xref: /openbmc/qemu/hw/core/eif.c (revision 646b5378)
1 /*
2  * EIF (Enclave Image Format) related helpers
3  *
4  * Copyright (c) 2024 Dorjoy Chowdhury <dorjoychy111@gmail.com>
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or
7  * (at your option) any later version.  See the COPYING file in the
8  * top-level directory.
9  */
10 
11 #include "qemu/osdep.h"
12 #include "qemu/bswap.h"
13 #include "qapi/error.h"
14 #include "crypto/hash.h"
15 #include "crypto/x509-utils.h"
16 #include <zlib.h> /* for crc32 */
17 #include <cbor.h>
18 
19 #include "hw/core/eif.h"
20 
21 #define MAX_SECTIONS 32
22 
23 /* members are ordered according to field order in .eif file */
24 typedef struct EifHeader {
25     uint8_t  magic[4]; /* must be .eif in ascii i.e., [46, 101, 105, 102] */
26     uint16_t version;
27     uint16_t flags;
28     uint64_t default_memory;
29     uint64_t default_cpus;
30     uint16_t reserved;
31     uint16_t section_cnt;
32     uint64_t section_offsets[MAX_SECTIONS];
33     uint64_t section_sizes[MAX_SECTIONS];
34     uint32_t unused;
35     uint32_t eif_crc32;
36 } QEMU_PACKED EifHeader;
37 
38 /* members are ordered according to field order in .eif file */
39 typedef struct EifSectionHeader {
40     /*
41      * 0 = invalid, 1 = kernel, 2 = cmdline, 3 = ramdisk, 4 = signature,
42      * 5 = metadata
43      */
44     uint16_t section_type;
45     uint16_t flags;
46     uint64_t section_size;
47 } QEMU_PACKED EifSectionHeader;
48 
49 enum EifSectionTypes {
50     EIF_SECTION_INVALID = 0,
51     EIF_SECTION_KERNEL = 1,
52     EIF_SECTION_CMDLINE = 2,
53     EIF_SECTION_RAMDISK = 3,
54     EIF_SECTION_SIGNATURE = 4,
55     EIF_SECTION_METADATA = 5,
56     EIF_SECTION_MAX = 6,
57 };
58 
59 static const char *section_type_to_string(uint16_t type)
60 {
61     const char *str;
62     switch (type) {
63     case EIF_SECTION_INVALID:
64         str = "invalid";
65         break;
66     case EIF_SECTION_KERNEL:
67         str = "kernel";
68         break;
69     case EIF_SECTION_CMDLINE:
70         str = "cmdline";
71         break;
72     case EIF_SECTION_RAMDISK:
73         str = "ramdisk";
74         break;
75     case EIF_SECTION_SIGNATURE:
76         str = "signature";
77         break;
78     case EIF_SECTION_METADATA:
79         str = "metadata";
80         break;
81     default:
82         str = "unknown";
83         break;
84     }
85 
86     return str;
87 }
88 
89 static bool read_eif_header(FILE *f, EifHeader *header, uint32_t *crc,
90                             Error **errp)
91 {
92     size_t got;
93     size_t header_size = sizeof(*header);
94 
95     got = fread(header, 1, header_size, f);
96     if (got != header_size) {
97         error_setg(errp, "Failed to read EIF header");
98         return false;
99     }
100 
101     if (memcmp(header->magic, ".eif", 4) != 0) {
102         error_setg(errp, "Invalid EIF image. Magic mismatch.");
103         return false;
104     }
105 
106     /* Exclude header->eif_crc32 field from CRC calculation */
107     *crc = crc32(*crc, (uint8_t *)header, header_size - 4);
108 
109     header->version = be16_to_cpu(header->version);
110     header->flags = be16_to_cpu(header->flags);
111     header->default_memory = be64_to_cpu(header->default_memory);
112     header->default_cpus = be64_to_cpu(header->default_cpus);
113     header->reserved = be16_to_cpu(header->reserved);
114     header->section_cnt = be16_to_cpu(header->section_cnt);
115 
116     for (int i = 0; i < MAX_SECTIONS; ++i) {
117         header->section_offsets[i] = be64_to_cpu(header->section_offsets[i]);
118     }
119 
120     for (int i = 0; i < MAX_SECTIONS; ++i) {
121         header->section_sizes[i] = be64_to_cpu(header->section_sizes[i]);
122     }
123 
124     header->unused = be32_to_cpu(header->unused);
125     header->eif_crc32 = be32_to_cpu(header->eif_crc32);
126     return true;
127 }
128 
129 static bool read_eif_section_header(FILE *f, EifSectionHeader *section_header,
130                                     uint32_t *crc, Error **errp)
131 {
132     size_t got;
133     size_t section_header_size = sizeof(*section_header);
134 
135     got = fread(section_header, 1, section_header_size, f);
136     if (got != section_header_size) {
137         error_setg(errp, "Failed to read EIF section header");
138         return false;
139     }
140 
141     *crc = crc32(*crc, (uint8_t *)section_header, section_header_size);
142 
143     section_header->section_type = be16_to_cpu(section_header->section_type);
144     section_header->flags = be16_to_cpu(section_header->flags);
145     section_header->section_size = be64_to_cpu(section_header->section_size);
146     return true;
147 }
148 
149 /*
150  * Upon success, the caller is responsible for unlinking and freeing *tmp_path.
