1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qemu-common.h" 47 #include "qapi/error.h" 48 #include "hw/hw.h" 49 #include "disas/disas.h" 50 #include "migration/vmstate.h" 51 #include "monitor/monitor.h" 52 #include "sysemu/reset.h" 53 #include "sysemu/sysemu.h" 54 #include "uboot_image.h" 55 #include "hw/loader.h" 56 #include "hw/nvram/fw_cfg.h" 57 #include "exec/memory.h" 58 #include "exec/address-spaces.h" 59 #include "hw/boards.h" 60 #include "qemu/cutils.h" 61 #include "sysemu/runstate.h" 62 63 #include <zlib.h> 64 65 static int roms_loaded; 66 67 /* return the size or -1 if error */ 68 int64_t get_image_size(const char *filename) 69 { 70 int fd; 71 int64_t size; 72 fd = open(filename, O_RDONLY | O_BINARY); 73 if (fd < 0) 74 return -1; 75 size = lseek(fd, 0, SEEK_END); 76 close(fd); 77 return size; 78 } 79 80 /* return the size or -1 if error */ 81 ssize_t load_image_size(const char *filename, void *addr, size_t size) 82 { 83 int fd; 84 ssize_t actsize, l = 0; 85 86 fd = open(filename, O_RDONLY | O_BINARY); 87 if (fd < 0) { 88 return -1; 89 } 90 91 while ((actsize = read(fd, addr + l, size - l)) > 0) { 92 l += actsize; 93 } 94 95 close(fd); 96 97 return actsize < 0 ? -1 : l; 98 } 99 100 /* read()-like version */ 101 ssize_t read_targphys(const char *name, 102 int fd, hwaddr dst_addr, size_t nbytes) 103 { 104 uint8_t *buf; 105 ssize_t did; 106 107 buf = g_malloc(nbytes); 108 did = read(fd, buf, nbytes); 109 if (did > 0) 110 rom_add_blob_fixed("read", buf, did, dst_addr); 111 g_free(buf); 112 return did; 113 } 114 115 int load_image_targphys(const char *filename, 116 hwaddr addr, uint64_t max_sz) 117 { 118 return load_image_targphys_as(filename, addr, max_sz, NULL); 119 } 120 121 /* return the size or -1 if error */ 122 int load_image_targphys_as(const char *filename, 123 hwaddr addr, uint64_t max_sz, AddressSpace *as) 124 { 125 int size; 126 127 size = get_image_size(filename); 128 if (size < 0 || size > max_sz) { 129 return -1; 130 } 131 if (size > 0) { 132 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 133 return -1; 134 } 135 } 136 return size; 137 } 138 139 int load_image_mr(const char *filename, MemoryRegion *mr) 140 { 141 int size; 142 143 if (!memory_access_is_direct(mr, false)) { 144 /* Can only load an image into RAM or ROM */ 145 return -1; 146 } 147 148 size = get_image_size(filename); 149 150 if (size < 0 || size > memory_region_size(mr)) { 151 return -1; 152 } 153 if (size > 0) { 154 if (rom_add_file_mr(filename, mr, -1) < 0) { 155 return -1; 156 } 157 } 158 return size; 159 } 160 161 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 162 const char *source) 163 { 164 const char *nulp; 165 char *ptr; 166 167 if (buf_size <= 0) return; 168 nulp = memchr(source, 0, buf_size); 169 if (nulp) { 170 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 171 } else { 172 rom_add_blob_fixed(name, source, buf_size, dest); 173 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 174 *ptr = 0; 175 } 176 } 177 178 /* A.OUT loader */ 179 180 struct exec 181 { 182 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 183 uint32_t a_text; /* length of text, in bytes */ 184 uint32_t a_data; /* length of data, in bytes */ 185 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 186 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 187 uint32_t a_entry; /* start address */ 188 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 189 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 190 }; 191 192 static void bswap_ahdr(struct exec *e) 193 { 194 bswap32s(&e->a_info); 195 bswap32s(&e->a_text); 196 bswap32s(&e->a_data); 197 bswap32s(&e->a_bss); 198 bswap32s(&e->a_syms); 199 bswap32s(&e->a_entry); 200 bswap32s(&e->a_trsize); 201 bswap32s(&e->a_drsize); 202 } 203 204 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 205 #define OMAGIC 0407 206 #define NMAGIC 0410 207 #define ZMAGIC 0413 208 #define QMAGIC 0314 209 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 210 #define N_TXTOFF(x) \ 211 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 212 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 213 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 214 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 215 216 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 217 218 #define N_DATADDR(x, target_page_size) \ 219 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 220 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 221 222 223 int load_aout(const char *filename, hwaddr addr, int max_sz, 224 int bswap_needed, hwaddr target_page_size) 225 { 226 int fd; 227 ssize_t size, ret; 228 struct exec e; 229 uint32_t magic; 230 231 fd = open(filename, O_RDONLY | O_BINARY); 232 if (fd < 0) 233 return -1; 234 235 size = read(fd, &e, sizeof(e)); 236 if (size < 0) 237 goto fail; 238 239 if (bswap_needed) { 240 bswap_ahdr(&e); 241 } 242 243 magic = N_MAGIC(e); 244 switch (magic) { 245 case ZMAGIC: 