addr, int max_sz, 185 int bswap_needed, hwaddr target_page_size) 186 { 187 int fd; 188 ssize_t size, ret; 189 struct exec e; 190 uint32_t magic; 191 192 fd = open(filename, O_RDONLY | O_BINARY); 193 if (fd < 0) 194 return -1; 195 196 size = read(fd, &e, sizeof(e)); 197 if (size < 0) 198 goto fail; 199 200 if (bswap_needed) { 201 bswap_ahdr(&e); 202 } 203 204 magic = N_MAGIC(e); 205 switch (magic) { 206 case ZMAGIC: 207 case QMAGIC: 208 case OMAGIC: 209 if (e.a_text + e.a_data > max_sz) 210 goto fail; 211 lseek(fd, N_TXTOFF(e), SEEK_SET); 212 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 213 if (size < 0) 214 goto fail; 215 break; 216 case NMAGIC: 217 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 218 goto fail; 219 lseek(fd, N_TXTOFF(e), SEEK_SET); 220 size = read_targphys(filename, fd, addr, e.a_text); 221 if (size < 0) 222 goto fail; 223 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 224 e.a_data); 225 if (ret < 0) 226 goto fail; 227 size += ret; 228 break; 229 default: 230 goto fail; 231 } 232 close(fd); 233 return size; 234 fail: 235 close(fd); 236 return -1; 237 } 238 239 /* ELF loader */ 240 241 static void *load_at(int fd, int offset, int size) 242 { 243 void *ptr; 244 if (lseek(fd, offset, SEEK_SET) < 0) 245 return NULL; 246 ptr = g_malloc(size); 247 if (read(fd, ptr, size) != size) { 248 g_free(ptr); 249 return NULL; 250 } 251 return ptr; 252 } 253 254 #ifdef ELF_CLASS 255 #undef ELF_CLASS 256 #endif 257 258 #define ELF_CLASS ELFCLASS32 259 #include "elf.h" 260 261 #define SZ 32 262 #define elf_word uint32_t 263 #define elf_sword int32_t 264 #define bswapSZs bswap32s 265 #include "hw/elf_ops.h" 266 267 #undef elfhdr 268 #undef elf_phdr 269 #undef elf_shdr 270 #undef elf_sym 271 #undef elf_note 272 #undef elf_word 273 #undef elf_sword 274 #undef bswapSZs 275 #undef SZ 276 #define elfhdr elf64_hdr 277 #define elf_phdr elf64_phdr 278 #define elf_note elf64_note 279 #define elf_shdr elf64_shdr 280 #define elf_sym elf64_sym 281 #define elf_word uint64_t 282 #define elf_sword int64_t 283 #define bswapSZs bswap64s 284 #define SZ 64 285 #include "hw/elf_ops.h" 286 287 const char *load_elf_strerror(int error) 288 { 289 switch (error) { 290 case 0: 291 return "No error"; 292 case ELF_LOAD_FAILED: 293 return "Failed to load ELF"; 294 case ELF_LOAD_NOT_ELF: 295 return "The image is not ELF"; 296 case ELF_LOAD_WRONG_ARCH: 297 return "The image is from incompatible architecture"; 298 case ELF_LOAD_WRONG_ENDIAN: 299 return "The image has incorrect endianness"; 300 default: 301 return "Unknown error"; 302 } 303 } 304 305 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 306 int load_elf(const char *filename, uint64_t (*translate_fn)(void *, uint64_t), 307 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 308 uint64_t *highaddr, int big_endian, int elf_machine, int clear_lsb) 309 { 310 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; 311 uint8_t e_ident[EI_NIDENT]; 312 313 fd = open(filename, O_RDONLY | O_BINARY); 314 if (fd < 0) { 315 perror(filename); 316 return -1; 317 } 318 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 319 goto fail; 320 if (e_ident[0] != ELFMAG0 || 321 e_ident[1] != ELFMAG1 || 322 e_ident[2] != ELFMAG2 || 323 e_ident[3] != ELFMAG3) { 324 ret = ELF_LOAD_NOT_ELF; 325 goto fail; 326 } 327 #ifdef HOST_WORDS_BIGENDIAN 328 data_order = ELFDATA2MSB; 329 #else 330 data_order = ELFDATA2LSB; 331 #endif 332 must_swab = data_order != e_ident[EI_DATA]; 333 if (big_endian) { 334 target_data_order = ELFDATA2MSB; 335 } else { 336 target_data_order = ELFDATA2LSB; 337 } 338 339 if (target_data_order != e_ident[EI_DATA]) { 340 ret = ELF_LOAD_WRONG_ENDIAN; 341 goto fail; 342 } 343 344 lseek(fd, 0, SEEK_SET); 345 if (e_ident[EI_CLASS] == ELFCLASS64) { 346 ret = load_elf64(filename, fd, translate_fn, translate_opaque, must_swab, 347 pentry, lowaddr, highaddr, elf_machine, clear_lsb); 348 } else { 349 ret = load_elf32(filename, fd, translate_fn, translate_opaque, must_swab, 350 pentry, lowaddr, highaddr, elf_machine, clear_lsb); 351 } 352 353 fail: 354 close(fd); 355 return ret; 356 } 357 358 static void bswap_uboot_header(uboot_image_header_t *hdr) 359 { 360 #ifndef HOST_WORDS_BIGENDIAN 361 bswap32s(&hdr->ih_magic); 362 bswap32s(&hdr->ih_hcrc); 363 bswap32s(&hdr->ih_time); 364 bswap32s(&hdr->ih_size); 365 bswap32s(&hdr->ih_load); 366 bswap32s(&hdr->ih_ep); 367 bswap32s(&hdr->ih_dcrc); 368 #endif 369 } 370 371 372 #define ZALLOC_ALIGNMENT 16 373 374 static void *zalloc(void *x, unsigned items, unsigned size) 375 { 376 void *p; 377 378 size *= items; 379 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 380 381 p = g_malloc(size); 382 383 return (p); 384 } 385 386 static void zfree(void *x, void *addr) 387 { 388 g_free(addr); 389 } 390 391 392 #define HEAD_CRC 2 393 #define EXTRA_FIELD 4 394 #define ORIG_NAME 8 395 #define COMMENT 0x10 396 #define RESERVED 0xe0 397 398 #define DEFLATED 8 399 400 /* This is the usual maximum in uboot, so if a uImage overflows this, it would 401 * overflow on real hardware too. */ 402 #define UBOOT_MAX_GUNZIP_BYTES (64 << 20) 403 404 static ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, 405 size_t srclen) 406 { 407 z_stream s; 408 ssize_t dstbytes; 409 int r, i, flags; 410 411 /* skip header */ 412 i = 10; 413 flags = src[3]; 414 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 415 puts ("Error: Bad gzipped data\n"); 416 return -1; 417 } 418 if ((flags & EXTRA_FIELD) != 0) 419 i = 12 + src[10] + (src[11] << 8); 420 if ((flags & ORIG_NAME) != 0) 421 while (src[i++] != 0) 422 ; 423 if ((flags & COMMENT) != 0) 424 while (src[i++] != 0) 425 ; 426 if ((flags & HEAD_CRC) != 0) 427 i += 2; 428 if (i >= srclen) { 429 puts ("Error: gunzip out of data in header\n"); 430 return -1; 431 } 432 433 s.zalloc = zalloc; 434 s.zfree = zfree; 435 436 r = inflateInit2(&s, -MAX_WBITS); 437 if (r != Z_OK) { 438 printf ("Error: inflateInit2() returned %d\n", r); 439 return (-1); 440 } 441 s.next_in = src + i; 442 s.avail_in = srclen - i; 443 s.next_out = dst; 444 s.avail_out = dstlen; 445 r = inflate(&s, Z_FINISH); 446 if (r != Z_OK && r != Z_STREAM_END) { 447 printf ("Error: inflate() returned %d\n", r); 448 return -1; 449 } 450 dstbytes = s.next_out - (unsigned char *) dst; 451 inflateEnd(&s); 452 453 return dstbytes; 454 } 455 456 /* Load a U-Boot image. */ 457 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 458 int *is_linux, uint8_t image_type) 459 { 460 int fd; 461 int size; 462 hwaddr address; 463 uboot_image_header_t h; 464 uboot_image_header_t *hdr = &h; 465 uint8_t *data = NULL; 466 int ret = -1; 467 int do_uncompress = 0; 468 469 fd = open(filename, O_RDONLY | O_BINARY); 470 if (fd < 0) 471 return -1; 472 473 size = read(fd, hdr, sizeof(uboot_image_header_t)); 474 if (size < 0) 475 goto out; 476 477 bswap_uboot_header(hdr); 478 479 if (hdr->ih_magic != IH_MAGIC) 480 goto out; 481 482 if (hdr->ih_type != image_type) { 483 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 484 image_type); 485 goto out; 486 } 487 488 /* TODO: Implement other image types. */ 489 switch (hdr->ih_type) { 490 case IH_TYPE_KERNEL: 491 address = hdr->ih_load; 492 if (loadaddr) { 493 *loadaddr = hdr->ih_load; 494 } 495 496 switch (hdr->ih_comp) { 497 case IH_COMP_NONE: 498 break; 499 case IH_COMP_GZIP: 500 do_uncompress = 1; 501 break; 502 default: 503 fprintf(stderr, 