151  */
152 static bool get_tmp_file(const char *template, char **tmp_path, Error **errp)
153 {
154     int tmp_fd;
155 
156     *tmp_path = NULL;
157     tmp_fd = g_file_open_tmp(template, tmp_path, NULL);
158     if (tmp_fd < 0 || *tmp_path == NULL) {
159         error_setg(errp, "Failed to create temporary file for template %s",
160                    template);
161         return false;
162     }
163 
164     close(tmp_fd);
165     return true;
166 }
167 
168 static void safe_fclose(FILE *f)
169 {
170     if (f) {
171         fclose(f);
172     }
173 }
174 
175 static void safe_unlink(char *f)
176 {
177     if (f) {
178         unlink(f);
179     }
180 }
181 
182 /*
183  * Upon success, the caller is reponsible for unlinking and freeing *kernel_path
184  */
185 static bool read_eif_kernel(FILE *f, uint64_t size, char **kernel_path,
186                             uint8_t *kernel, uint32_t *crc, Error **errp)
187 {
188     size_t got;
189     FILE *tmp_file = NULL;
190 
191     *kernel_path = NULL;
192     if (!get_tmp_file("eif-kernel-XXXXXX", kernel_path, errp)) {
193         goto cleanup;
194     }
195 
196     tmp_file = fopen(*kernel_path, "wb");
197     if (tmp_file == NULL) {
198         error_setg_errno(errp, errno, "Failed to open temporary file %s",
199                          *kernel_path);
200         goto cleanup;
201     }
202 
203     got = fread(kernel, 1, size, f);
204     if ((uint64_t) got != size) {
205         error_setg(errp, "Failed to read EIF kernel section data");
206         goto cleanup;
207     }
208 
209     got = fwrite(kernel, 1, size, tmp_file);
210     if ((uint64_t) got != size) {
211         error_setg(errp, "Failed to write EIF kernel section data to temporary"
212                    " file");
213         goto cleanup;
214     }
215 
216     *crc = crc32(*crc, kernel, size);
217     fclose(tmp_file);
218 
219     return true;
220 
221  cleanup:
222     safe_fclose(tmp_file);
223 
224     safe_unlink(*kernel_path);
225     g_free(*kernel_path);
226     *kernel_path = NULL;
227 
228     return false;
229 }
230 
231 static bool read_eif_cmdline(FILE *f, uint64_t size, char *cmdline,
232                              uint32_t *crc, Error **errp)
233 {
234     size_t got = fread(cmdline, 1, size, f);
235     if ((uint64_t) got != size) {
236         error_setg(errp, "Failed to read EIF cmdline section data");
237         return false;
238     }
239 
240     *crc = crc32(*crc, (uint8_t *)cmdline, size);
241     return true;
242 }
243 
244 static bool read_eif_ramdisk(FILE *eif, FILE *initrd, uint64_t size,
245                              uint8_t *ramdisk, uint32_t *crc, Error **errp)
246 {
247     size_t got;
248 
249     got = fread(ramdisk, 1, size, eif);
250     if ((uint64_t) got != size) {
251         error_setg(errp, "Failed to read EIF ramdisk section data");
252         return false;
253     }
254 
255     got = fwrite(ramdisk, 1, size, initrd);
256     if ((uint64_t) got != size) {
257         error_setg(errp, "Failed to write EIF ramdisk data to temporary file");
258         return false;
259     }
260 
261     *crc = crc32(*crc, ramdisk, size);
262     return true;
263 }
264 
265 static bool get_signature_fingerprint_sha384(FILE *eif, uint64_t size,
266                                              uint8_t *sha384,
267                                              uint32_t *crc,
268                                              Error **errp)
269 {
270     size_t got;
271     g_autofree uint8_t *sig = NULL;
272     g_autofree uint8_t *cert = NULL;
273     cbor_item_t *item = NULL;
274     cbor_item_t *pcr0 = NULL;
275     size_t len;
276     size_t hash_len = QCRYPTO_HASH_DIGEST_LEN_SHA384;
277     struct cbor_pair *pair;
278     struct cbor_load_result result;
279     bool ret = false;
280 
281     sig = g_malloc(size);
282     got = fread(sig, 1, size, eif);
283     if ((uint64_t) got != size) {
284         error_setg(errp, "Failed to read EIF signature section data");