246 case QMAGIC: 247 case OMAGIC: 248 if (e.a_text + e.a_data > max_sz) 249 goto fail; 250 lseek(fd, N_TXTOFF(e), SEEK_SET); 251 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 252 if (size < 0) 253 goto fail; 254 break; 255 case NMAGIC: 256 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 257 goto fail; 258 lseek(fd, N_TXTOFF(e), SEEK_SET); 259 size = read_targphys(filename, fd, addr, e.a_text); 260 if (size < 0) 261 goto fail; 262 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 263 e.a_data); 264 if (ret < 0) 265 goto fail; 266 size += ret; 267 break; 268 default: 269 goto fail; 270 } 271 close(fd); 272 return size; 273 fail: 274 close(fd); 275 return -1; 276 } 277 278 /* ELF loader */ 279 280 static void *load_at(int fd, off_t offset, size_t size) 281 { 282 void *ptr; 283 if (lseek(fd, offset, SEEK_SET) < 0) 284 return NULL; 285 ptr = g_malloc(size); 286 if (read(fd, ptr, size) != size) { 287 g_free(ptr); 288 return NULL; 289 } 290 return ptr; 291 } 292 293 #ifdef ELF_CLASS 294 #undef ELF_CLASS 295 #endif 296 297 #define ELF_CLASS ELFCLASS32 298 #include "elf.h" 299 300 #define SZ 32 301 #define elf_word uint32_t 302 #define elf_sword int32_t 303 #define bswapSZs bswap32s 304 #include "hw/elf_ops.h" 305 306 #undef elfhdr 307 #undef elf_phdr 308 #undef elf_shdr 309 #undef elf_sym 310 #undef elf_rela 311 #undef elf_note 312 #undef elf_word 313 #undef elf_sword 314 #undef bswapSZs 315 #undef SZ 316 #define elfhdr elf64_hdr 317 #define elf_phdr elf64_phdr 318 #define elf_note elf64_note 319 #define elf_shdr elf64_shdr 320 #define elf_sym elf64_sym 321 #define elf_rela elf64_rela 322 #define elf_word uint64_t 323 #define elf_sword int64_t 324 #define bswapSZs bswap64s 325 #define SZ 64 326 #include "hw/elf_ops.h" 327 328 const char *load_elf_strerror(int error) 329 { 330 switch (error) { 331 case 0: 332 return "No error"; 333 case ELF_LOAD_FAILED: 334 return "Failed to load ELF"; 335 case ELF_LOAD_NOT_ELF: 336 return "The image is not ELF"; 337 case ELF_LOAD_WRONG_ARCH: 338 return "The image is from incompatible architecture"; 339 case ELF_LOAD_WRONG_ENDIAN: 340 return "The image has incorrect endianness"; 341 case ELF_LOAD_TOO_BIG: 342 return "The image segments are too big to load"; 343 default: 344 return "Unknown error"; 345 } 346 } 347 348 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 349 { 350 int fd; 351 uint8_t e_ident_local[EI_NIDENT]; 352 uint8_t *e_ident; 353 size_t hdr_size, off; 354 bool is64l; 355 356 if (!hdr) { 357 hdr = e_ident_local; 358 } 359 e_ident = hdr; 360 361 fd = open(filename, O_RDONLY | O_BINARY); 362 if (fd < 0) { 363 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 364 return; 365 } 366 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 367 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 368 goto fail; 369 } 370 if (e_ident[0] != ELFMAG0 || 371 e_ident[1] != ELFMAG1 || 372 e_ident[2] != ELFMAG2 || 373 e_ident[3] != ELFMAG3) { 374 error_setg(errp, "Bad ELF magic"); 375 goto fail; 376 } 377 378 is64l = e_ident[EI_CLASS] == ELFCLASS64; 379 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 380 if (is64) { 381 *is64 = is64l; 382 } 383 384 off = EI_NIDENT; 385 while (hdr != e_ident_local && off < hdr_size) { 386 size_t br = read(fd, hdr + off, hdr_size - off); 387 switch (br) { 388 case 0: 389 error_setg(errp, "File too short: %s", filename); 390 goto fail; 391 case -1: 392 error_setg_errno(errp, errno, "Failed to read file: %s", 393 filename); 394 goto fail; 395 } 396 off += br; 397 } 398 399 fail: 400 close(fd); 401 } 402 403 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 404 int load_elf(const char *filename, 405 uint64_t (*elf_note_fn)(void *, void *, bool), 406 uint64_t (*translate_fn)(void *, uint64_t), 407 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 408 uint64_t *highaddr, int big_endian, int elf_machine, 409 int clear_lsb, int data_swab) 410 { 411 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 412 pentry, lowaddr, highaddr, big_endian, elf_machine, 413 clear_lsb, data_swab, NULL); 414 } 415 416 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 417 int load_elf_as(const char *filename, 418 uint64_t (*elf_note_fn)(void *, void *, bool), 419 uint64_t (*translate_fn)(void *, uint64_t), 420 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 421 uint64_t *highaddr, int big_endian, int elf_machine, 422 int clear_lsb, int data_swab, AddressSpace *as) 423 { 424 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque, 425 pentry, lowaddr, highaddr, big_endian, elf_machine, 426 clear_lsb, data_swab, as, true); 427 } 428 429 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 430 int load_elf_ram(const char *filename, 431 uint64_t (*elf_note_fn)(void *, void *, bool), 432 uint64_t (*translate_fn)(void *, uint64_t), 433 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 434 uint64_t *highaddr, int big_endian, int elf_machine, 435 int