504 "Unable to load u-boot images with compression type %d\n", 505 hdr->ih_comp); 506 goto out; 507 } 508 509 if (ep) { 510 *ep = hdr->ih_ep; 511 } 512 513 /* TODO: Check CPU type. */ 514 if (is_linux) { 515 if (hdr->ih_os == IH_OS_LINUX) { 516 *is_linux = 1; 517 } else { 518 *is_linux = 0; 519 } 520 } 521 522 break; 523 case IH_TYPE_RAMDISK: 524 address = *loadaddr; 525 break; 526 default: 527 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 528 goto out; 529 } 530 531 data = g_malloc(hdr->ih_size); 532 533 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 534 fprintf(stderr, "Error reading file\n"); 535 goto out; 536 } 537 538 if (do_uncompress) { 539 uint8_t *compressed_data; 540 size_t max_bytes; 541 ssize_t bytes; 542 543 compressed_data = data; 544 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 545 data = g_malloc(max_bytes); 546 547 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 548 g_free(compressed_data); 549 if (bytes < 0) { 550 fprintf(stderr, "Unable to decompress gzipped image!\n"); 551 goto out; 552 } 553 hdr->ih_size = bytes; 554 } 555 556 rom_add_blob_fixed(filename, data, hdr->ih_size, address); 557 558 ret = hdr->ih_size; 559 560 out: 561 if (data) 562 g_free(data); 563 close(fd); 564 return ret; 565 } 566 567 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 568 int *is_linux) 569 { 570 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL); 571 } 572 573 /* Load a ramdisk. */ 574 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 575 { 576 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK); 577 } 578 579 /* 580 * Functions for reboot-persistent memory regions. 581 * - used for vga bios and option roms. 582 * - also linux kernel (-kernel / -initrd). 583 */ 584 585 typedef struct Rom Rom; 586 587 struct Rom { 588 char *name; 589 char *path; 590 591 /* datasize is the amount of memory allocated in "data". If datasize is less 592 * than romsize, it means that the area from datasize to romsize is filled 593 * with zeros. 594 */ 595 size_t romsize; 596 size_t datasize; 597 598 uint8_t *data; 599 MemoryRegion *mr; 600 int isrom; 601 char *fw_dir; 602 char *fw_file; 603 604 hwaddr addr; 605 QTAILQ_ENTRY(Rom) next; 606 }; 607 608 static FWCfgState *fw_cfg; 609 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 610 611 static void rom_insert(Rom *rom) 612 { 613 Rom *item; 614 615 if (roms_loaded) { 616 hw_error ("ROM images must be loaded at startup\n"); 617 } 618 619 /* list is ordered by load address */ 620 QTAILQ_FOREACH(item, &roms, next) { 621 if (rom->addr >= item->addr) 622 continue; 623 QTAILQ_INSERT_BEFORE(item, rom, next); 624 return; 625 } 626 QTAILQ_INSERT_TAIL(&roms, rom, next); 627 } 628 629 static void *rom_set_mr(Rom *rom, Object *owner, const char *name) 630 { 631 void *data; 632 633 rom->mr = g_malloc(sizeof(*rom->mr)); 634 memory_region_init_ram(rom->mr, owner, name, rom->datasize); 635 memory_region_set_readonly(rom->mr, true); 636 vmstate_register_ram_global(rom->mr); 637 638 data = memory_region_get_ram_ptr(rom->mr); 639 memcpy(data, rom->data, rom->datasize); 640 641 return data; 642 } 643 644 int rom_add_file(const char *file, const char *fw_dir, 645 hwaddr addr, int32_t bootindex) 646 { 647 Rom *rom; 648 int rc, fd = -1; 649 char devpath[100]; 650 651 rom = g_malloc0(sizeof(*rom)); 652 rom->name = g_strdup(file); 653 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 654 if (rom->path == NULL) { 655 rom->path = g_strdup(file); 656 } 657 658 fd = open(rom->path, O_RDONLY | O_BINARY); 659 if (fd == -1) { 660 fprintf(stderr, "Could not open option rom '%s': %s\n", 661 rom->path, strerror(errno)); 662 goto err; 663 } 664 665 if (fw_dir) { 