285         goto cleanup;
286     }
287 
288     *crc = crc32(*crc, sig, size);
289 
290     item = cbor_load(sig, size, &result);
291     if (!item || result.error.code != CBOR_ERR_NONE) {
292         error_setg(errp, "Failed to load signature section data as CBOR");
293         goto cleanup;
294     }
295     if (!cbor_isa_array(item) || cbor_array_size(item) < 1) {
296         error_setg(errp, "Invalid signature CBOR");
297         goto cleanup;
298     }
299     pcr0 = cbor_array_get(item, 0);
300     if (!pcr0) {
301         error_setg(errp, "Failed to get PCR0 signature");
302         goto cleanup;
303     }
304     if (!cbor_isa_map(pcr0) || cbor_map_size(pcr0) != 2) {
305         error_setg(errp, "Invalid signature CBOR");
306         goto cleanup;
307     }
308     pair = cbor_map_handle(pcr0);
309     if (!cbor_isa_string(pair->key) || cbor_string_length(pair->key) != 19 ||
310         memcmp(cbor_string_handle(pair->key), "signing_certificate", 19) != 0) {
311         error_setg(errp, "Invalid signautre CBOR");
312         goto cleanup;
313     }
314     if (!cbor_isa_array(pair->value)) {
315         error_setg(errp, "Invalid signature CBOR");
316         goto cleanup;
317     }
318     len = cbor_array_size(pair->value);
319     if (len == 0) {
320         error_setg(errp, "Invalid signature CBOR");
321         goto cleanup;
322     }
323     cert = g_malloc(len);
324     for (int i = 0; i < len; ++i) {
325         cbor_item_t *tmp = cbor_array_get(pair->value, i);
326         if (!tmp) {
327             error_setg(errp, "Invalid signature CBOR");
328             goto cleanup;
329         }
330         if (!cbor_isa_uint(tmp) || cbor_int_get_width(tmp) != CBOR_INT_8) {
331             cbor_decref(&tmp);
332             error_setg(errp, "Invalid signature CBOR");
333             goto cleanup;
334         }
335         cert[i] = cbor_get_uint8(tmp);
336         cbor_decref(&tmp);
337     }
338 
339     if (qcrypto_get_x509_cert_fingerprint(cert, len, QCRYPTO_HASH_ALGO_SHA384,
340                                           sha384, &hash_len, errp)) {
341         goto cleanup;
342     }
343 
344     ret = true;
345 
346  cleanup:
347     if (pcr0) {
348         cbor_decref(&pcr0);
349     }
350     if (item) {
351         cbor_decref(&item);
352     }
353     return ret;
354 }
355 
356 /* Expects file to have offset 0 before this function is called */
357 static long get_file_size(FILE *f, Error **errp)
358 {
359     long size;
360 
361     if (fseek(f, 0, SEEK_END) != 0) {
362         error_setg_errno(errp, errno, "Failed to seek to the end of file");
363         return -1;
364     }
365 
366     size = ftell(f);
367     if (size == -1) {
368         error_setg_errno(errp, errno, "Failed to get offset");
369         return -1;
370     }
371 
372     if (fseek(f, 0, SEEK_SET) != 0) {
373         error_setg_errno(errp, errno, "Failed to seek back to the start");
374         return -1;
375     }
376 
377     return size;
378 }
379 
380 static bool get_SHA384_digest(GList *list, uint8_t *digest, Error **errp)
381 {
382     size_t digest_len = QCRYPTO_HASH_DIGEST_LEN_SHA384;
383     size_t list_len = g_list_length(list);
384     struct iovec *iovec_list = g_new0(struct iovec, list_len);
385     bool ret = true;
386     GList *l;
387     int i;
388 
389     for (i = 0, l = list; l != NULL; l = l->next, i++) {
390         iovec_list[i] = *(struct iovec *) l->data;
391     }
392 
393     if (qcrypto_hash_bytesv(QCRYPTO_HASH_ALGO_SHA384, iovec_list, list_len,
394                             &digest, &digest_len, errp) < 0) {
395         ret = false;
396     }
397 
398     g_free(iovec_list);
399     return ret;
400 }
401 
402 static void free_iovec(struct iovec *iov)
403 {
404     if (iov) {
405         g_free(iov->iov_base);
406         g_free(iov);
407     }
408 }
409 
410 /*
411  * Upon success, the caller is reponsible for unlinking and freeing
412  * *kernel_path, *initrd_path and freeing *cmdline.