clear_lsb, int data_swab, AddressSpace *as, 436 bool load_rom) 437 { 438 return load_elf_ram_sym(filename, elf_note_fn, 439 translate_fn, translate_opaque, 440 pentry, lowaddr, highaddr, big_endian, 441 elf_machine, clear_lsb, data_swab, as, 442 load_rom, NULL); 443 } 444 445 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 446 int load_elf_ram_sym(const char *filename, 447 uint64_t (*elf_note_fn)(void *, void *, bool), 448 uint64_t (*translate_fn)(void *, uint64_t), 449 void *translate_opaque, uint64_t *pentry, 450 uint64_t *lowaddr, uint64_t *highaddr, int big_endian, 451 int elf_machine, int clear_lsb, int data_swab, 452 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 453 { 454 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; 455 uint8_t e_ident[EI_NIDENT]; 456 457 fd = open(filename, O_RDONLY | O_BINARY); 458 if (fd < 0) { 459 perror(filename); 460 return -1; 461 } 462 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 463 goto fail; 464 if (e_ident[0] != ELFMAG0 || 465 e_ident[1] != ELFMAG1 || 466 e_ident[2] != ELFMAG2 || 467 e_ident[3] != ELFMAG3) { 468 ret = ELF_LOAD_NOT_ELF; 469 goto fail; 470 } 471 #ifdef HOST_WORDS_BIGENDIAN 472 data_order = ELFDATA2MSB; 473 #else 474 data_order = ELFDATA2LSB; 475 #endif 476 must_swab = data_order != e_ident[EI_DATA]; 477 if (big_endian) { 478 target_data_order = ELFDATA2MSB; 479 } else { 480 target_data_order = ELFDATA2LSB; 481 } 482 483 if (target_data_order != e_ident[EI_DATA]) { 484 ret = ELF_LOAD_WRONG_ENDIAN; 485 goto fail; 486 } 487 488 lseek(fd, 0, SEEK_SET); 489 if (e_ident[EI_CLASS] == ELFCLASS64) { 490 ret = load_elf64(filename, fd, elf_note_fn, 491 translate_fn, translate_opaque, must_swab, 492 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 493 data_swab, as, load_rom, sym_cb); 494 } else { 495 ret = load_elf32(filename, fd, elf_note_fn, 496 translate_fn, translate_opaque, must_swab, 497 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 498 data_swab, as, load_rom, sym_cb); 499 } 500 501 fail: 502 close(fd); 503 return ret; 504 } 505 506 static void bswap_uboot_header(uboot_image_header_t *hdr) 507 { 508 #ifndef HOST_WORDS_BIGENDIAN 509 bswap32s(&hdr->ih_magic); 510 bswap32s(&hdr->ih_hcrc); 511 bswap32s(&hdr->ih_time); 512 bswap32s(&hdr->ih_size); 513 bswap32s(&hdr->ih_load); 514 bswap32s(&hdr->ih_ep); 515 bswap32s(&hdr->ih_dcrc); 516 #endif 517 } 518 519 520 #define ZALLOC_ALIGNMENT 16 521 522 static void *zalloc(void *x, unsigned items, unsigned size) 523 { 524 void *p; 525 526 size *= items; 527 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 528 529 p = g_malloc(size); 530 531 return (p); 532 } 533 534 static void zfree(void *x, void *addr) 535 { 536 g_free(addr); 537 } 538 539 540 #define HEAD_CRC 2 541 #define EXTRA_FIELD 4 542 #define ORIG_NAME 8 543 #define COMMENT 0x10 544 #define RESERVED 0xe0 545 546 #define DEFLATED 8 547 548 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 549 { 550 z_stream s; 551 ssize_t dstbytes; 552 int r, i, flags; 553 554 /* skip header */ 555 i = 10; 556 flags = src[3]; 557 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 558 puts ("Error: Bad gzipped data\n"); 559 return -1; 560 } 561 if ((flags & EXTRA_FIELD) != 0) 562 i = 12 + src[10] + (src[11] << 8); 563 if ((flags & ORIG_NAME) != 0) 564 while (src[i++] != 0) 565 ; 566 if ((flags & COMMENT) != 0) 567 while (src[i++] != 0) 568 ; 569 if ((flags & HEAD_CRC) != 0) 570 i += 2; 571 if (i >= srclen) { 572 puts ("Error: gunzip out of data in header\n"); 573 return -1; 574 } 575 576 s.zalloc = zalloc; 577 s.zfree = zfree; 578 579 r = inflateInit2(&s, -MAX_WBITS); 580 if (r != Z_OK) { 581 printf ("Error: inflateInit2() returned %d\n", r); 582 return (-1); 583 } 584 s.next_in = src + i; 585 s.avail_in = srclen - i; 586 s.next_out = dst; 587 s.avail_out = dstlen; 588 r = inflate(&s, Z_FINISH); 589 if (r != Z_OK && r != Z_STREAM_END) { 590 printf ("Error: inflate() returned %d\n", r); 591 return -1; 592 } 593 dstbytes = s.next_out - (unsigned char *) dst; 594 inflateEnd(&s); 595 596 return dstbytes; 597 } 598 599 /* Load a U-Boot image. */ 600 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 601 int *is_linux, uint8_t image_type, 602 uint64_t (*translate_fn)(void *, uint64_t), 603 void *translate_opaque, AddressSpace *as) 604 { 605 int fd; 606 int size; 607 hwaddr address; 608 uboot_image_header_t h; 609 uboot_image_header_t *hdr = &h; 610 uint8_t *data = NULL; 611 int ret = -1; 612 int do_uncompress = 0; 613 614 fd = open(filename, O_RDONLY | O_BINARY); 615 if (fd < 0) 616 return -1; 617 618 size = read(fd, hdr, sizeof(uboot_image_header_t)); 619 if (size < sizeof(uboot_image_header_t)) { 620 goto out; 621 } 622 623 bswap_uboot_header(hdr); 624 625 if (hdr->ih_magic != IH_MAGIC) 626 goto out; 627 628 if (hdr->ih_type != image_type) { 629 if (!