666 rom->fw_dir = g_strdup(fw_dir); 667 rom->fw_file = g_strdup(file); 668 } 669 rom->addr = addr; 670 rom->romsize = lseek(fd, 0, SEEK_END); 671 rom->datasize = rom->romsize; 672 rom->data = g_malloc0(rom->datasize); 673 lseek(fd, 0, SEEK_SET); 674 rc = read(fd, rom->data, rom->datasize); 675 if (rc != rom->datasize) { 676 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 677 rom->name, rc, rom->datasize); 678 goto err; 679 } 680 close(fd); 681 rom_insert(rom); 682 if (rom->fw_file && fw_cfg) { 683 const char *basename; 684 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 685 void *data; 686 687 basename = strrchr(rom->fw_file, '/'); 688 if (basename) { 689 basename++; 690 } else { 691 basename = rom->fw_file; 692 } 693 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 694 basename); 695 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 696 697 if (rom_file_in_ram) { 698 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath); 699 } else { 700 data = rom->data; 701 } 702 703 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 704 } else { 705 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 706 } 707 708 add_boot_device_path(bootindex, NULL, devpath); 709 return 0; 710 711 err: 712 if (fd != -1) 713 close(fd); 714 g_free(rom->data); 715 g_free(rom->path); 716 g_free(rom->name); 717 g_free(rom); 718 return -1; 719 } 720 721 void *rom_add_blob(const char *name, const void *blob, size_t len, 722 hwaddr addr, const char *fw_file_name, 723 FWCfgReadCallback fw_callback, void *callback_opaque) 724 { 725 Rom *rom; 726 void *data = NULL; 727 728 rom = g_malloc0(sizeof(*rom)); 729 rom->name = g_strdup(name); 730 rom->addr = addr; 731 rom->romsize = len; 732 rom->datasize = len; 733 rom->data = g_malloc0(rom->datasize); 734 memcpy(rom->data, blob, len); 735 rom_insert(rom); 736 if (fw_file_name && fw_cfg) { 737 char devpath[100]; 738 739 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 740 741 if (rom_file_in_ram) { 742 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath); 743 } else { 744 data = rom->data; 745 } 746 747 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 748 fw_callback, callback_opaque, 749 data, rom->romsize); 750 } 751 return data; 752 } 753 754 /* This function is specific for elf program because we don't need to allocate 755 * all the rom. We just allocate the first part and the rest is just zeros. This 756 * is why romsize and datasize are different. Also, this function seize the 757 * memory ownership of "data", so we don't have to allocate and copy the buffer. 758 */ 759 int rom_add_elf_program(const char *name, void *data, size_t datasize, 760 size_t romsize, hwaddr addr) 761 { 762 Rom *rom; 763 764 rom = g_malloc0(sizeof(*rom)); 765 rom->name = g_strdup(name); 766 rom->addr = addr; 767 rom->datasize = datasize; 768 rom->romsize = romsize; 769 rom->data = data; 770 rom_insert(rom); 771 return 0; 772 } 773 774 int rom_add_vga(const char *file) 775 { 776 return rom_add_file(file, "vgaroms", 0, -1); 777 } 778 779 int rom_add_option(const char *file, int32_t bootindex) 780 { 781 return rom_add_file(file, "genroms", 0, bootindex); 782 } 783 784 static void rom_reset(void *unused) 785 { 786 Rom *rom; 787 788 QTAILQ_FOREACH(rom, &roms, next) { 789 if (rom->fw_file) { 790 continue; 791 } 792 if (rom->data == NULL) { 793 continue; 794 } 795 if (rom->mr) { 796 void *host = memory_region_get_ram_ptr(rom->mr); 797 memcpy(host, rom->data, rom->datasize); 798 } else { 799 cpu_physical_memory_write_rom(&address_space_memory, 800 rom->addr, rom->data, rom->datasize); 801 } 802 if (rom->isrom) { 803 /* rom needs to be written only once */ 804 g_free(rom->data); 805 rom->data = NULL; 806 } 807 /* 808 * The rom loader is really on the same level as firmware in the guest 809 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 810 * that the instruction cache for that new region is clear, so that the 811 * CPU definitely fetches its instructions from the just written data. 812 */ 813 cpu_flush_icache_range(rom->addr, rom->datasize); 814 } 815 } 816 817 int rom_load_all(void) 818 { 819 hwaddr addr = 0; 820 MemoryRegionSection section; 821 Rom *rom; 822 823 QTAILQ_FOREACH(rom, &roms, next) { 824 if (rom->fw_file) { 825 continue; 826 } 827 if (addr > rom->addr) { 828 fprintf(stderr, "rom: requested regions overlap " 829 "(rom %s. free=0x" TARGET_FMT_plx 830 ", addr=0x" TARGET_FMT_plx ")\n", 831 rom->name, addr, rom->addr); 832 return -1; 833 } 834 addr = rom->addr; 835 addr += rom->romsize; 836 section = memory_region_find(get_system_memory(), rom->addr, 1); 837 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 838 memory_region_unref(section.mr); 839 } 840 qemu_register_reset(rom_reset, NULL); 841 return 0; 842 } 843 844 void rom_load_done(void) 845 { 846 roms_loaded = 1; 847 } 848 849 void rom_set_fw(FWCfgState *f) 850 { 851 fw_cfg = f; 852 } 853 854 static Rom *find_rom(hwaddr addr) 855 { 856 Rom *rom; 857 858 QTAILQ_FOREACH(rom, &roms, next) { 859 if (rom->fw_file) { 860 continue; 861 } 862 if (rom->mr) { 863 continue; 864 } 865 if (rom->addr > addr) { 866 continue; 867 } 868 if (rom->addr + rom->romsize < addr) { 869 continue; 870 } 871 return rom; 872 } 873 return NULL; 874 } 875 876 /* 877 * Copies memory from registered ROMs to dest. Any memory that is contained in 878 * a ROM between addr and addr + size is copied. Note that this can involve 879 * multiple ROMs, which need not start at addr and need not end at addr + size. 880 */ 881 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 882 { 883 hwaddr end = addr + size; 884 uint8_t *s, *d = dest; 885 size_t l = 0; 886 Rom *rom; 887 888 QTAILQ_FOREACH(rom, &roms, next) { 889 if (rom->fw_file) { 890 continue; 891 } 892 if (rom->mr) { 893 continue; 894 } 895 if (rom->addr + rom->romsize < addr) { 896 continue; 897 } 898 if (rom->addr > end) { 899 break; 900 } 901 902 d = dest + (rom->addr - addr); 903 s = rom->data; 904 l = rom->datasize; 905 906 if ((d + l) > (dest + size)) { 907 l = dest - d; 908 } 909 910 if (l > 0) { 911 memcpy(d, s, l); 912 } 913 914 if (rom->romsize > rom->datasize) { 915 /* If datasize is less than romsize, it means that we didn't 916 * allocate all the ROM because the trailing data are only zeros. 917 */ 918 919 d += l; 920 l = rom->romsize - rom->datasize; 921 922 if ((d + l) > (dest + size)) { 923 /* Rom size doesn't fit in the destination area. Adjust to avoid 924 * overflow. 925 */ 926 l = dest - d; 927 } 928 929 if (l > 0) { 930 memset(d, 0x0, l); 931 } 932 } 933 } 934 935 return (d + l) - dest; 936 } 937 938 void *rom_ptr(hwaddr addr) 939 { 940 Rom *rom; 941 942 rom = find_rom(addr); 943 if (!rom || !rom->data) 944 return NULL; 945 return rom->data + (addr - rom->addr); 946 } 947 948 void do_info_roms(Monitor *mon, const QDict *qdict) 949 { 950 Rom *rom; 951 952 QTAILQ_FOREACH(rom, &roms, next) { 953 if (rom->mr) { 954 monitor_printf(mon, "%s" 955 " size=0x%06zx name=\"%s\"\n", 956 rom->mr->name, 957 rom->romsize, 958 rom->name); 959 } else if (!rom->fw_file) { 960 monitor_printf(mon, "addr=" TARGET_FMT_plx 961 " size=0x%06zx mem=%s name=\"%s\"\n", 962 rom->addr, rom->romsize, 963 rom->isrom ? "rom" : "ram", 964 rom->name); 965 } else { 966 monitor_printf(mon, "fw=%s/%s" 967 " size=0x%06zx name=\"%s\"\n", 968 rom->fw_dir, 969 rom->fw_file, 970 rom->romsize, 971 rom->name); 972 } 973 } 974 } 975