413  */
414 bool read_eif_file(const char *eif_path, const char *machine_initrd,
415                    char **kernel_path, char **initrd_path, char **cmdline,
416                    uint8_t *image_sha384, uint8_t *bootstrap_sha384,
417                    uint8_t *app_sha384, uint8_t *fingerprint_sha384,
418                    bool *signature_found, Error **errp)
419 {
420     FILE *f = NULL;
421     FILE *machine_initrd_f = NULL;
422     FILE *initrd_path_f = NULL;
423     long machine_initrd_size;
424     uint32_t crc = 0;
425     EifHeader eif_header;
426     bool seen_sections[EIF_SECTION_MAX] = {false};
427     /* kernel + ramdisks + cmdline sha384 hash */
428     GList *iov_PCR0 = NULL;
429     /* kernel + boot ramdisk + cmdline sha384 hash */
430     GList *iov_PCR1 = NULL;
431     /* application ramdisk(s) hash */
432     GList *iov_PCR2 = NULL;
433     uint8_t *ptr = NULL;
434     struct iovec *iov_ptr = NULL;
435 
436     *signature_found = false;
437     *kernel_path = *initrd_path = *cmdline = NULL;
438 
439     f = fopen(eif_path, "rb");
440     if (f == NULL) {
441         error_setg_errno(errp, errno, "Failed to open %s", eif_path);
442         goto cleanup;
443     }
444 
445     if (!read_eif_header(f, &eif_header, &crc, errp)) {
446         goto cleanup;
447     }
448 
449     if (eif_header.version < 4) {
450         error_setg(errp, "Expected EIF version 4 or greater");
451         goto cleanup;
452     }
453 
454     if (eif_header.flags != 0) {
455         error_setg(errp, "Expected EIF flags to be 0");
456         goto cleanup;
457     }
458 
459     if (eif_header.section_cnt > MAX_SECTIONS) {
460         error_setg(errp, "EIF header section count must not be greater than "
461                    "%d but found %d", MAX_SECTIONS, eif_header.section_cnt);
462         goto cleanup;
463     }
464 
465     for (int i = 0; i < eif_header.section_cnt; ++i) {
466         EifSectionHeader hdr;
467         uint16_t section_type;
468 
469         if (fseek(f, eif_header.section_offsets[i], SEEK_SET) != 0) {
470             error_setg_errno(errp, errno, "Failed to offset to %" PRIu64 " in EIF file",
471                              eif_header.section_offsets[i]);
472             goto cleanup;
473         }
474 
475         if (!read_eif_section_header(f, &hdr, &crc, errp)) {
476             goto cleanup;
477         }
478 
479         if (hdr.flags != 0) {
480             error_setg(errp, "Expected EIF section header flags to be 0");
481             goto cleanup;
482         }
483 
484         if (eif_header.section_sizes[i] != hdr.section_size) {
485             error_setg(errp, "EIF section size mismatch between header and "
486                        "section header: header %" PRIu64 ", section header %" PRIu64,
487                        eif_header.section_sizes[i],
488                        hdr.section_size);
489             goto cleanup;
490         }
491 
492         section_type = hdr.section_type;
493 
494         switch (section_type) {
495         case EIF_SECTION_KERNEL:
496             if (seen_sections[EIF_SECTION_KERNEL]) {
497                 error_setg(errp, "Invalid EIF image. More than 1 kernel "