(image_type == IH_TYPE_KERNEL && 630 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 631 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 632 image_type); 633 goto out; 634 } 635 } 636 637 /* TODO: Implement other image types. */ 638 switch (hdr->ih_type) { 639 case IH_TYPE_KERNEL_NOLOAD: 640 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 641 fprintf(stderr, "this image format (kernel_noload) cannot be " 642 "loaded on this machine type"); 643 goto out; 644 } 645 646 hdr->ih_load = *loadaddr + sizeof(*hdr); 647 hdr->ih_ep += hdr->ih_load; 648 /* fall through */ 649 case IH_TYPE_KERNEL: 650 address = hdr->ih_load; 651 if (translate_fn) { 652 address = translate_fn(translate_opaque, address); 653 } 654 if (loadaddr) { 655 *loadaddr = hdr->ih_load; 656 } 657 658 switch (hdr->ih_comp) { 659 case IH_COMP_NONE: 660 break; 661 case IH_COMP_GZIP: 662 do_uncompress = 1; 663 break; 664 default: 665 fprintf(stderr, 666 "Unable to load u-boot images with compression type %d\n", 667 hdr->ih_comp); 668 goto out; 669 } 670 671 if (ep) { 672 *ep = hdr->ih_ep; 673 } 674 675 /* TODO: Check CPU type. */ 676 if (is_linux) { 677 if (hdr->ih_os == IH_OS_LINUX) { 678 *is_linux = 1; 679 } else { 680 *is_linux = 0; 681 } 682 } 683 684 break; 685 case IH_TYPE_RAMDISK: 686 address = *loadaddr; 687 break; 688 default: 689 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 690 goto out; 691 } 692 693 data = g_malloc(hdr->ih_size); 694 695 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 696 fprintf(stderr, "Error reading file\n"); 697 goto out; 698 } 699 700 if (do_uncompress) { 701 uint8_t *compressed_data; 702 size_t max_bytes; 703 ssize_t bytes; 704 705 compressed_data = data; 706 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 707 data = g_malloc(max_bytes); 708 709 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 710 g_free(compressed_data); 711 if (bytes < 0) { 712 fprintf(stderr, "Unable to decompress gzipped image!\n"); 713 goto out; 714 } 715 hdr->ih_size = bytes; 716 } 717 718 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 719 720 ret = hdr->ih_size; 721 722 out: 723 g_free(data); 724 close(fd); 725 return ret; 726 } 727 728 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 729 int *is_linux, 730 uint64_t (*translate_fn)(void *, uint64_t), 731 void *translate_opaque) 732 { 733 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 734 translate_fn, translate_opaque, NULL); 735 } 736 737 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 738 int *is_linux, 739 uint64_t (*translate_fn)(void *, uint64_t), 740 void *translate_opaque, AddressSpace *as) 741 { 742 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 743 translate_fn, translate_opaque, as); 744 } 745 746 /* Load a ramdisk. */ 747 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 748 { 749 return load_ramdisk_as(filename, addr, max_sz, NULL); 750 } 751 752 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 753 AddressSpace *as) 754 { 755 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 756 NULL, NULL, as); 757 } 758 759 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 760 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 761 uint8_t **buffer) 762 { 763 uint8_t *compressed_data = NULL; 764 uint8_t *data = NULL; 765 gsize len; 766 ssize_t bytes; 767 int ret = -1; 768 769 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 770 NULL)) { 771 goto out; 772 } 773 774 /* Is it a gzip-compressed file? */ 775 if (len < 2 || 776 compressed_data[0] != 0x1f || 777 compressed_data[1] != 0x8b) { 778 goto out; 779 } 780 781 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 782 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 783 } 784 785 data = g_malloc(max_sz); 786 bytes = gunzip(data, max_sz, compressed_data, len); 787 if (bytes < 0) { 788 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 789 filename); 790 goto out; 791 } 792 793 /* trim to actual size and return to caller */ 794 *buffer = g_realloc(data, bytes); 795 ret = bytes; 796 /* ownership has been transferred to caller */ 797 data = NULL; 798 799 out: 800 g_free(compressed_data); 801 g_free(data); 802 return ret; 803 } 804 805 /* Load a gzip-compressed kernel. */ 806 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 807 { 808 int bytes; 809 uint8_t *data; 810 811 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 812 if (bytes != -1) { 813 rom_add_blob_fixed(filename, data, bytes, addr); 814 g_free(data); 815 } 816 return bytes; 817 } 818 819 /* 820 * Functions for reboot-persistent memory regions. 821 * - used for vga bios and option roms. 822 * - also linux kernel (-kernel / -initrd). 823 */ 824 825 typedef struct Rom Rom; 826 827 struct Rom { 828 char *name; 829 char *path; 830 831 /* datasize is the amount of memory allocated in "data". If datasize is less 832 * than romsize, it means that the area from datasize to romsize is filled 833 * with zeros. 