498                            "section");
499                 goto cleanup;
500             }
501 
502             ptr = g_malloc(hdr.section_size);
503 
504             iov_ptr = g_malloc(sizeof(struct iovec));
505             iov_ptr->iov_base = ptr;
506             iov_ptr->iov_len = hdr.section_size;
507 
508             iov_PCR0 = g_list_append(iov_PCR0, iov_ptr);
509             iov_PCR1 = g_list_append(iov_PCR1, iov_ptr);
510 
511             if (!read_eif_kernel(f, hdr.section_size, kernel_path, ptr, &crc,
512                                  errp)) {
513                 goto cleanup;
514             }
515 
516             break;
517         case EIF_SECTION_CMDLINE:
518         {
519             uint64_t size;
520             uint8_t *cmdline_copy;
521             if (seen_sections[EIF_SECTION_CMDLINE]) {
522                 error_setg(errp, "Invalid EIF image. More than 1 cmdline "
523                            "section");
524                 goto cleanup;
525             }
526             size = hdr.section_size;
527             *cmdline = g_malloc(size + 1);
528             if (!read_eif_cmdline(f, size, *cmdline, &crc, errp)) {
529                 goto cleanup;
530             }
531             (*cmdline)[size] = '\0';
532 
533             /*
534              * We make a copy of '*cmdline' for putting it in iovecs so that
535              * we can easily free all the iovec entries later as we cannot
536              * free '*cmdline' which is used by the caller.
537              */
538             cmdline_copy = g_memdup2(*cmdline, size);
539 
540             iov_ptr = g_malloc(sizeof(struct iovec));
541             iov_ptr->iov_base = cmdline_copy;
542             iov_ptr->iov_len = size;
543 
544             iov_PCR0 = g_list_append(iov_PCR0, iov_ptr);
545             iov_PCR1 = g_list_append(iov_PCR1, iov_ptr);
546             break;
547         }
548         case EIF_SECTION_RAMDISK:
549         {
550             if (!seen_sections[EIF_SECTION_RAMDISK]) {
551                 /*
552                  * If this is the first time we are seeing a ramdisk section,
553                  * we need to create the initrd temporary file.
554                  */
555                 if (!get_tmp_file("eif-initrd-XXXXXX", initrd_path, errp)) {
556                     goto cleanup;
557                 }
558                 initrd_path_f = fopen(*initrd_path, "wb");
559                 if (initrd_path_f == NULL) {
560                     error_setg_errno(errp, errno, "Failed to open file %s",
561                                      *initrd_path);
562                     goto cleanup;
563                 }
564             }
565 
566             ptr = g_malloc(hdr.section_size);
567 
568             iov_ptr = g_malloc(sizeof(struct iovec));
569             iov_ptr->iov_base = ptr;
570             iov_ptr->iov_len = hdr.section_size;
571 
572             iov_PCR0 = g_list_append(iov_PCR0, iov_ptr);
573             /*
574              * If it's the first ramdisk, we need to hash it into bootstrap
575              * i.e., iov_PCR1, otherwise we need to hash it into app i.e.,
576              * iov_PCR2.