834 */ 835 size_t romsize; 836 size_t datasize; 837 838 uint8_t *data; 839 MemoryRegion *mr; 840 AddressSpace *as; 841 int isrom; 842 char *fw_dir; 843 char *fw_file; 844 GMappedFile *mapped_file; 845 846 bool committed; 847 848 hwaddr addr; 849 QTAILQ_ENTRY(Rom) next; 850 }; 851 852 static FWCfgState *fw_cfg; 853 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 854 855 /* 856 * rom->data can be heap-allocated or memory-mapped (e.g. when added with 857 * rom_add_elf_program()) 858 */ 859 static void rom_free_data(Rom *rom) 860 { 861 if (rom->mapped_file) { 862 g_mapped_file_unref(rom->mapped_file); 863 rom->mapped_file = NULL; 864 } else { 865 g_free(rom->data); 866 } 867 868 rom->data = NULL; 869 } 870 871 static void rom_free(Rom *rom) 872 { 873 rom_free_data(rom); 874 g_free(rom->path); 875 g_free(rom->name); 876 g_free(rom->fw_dir); 877 g_free(rom->fw_file); 878 g_free(rom); 879 } 880 881 static inline bool rom_order_compare(Rom *rom, Rom *item) 882 { 883 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 884 (rom->as == item->as && rom->addr >= item->addr); 885 } 886 887 static void rom_insert(Rom *rom) 888 { 889 Rom *item; 890 891 if (roms_loaded) { 892 hw_error ("ROM images must be loaded at startup\n"); 893 } 894 895 /* The user didn't specify an address space, this is the default */ 896 if (!rom->as) { 897 rom->as = &address_space_memory; 898 } 899 900 rom->committed = false; 901 902 /* List is ordered by load address in the same address space */ 903 QTAILQ_FOREACH(item, &roms, next) { 904 if (rom_order_compare(rom, item)) { 905 continue; 906 } 907 QTAILQ_INSERT_BEFORE(item, rom, next); 908 return; 909 } 910 QTAILQ_INSERT_TAIL(&roms, rom, next); 911 } 912 913 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 914 { 915 if (fw_cfg) { 916 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 917 } 918 } 919 920 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 921 { 922 void *data; 923 924 rom->mr = g_malloc(sizeof(*rom->mr)); 925 memory_region_init_resizeable_ram(rom->mr, owner, name, 926 rom->datasize, rom->romsize, 927 fw_cfg_resized, 928 &error_fatal); 929 memory_region_set_readonly(rom->mr, ro); 930 vmstate_register_ram_global(rom->mr); 931 932 data = memory_region_get_ram_ptr(rom->mr); 933 memcpy(data, rom->data, rom->datasize); 934 935 return data; 936 } 937 938 int rom_add_file(const char *file, const char *fw_dir, 939 hwaddr addr, int32_t bootindex, 940 bool option_rom, MemoryRegion *mr, 941 AddressSpace *as) 942 { 943 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 944 Rom *rom; 945 int rc, fd = -1; 946 char devpath[100]; 947 948 if (as && mr) { 949 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 950 "not valid when loading a rom\n"); 951 /* We haven't allocated anything so we don't need any cleanup */ 952 return -1; 953 } 954 955 rom = g_malloc0(sizeof(*rom)); 956 rom->name = g_strdup(file); 957 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 958 rom->as = as; 959 if (rom->path == NULL) { 960 rom->path = g_strdup(file); 961 } 962 963 fd = open(rom->path, O_RDONLY | O_BINARY); 964 if (fd == -1) { 965 fprintf(stderr, "Could not open option rom '%s': %s\n", 966 rom->path, strerror(errno)); 967 goto err; 968 } 969 970 if (fw_dir) { 971 rom->fw_dir = g_strdup(fw_dir); 972 rom->fw_file = g_strdup(file); 973 } 974 rom->addr = addr; 975 rom->romsize = lseek(fd, 0, SEEK_END); 976 if (rom->romsize == -1) { 977 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 978 rom->name, strerror(errno)); 979 goto err; 980 } 981 982 rom->datasize = rom->romsize; 983 rom->data = g_malloc0(rom->datasize); 984 lseek(fd, 0, SEEK_SET); 985 rc = read(fd, rom->data, rom->datasize); 986 if (rc != rom->datasize) { 987 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 988 rom->name, rc, rom->datasize); 989 goto err; 990 } 991 close(fd); 992 rom_insert(rom); 993 if (rom->fw_file && fw_cfg) { 994 const char *basename; 995 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 996 void *data; 997 998 basename = strrchr(rom->fw_file, '/'); 999 if (basename) { 1000 basename++; 1001 } else { 1002 basename = rom->fw_file; 1003 } 1004 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 1005 basename); 1006 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1007 1008 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 1009 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 1010 } else { 1011 data = rom->data; 1012 } 1013 1014 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 1015 } else { 1016 if (mr) { 1017 rom->mr = mr; 1018 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 1019 } else { 1020 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 1021 } 1022 } 1023 1024 add_boot_device_path(bootindex, NULL, devpath); 1025 return 0; 1026 1027 err: 1028 if (fd != -1) 1029 close(fd); 1030 1031 rom_free(rom); 1032 return -1; 1033 } 1034 1035 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1036 size_t max_len, hwaddr addr, const char *fw_file_name, 1037 FWCfgCallback fw_callback, void *callback_opaque, 1038 AddressSpace *as, bool read_only) 1039 { 1040 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1041 Rom *rom; 1042 MemoryRegion *mr = NULL; 1043 1044 rom = g_malloc0(sizeof(*rom)); 1045 rom->name = g_strdup(name); 1046 rom->as = as; 1047 rom->addr = addr; 1048 rom->romsize = max_len ? max_len : len; 1049 rom->datasize = len; 1050 g_assert(rom->romsize >= rom->datasize); 1051 rom->data = g_malloc0(rom->datasize); 1052 memcpy(rom->data, blob, len); 1053 rom_insert(rom); 1054 if (fw_file_name && fw_cfg) { 1055 char devpath[100]; 1056 void *data; 1057 1058 if (read_only) { 1059 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1060 } else { 1061 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1062 } 1063 1064 if (mc->rom_file_has_mr) { 1065 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1066 mr = rom->mr; 1067 } else { 1068 data = rom->data; 1069 } 1070 1071 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1072 fw_callback, NULL, callback_opaque, 1073 data, rom->datasize, read_only); 1074 } 1075 return mr; 1076 } 1077 1078 /* This function is specific for elf program because we don't need to allocate 1079 * all the rom. We just allocate the first part and the rest is just zeros. This 1080 * is why romsize and datasize are different. Also, this function takes its own 1081 * reference to "mapped_file", so we don't have to allocate and copy the buffer. 1082 */ 1083 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, 1084 size_t datasize, size_t romsize, hwaddr addr, 1085 AddressSpace *as) 1086 { 1087 Rom *rom; 1088 1089 rom = g_malloc0(sizeof(*rom)); 1090 rom->name = g_strdup(name); 1091 rom->addr = addr; 1092 rom->datasize = datasize; 1093 rom->romsize = romsize; 1094 rom->data = data; 1095 rom->as = as; 1096 1097 if (mapped_file && data) { 1098 g_mapped_file_ref(mapped_file); 1099 rom->mapped_file = mapped_file; 1100 } 1101 1102 rom_insert(rom); 1103 return 0; 1104 } 1105 1106 int rom_add_vga(const char *file) 1107 { 1108 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1109 } 1110 1111 int rom_add_option(const char *file, int32_t bootindex) 1112 { 1113 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1114 } 1115 1116 static void rom_reset(void *unused) 1117 { 1118 Rom *rom; 1119 1120 /* 1121 * We don't need to fill in the RAM with ROM data because we'll fill 1122 * the data in during the next incoming migration in all cases. Note 1123 * that some of those RAMs can actually be modified by the guest on ARM 1124 * so this is probably the only right thing to do here. 1125 */ 1126 if (runstate_check(RUN_STATE_INMIGRATE)) 1127 return; 1128 1129 QTAILQ_FOREACH(rom, &roms, next) { 1130 if (rom->fw_file) { 1131 continue; 1132 } 1133 if (rom->data == NULL) { 1134 continue; 1135 } 1136 if (rom->mr) { 1137 void *host = memory_region_get_ram_ptr(rom->mr); 1138 memcpy(host, rom->data, rom->datasize); 1139 } else { 1140 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1141 rom->data, rom->datasize); 1142 } 1143 if (rom->isrom) { 1144 /* rom needs to be written only once */ 1145 rom_free_data(rom); 1146 } 1147 /* 1148 * The rom loader is really on the same level as firmware in the guest 1149 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1150 * that the instruction cache for that new region is clear, so that the 1151 * CPU definitely fetches its instructions from the just written data. 1152 */ 1153 cpu_flush_icache_range(rom->addr, rom->datasize); 1154 } 1155 } 1156 1157 int rom_check_and_register_reset(void) 1158 { 1159 hwaddr addr = 0; 1160 MemoryRegionSection section; 1161 Rom *rom; 1162 AddressSpace *as = NULL; 1163 1164 QTAILQ_FOREACH(rom, &roms, next) { 1165 if (rom->fw_file) { 1166 continue; 1167 } 1168 if (!rom->mr) { 1169 if ((addr > rom->addr) && (as == rom->as)) { 1170 fprintf(stderr, "rom: requested regions overlap " 1171 "(rom %s. free=0x" TARGET_FMT_plx 1172 ", addr=0x" TARGET_FMT_plx ")\n", 1173 rom->name, addr, rom->addr); 1174 return -1; 1175 } 1176 addr = rom->addr; 1177 addr += rom->romsize; 1178 as = rom->as; 1179 } 1180 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1181 rom->addr, 1); 1182 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1183 memory_region_unref(section.mr); 1184 } 1185 qemu_register_reset(rom_reset, NULL); 1186 roms_loaded = 1; 1187 return 0; 1188 } 1189 1190 void rom_set_fw(FWCfgState *f) 1191 { 1192 fw_cfg = f; 1193 } 1194 1195 void rom_set_order_override(int order) 1196 { 1197 if (!fw_cfg) 1198 return; 1199 fw_cfg_set_order_override(fw_cfg, order); 1200 } 1201 1202 void rom_reset_order_override(void) 1203 { 1204 if (!fw_cfg) 1205 return; 1206 fw_cfg_reset_order_override(fw_cfg); 1207 } 1208 1209 void rom_transaction_begin(void) 1210 { 1211 Rom *rom; 1212 1213 /* Ignore ROMs added without the transaction API */ 1214 QTAILQ_FOREACH(rom, &roms, next) { 1215 rom->committed = true; 1216 } 1217 } 1218 1219 void rom_transaction_end(bool commit) 1220 { 1221 Rom *rom; 1222 Rom *tmp; 1223 1224 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1225 if (rom->committed) { 1226 continue; 1227 } 1228 if (commit) { 1229 rom->committed = true; 1230 } else { 1231 QTAILQ_REMOVE(&roms, rom, next); 1232 rom_free(rom); 1233 } 1234 } 1235 } 1236 1237 static Rom *find_rom(hwaddr addr, size_t size) 1238 { 1239 Rom *rom; 1240 1241 QTAILQ_FOREACH(rom, &roms, next) { 1242 if (rom->fw_file) { 1243 continue; 1244 } 1245 if (rom->mr) { 1246 continue; 1247 } 1248 if (rom->addr > addr) { 1249 continue; 1250 } 1251 if (rom->addr + rom->romsize < addr + size) { 1252 continue; 1253 } 1254 return rom; 1255 } 1256 return NULL; 1257 } 1258 1259 /* 1260 * Copies memory from registered ROMs to dest. Any memory that is contained in 1261 * a ROM between addr and addr + size is copied. Note that this can involve 1262 * multiple ROMs, which need not start at addr and need not end at addr + size. 1263 */ 1264 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1265 { 1266 hwaddr end = addr + size; 1267 uint8_t *s, *d = dest; 1268 size_t l = 0; 1269 Rom *rom; 1270 1271 QTAILQ_FOREACH(rom, &roms, next) { 1272 if (rom->fw_file) { 1273 continue; 1274 } 1275 if (rom->mr) { 1276 continue; 1277 } 1278 if (rom->addr + rom->romsize < addr) { 1279 continue; 1280 } 1281 if (rom->addr > end) { 1282 break; 1283 } 1284 1285 d = dest + (rom->addr - addr); 1286 s = rom->data; 1287 l = rom->datasize; 1288 1289 if ((d + l) > (dest + size)) { 1290 l = dest - d; 1291 } 1292 1293 if (l > 0) { 1294 memcpy(d, s, l); 1295 } 1296 1297 if (rom->romsize > rom->datasize) { 1298 /* If datasize is less than romsize, it means that we didn't 1299 * allocate all the ROM because the trailing data are only zeros. 1300 */ 1301 1302 d += l; 1303 l = rom->romsize - rom->datasize; 1304 1305 if ((d + l) > (dest + size)) { 1306 /* Rom size doesn't fit in the destination area. Adjust to avoid 1307 * overflow. 1308 */ 1309 l = dest - d; 1310 } 1311 1312 if (l > 0) { 1313 memset(d, 0x0, l); 1314 } 1315 } 1316 } 1317 1318 return (d + l) - dest; 1319 } 1320 1321 void *rom_ptr(hwaddr addr, size_t size) 1322 { 1323 Rom *rom; 1324 1325 rom = find_rom(addr, size); 1326 if (!rom || !rom->data) 1327 return NULL; 1328 return rom->data + (addr - rom->addr); 1329 } 1330 1331 void hmp_info_roms(Monitor *mon, const QDict *qdict) 1332 { 1333 Rom *rom; 1334 1335 QTAILQ_FOREACH(rom, &roms, next) { 1336 if (rom->mr) { 1337 monitor_printf(mon, "%s" 1338 " size=0x%06zx name=\"%s\"\n", 1339 memory_region_name(rom->mr), 1340 rom->romsize, 1341 rom->name); 1342 } else if (!rom->fw_file) { 1343 monitor_printf(mon, "addr=" TARGET_FMT_plx 1344 " size=0x%06zx mem=%s name=\"%s\"\n", 1345 rom->addr, rom->romsize, 1346 rom->isrom ? "rom" : "ram", 1347 rom->name); 1348 } else { 1349 monitor_printf(mon, "fw=%s/%s" 1350 " size=0x%06zx name=\"%s\"\n", 1351 rom->fw_dir, 1352 rom->fw_file, 1353 rom->romsize, 1354 rom->name); 1355 } 1356 } 1357 } 1358 1359 typedef enum HexRecord HexRecord; 1360 enum HexRecord { 1361 DATA_RECORD = 0, 1362 EOF_RECORD, 1363 EXT_SEG_ADDR_RECORD, 1364 START_SEG_ADDR_RECORD, 1365 EXT_LINEAR_ADDR_RECORD, 1366 START_LINEAR_ADDR_RECORD, 1367 }; 1368 1369 /* Each record contains a 16-bit address which is combined with the upper 16 1370 * bits of the implicit "next address" to form a 32-bit address. 1371 */ 1372 #define NEXT_ADDR_MASK 0xffff0000 1373 1374 #define DATA_FIELD_MAX_LEN 0xff 1375 #define LEN_EXCEPT_DATA 0x5 1376 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1377 * sizeof(checksum) */ 1378 typedef struct { 1379 uint8_t byte_count; 1380 uint16_t address; 1381 uint8_t record_type; 1382 uint8_t data[DATA_FIELD_MAX_LEN]; 1383 uint8_t checksum; 1384 } HexLine; 1385 1386 /* return 0 or -1 if error */ 1387 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1388 uint32_t *index, const bool in_process) 1389 { 1390 /* +-------+---------------+-------+---------------------+--------+ 1391 * | byte | |record | | | 1392 * | count | address | type | data |checksum| 1393 * +-------+---------------+-------+---------------------+--------+ 1394 * ^ ^ ^ ^ ^ ^ 1395 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1396 */ 1397 uint8_t value = 0; 1398 uint32_t idx = *index; 1399 /* ignore space */ 1400 if (g_ascii_isspace(c)) { 1401 return true; 1402 } 1403 if (!g_ascii_isxdigit(c) || !in_process) { 1404 return false; 1405 } 1406 value = g_ascii_xdigit_value(c); 1407 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1408 if (idx < 2) { 1409 line->byte_count |= value; 1410 } else if (2 <= idx && idx < 6) { 1411 line->address <<= 4; 1412 line->address += g_ascii_xdigit_value(c); 1413 } else if (6 <= idx && idx < 8) { 1414 line->record_type |= value; 1415 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1416 line->data[(idx - 8) >> 1] |= value; 1417 } else if (8 + 2 * line->byte_count <= idx && 1418 idx < 10 + 2 * line->byte_count) { 1419 line->checksum |= value; 1420 } else { 1421 return