577              */
578             if (!seen_sections[EIF_SECTION_RAMDISK]) {
579                 iov_PCR1 = g_list_append(iov_PCR1, iov_ptr);
580             } else {
581                 iov_PCR2 = g_list_append(iov_PCR2, iov_ptr);
582             }
583 
584             if (!read_eif_ramdisk(f, initrd_path_f, hdr.section_size, ptr,
585                                   &crc, errp)) {
586                 goto cleanup;
587             }
588 
589             break;
590         }
591         case EIF_SECTION_SIGNATURE:
592             *signature_found = true;
593             if (!get_signature_fingerprint_sha384(f, hdr.section_size,
594                                                   fingerprint_sha384, &crc,
595                                                   errp)) {
596                 goto cleanup;
597             }
598             break;
599         default:
600             /* other sections including invalid or unknown sections */
601         {
602             uint8_t *buf;
603             size_t got;
604             uint64_t size = hdr.section_size;
605             buf = g_malloc(size);
606             got = fread(buf, 1, size, f);
607             if ((uint64_t) got != size) {
608                 g_free(buf);
609                 error_setg(errp, "Failed to read EIF %s section data",
610                            section_type_to_string(section_type));
611                 goto cleanup;
612             }
613             crc = crc32(crc, buf, size);
614             g_free(buf);
615             break;
616         }
617         }
618 
619         if (section_type < EIF_SECTION_MAX) {
620             seen_sections[section_type] = true;
621         }
622     }
623 
624     if (!seen_sections[EIF_SECTION_KERNEL]) {
625         error_setg(errp, "Invalid EIF image. No kernel section.");
626         goto cleanup;
627     }
628     if (!seen_sections[EIF_SECTION_CMDLINE]) {
629         error_setg(errp, "Invalid EIF image. No cmdline section.");
630         goto cleanup;
631     }
632     if (!seen_sections[EIF_SECTION_RAMDISK]) {
633         error_setg(errp, "Invalid EIF image. No ramdisk section.");
634         goto cleanup;
635     }
636 
637     if (eif_header.eif_crc32 != crc) {
638         error_setg(errp, "CRC mismatch. Expected %u but header has %u.",
639                    crc, eif_header.eif_crc32);
640         goto cleanup;
641     }
642 
643     /*
644      * Let's append the initrd file from "-initrd" option if any. Although
645      * we pass the crc pointer to read_eif_ramdisk, it is not useful anymore.
646      * We have already done the crc mismatch check above this code.
647      */
648     if (machine_initrd) {
649         machine_initrd_f = fopen(machine_initrd, "rb");
650         if (machine_initrd_f == NULL) {
651             error_setg_errno(errp, errno, "Failed to open initrd file %s",
652                              machine_initrd);
653             goto cleanup;
654         }
655 
656         machine_initrd_size = get_file_size(machine_initrd_f, errp);
657         if (machine_initrd_size == -1) {
658             goto cleanup;
659         }
660 
661         ptr = g_malloc(machine_initrd_size);
662 
663         iov_ptr = g_malloc(sizeof(struct iovec));
664         iov_ptr->iov_base = ptr;
665         iov_ptr->iov_len = machine_initrd_size;
666 
667         iov_PCR0 = g_list_append(iov_PCR0, iov_ptr);
668         iov_PCR2 = g_list_append(iov_PCR2, iov_ptr);
669 
670         if (!read_eif_ramdisk(machine_initrd_f, initrd_path_f,
671                               machine_initrd_size, ptr, &crc, errp)) {
672             goto cleanup;
673         }
674     }
675 
676     if (!get_SHA384_digest(iov_PCR0, image_sha384, errp)) {
677         goto cleanup;
678     }
679     if (!get_SHA384_digest(iov_PCR1, bootstrap_sha384, errp)) {
680         goto cleanup;
681     }
682     if (!get_SHA384_digest(iov_PCR2, app_sha384, errp)) {
683         goto cleanup;
684     }
685 
686     /*
687      * We only need to free iov_PCR0 entries because iov_PCR1 and
688      * iov_PCR2 iovec entries are subsets of iov_PCR0 iovec entries.
689      */
690     g_list_free_full(iov_PCR0, (GDestroyNotify) free_iovec);
691     g_list_free(iov_PCR1);
692     g_list_free(iov_PCR2);
693     fclose(f);
694     fclose(initrd_path_f);
695     safe_fclose(machine_initrd_f);
696     return true;
697 
698  cleanup:
699     g_list_free_full(iov_PCR0, (GDestroyNotify) free_iovec);
700     g_list_free(iov_PCR1);
701     g_list_free(iov_PCR2);
702 
703     safe_fclose(f);
704     safe_fclose(initrd_path_f);
705     safe_fclose(machine_initrd_f);
706 
707     safe_unlink(*kernel_path);
708     g_free(*kernel_path);
709     *kernel_path = NULL;
710 
711     safe_unlink(*initrd_path);
712     g_free(*initrd_path);
713     *initrd_path = NULL;
714 
715     g_free(*cmdline);
716     *cmdline = NULL;
717 
718     return false;
719 }
720