false; 1422 } 1423 *our_checksum += value; 1424 ++(*index); 1425 return true; 1426 } 1427 1428 typedef struct { 1429 const char *filename; 1430 HexLine line; 1431 uint8_t *bin_buf; 1432 hwaddr *start_addr; 1433 int total_size; 1434 uint32_t next_address_to_write; 1435 uint32_t current_address; 1436 uint32_t current_rom_index; 1437 uint32_t rom_start_address; 1438 AddressSpace *as; 1439 } HexParser; 1440 1441 /* return size or -1 if error */ 1442 static int handle_record_type(HexParser *parser) 1443 { 1444 HexLine *line = &(parser->line); 1445 switch (line->record_type) { 1446 case DATA_RECORD: 1447 parser->current_address = 1448 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1449 /* verify this is a contiguous block of memory */ 1450 if (parser->current_address != parser->next_address_to_write) { 1451 if (parser->current_rom_index != 0) { 1452 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1453 parser->current_rom_index, 1454 parser->rom_start_address, parser->as); 1455 } 1456 parser->rom_start_address = parser->current_address; 1457 parser->current_rom_index = 0; 1458 } 1459 1460 /* copy from line buffer to output bin_buf */ 1461 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1462 line->byte_count); 1463 parser->current_rom_index += line->byte_count; 1464 parser->total_size += line->byte_count; 1465 /* save next address to write */ 1466 parser->next_address_to_write = 1467 parser->current_address + line->byte_count; 1468 break; 1469 1470 case EOF_RECORD: 1471 if (parser->current_rom_index != 0) { 1472 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1473 parser->current_rom_index, 1474 parser->rom_start_address, parser->as); 1475 } 1476 return parser->total_size; 1477 case EXT_SEG_ADDR_RECORD: 1478 case EXT_LINEAR_ADDR_RECORD: 1479 if (line->byte_count != 2 && line->address != 0) { 1480 return -1; 1481 } 1482 1483 if (parser->current_rom_index != 0) { 1484 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1485 parser->current_rom_index, 1486 parser->rom_start_address, parser->as); 1487 } 1488 1489 /* save next address to write, 1490 * in case of non-contiguous block of memory */ 1491 parser->next_address_to_write = (line->data[0] << 12) | 1492 (line->data[1] << 4); 1493 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1494 parser->next_address_to_write <<= 12; 1495 } 1496 1497 parser->rom_start_address = parser->next_address_to_write; 1498 parser->current_rom_index = 0; 1499 break; 1500 1501 case START_SEG_ADDR_RECORD: 1502 if (line->byte_count != 4 && line->address != 0) { 1503 return -1; 1504 } 1505 1506 /* x86 16-bit CS:IP segmented addressing */ 1507 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1508 ((line->data[2] << 8) | line->data[3]); 1509 break; 1510 1511 case START_LINEAR_ADDR_RECORD: 1512 if (line->byte_count != 4 && line->address != 0) { 1513 return -1; 1514 } 1515 1516 *(parser->start_addr) = ldl_be_p(line->data); 1517 break; 1518 1519 default: 1520 return -1; 1521 } 1522 1523 return parser->total_size; 1524 } 1525 1526 /* return size or -1 if error */ 1527 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1528 size_t hex_blob_size, AddressSpace *as) 1529 { 1530 bool in_process = false; /* avoid re-enter and 1531 * check whether record begin with ':' */ 1532 uint8_t *end = hex_blob + hex_blob_size; 1533 uint8_t our_checksum = 0; 1534 uint32_t record_index = 0; 1535 HexParser parser = { 1536 .filename = filename, 1537 .bin_buf = g_malloc(hex_blob_size), 1538 .start_addr = addr, 1539 .as = as, 1540 }; 1541 1542 rom_transaction_begin(); 1543 1544 for (; hex_blob < end; ++hex_blob) { 1545 switch (*hex_blob) { 1546 case '\r': 1547 case '\n': 1548 if (!in_process) { 1549 break; 1550 } 1551 1552 in_process = false; 1553 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1554 record_index || 1555 our_checksum != 0) { 1556 parser.total_size = -1; 1557 goto out; 1558 } 1559 1560 if (handle_record_type(&parser) == -1) { 1561 parser.total_size = -1; 1562 goto out; 1563 } 1564 break; 1565 1566 /* start of a new record. */ 1567 case ':': 1568 memset(&parser.line, 0, sizeof(HexLine)); 1569 in_process = true; 1570 record_index = 0; 1571 break; 1572 1573 /* decoding lines */ 1574 default: 1575 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1576 &record_index, in_process)) { 1577 parser.total_size = -1; 1578 goto out; 1579 } 1580 break; 1581 } 1582 } 1583 1584 out: 1585 g_free(parser.bin_buf); 1586 rom_transaction_end(parser.total_size != -1); 1587 return parser.total_size; 1588 } 1589 1590 /* return size or -1 if error */ 1591 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as) 1592 { 1593 gsize hex_blob_size; 1594 gchar *hex_blob; 1595 int total_size = 0; 1596 1597 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1598 return -1; 1599 } 1600 1601 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1602 hex_blob_size, as); 1603 1604 g_free(hex_blob); 1605 return total_size; 1606 } 1607