1 /* 2 * QEMU 16550A UART emulation 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * Copyright (c) 2008 Citrix Systems, Inc. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "hw/char/serial.h" 28 #include "hw/irq.h" 29 #include "migration/vmstate.h" 30 #include "chardev/char-serial.h" 31 #include "qapi/error.h" 32 #include "qemu/timer.h" 33 #include "sysemu/reset.h" 34 #include "sysemu/runstate.h" 35 #include "qemu/error-report.h" 36 #include "trace.h" 37 #include "hw/qdev-properties.h" 38 39 //#define DEBUG_SERIAL 40 41 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */ 42 43 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */ 44 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */ 45 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */ 46 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */ 47 48 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */ 49 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */ 50 51 #define UART_IIR_MSI 0x00 /* Modem status interrupt */ 52 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */ 53 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */ 54 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */ 55 #define UART_IIR_CTI 0x0C /* Character Timeout Indication */ 56 57 #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functionning */ 58 #define UART_IIR_FE 0xC0 /* Fifo enabled */ 59 60 /* 61 * These are the definitions for the Modem Control Register 62 */ 63 #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */ 64 #define UART_MCR_OUT2 0x08 /* Out2 complement */ 65 #define UART_MCR_OUT1 0x04 /* Out1 complement */ 66 #define UART_MCR_RTS 0x02 /* RTS complement */ 67 #define UART_MCR_DTR 0x01 /* DTR complement */ 68 69 /* 70 * These are the definitions for the Modem Status Register 71 */ 72 #define UART_MSR_DCD 0x80 /* Data Carrier Detect */ 73 #define UART_MSR_RI 0x40 /* Ring Indicator */ 74 #define UART_MSR_DSR 0x20 /* Data Set Ready */ 75 #define UART_MSR_CTS 0x10 /* Clear to Send */ 76 #define UART_MSR_DDCD 0x08 /* Delta DCD */ 77 #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */ 78 #define UART_MSR_DDSR 0x02 /* Delta DSR */ 79 #define UART_MSR_DCTS 0x01 /* Delta CTS */ 80 #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */ 81 82 #define UART_LSR_TEMT 0x40 /* Transmitter empty */ 83 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */ 84 #define UART_LSR_BI 0x10 /* Break interrupt indicator */ 85 #define UART_LSR_FE 0x08 /* Frame error indicator */ 86 #define UART_LSR_PE 0x04 /* Parity error indicator */ 87 #define UART_LSR_OE 0x02 /* Overrun error indicator */ 88 #define UART_LSR_DR 0x01 /* Receiver data ready */ 89 #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */ 90 91 /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */ 92 93 #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */ 94 #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */ 95 #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */ 96 #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */ 97 98 #define UART_FCR_DMS 0x08 /* DMA Mode Select */ 99 #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */ 100 #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */ 101 #define UART_FCR_FE 0x01 /* FIFO Enable */ 102 103 #define MAX_XMIT_RETRY 4 104 105 #ifdef DEBUG_SERIAL 106 #define DPRINTF(fmt, ...) \ 107 do { fprintf(stderr, "serial: " fmt , ## __VA_ARGS__); } while (0) 108 #else 109 #define DPRINTF(fmt, ...) \ 110 do {} while (0) 111 #endif 112 113 static void serial_receive1(void *opaque, const uint8_t *buf, int size); 114 static void serial_xmit(SerialState *s); 115 116 static inline void recv_fifo_put(SerialState *s, uint8_t chr) 117 { 118 /* Receive overruns do not overwrite FIFO contents. */ 119 if (!fifo8_is_full(&s->recv_fifo)) { 120 fifo8_push(&s->recv_fifo, chr); 121 } else { 122 s->lsr |= UART_LSR_OE; 123 } 124 } 125 126 static void serial_update_irq(SerialState *s) 127 { 128 uint8_t tmp_iir = UART_IIR_NO_INT; 129 130 if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) { 131 tmp_iir = UART_IIR_RLSI; 132 } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) { 133 /* Note that(s->ier & UART_IER_RDI) can mask this interrupt, 134 * this is not in the specification but is observed on existing 135 * hardware. */ 136 tmp_iir = UART_IIR_CTI; 137 } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) && 138 (!(s->fcr & UART_FCR_FE) || 139 s->recv_fifo.num >= s->recv_fifo_itl)) { 140 tmp_iir = UART_IIR_RDI; 141 } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) { 142 tmp_iir = UART_IIR_THRI; 143 } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) { 144 tmp_iir = UART_IIR_MSI; 145 } 146 147 s->iir = tmp_iir | (s->iir & 0xF0); 148 149 if (tmp_iir != UART_IIR_NO_INT) { 150 qemu_irq_raise(s->irq); 151 } else { 152 qemu_irq_lower(s->irq); 153 } 154 } 155 156 static void serial_update_parameters(SerialState *s) 157 { 158 float speed; 159 int parity, data_bits, stop_bits, frame_size; 160 QEMUSerialSetParams ssp; 161 162 /* Start bit. */ 163 frame_size = 1; 164 if (s->lcr & 0x08) { 165 /* Parity bit. */ 166 frame_size++; 167 if (s->lcr & 0x10) 168 parity = 'E'; 169 else 170 parity = 'O'; 171 } else { 172 parity = 'N'; 173 } 174 if (s->lcr & 0x04) { 175 stop_bits = 2; 176 } else { 177 stop_bits = 1; 178 } 179 180 data_bits = (s->lcr & 0x03) + 5; 181 frame_size += data_bits + stop_bits; 182 /* Zero divisor should give about 3500 baud */ 183 speed = (s->divider == 0) ? 3500 : (float) s->baudbase / s->divider; 184 ssp.speed = speed; 185 ssp.parity = parity; 186 ssp.data_bits = data_bits; 187 ssp.stop_bits = stop_bits; 188 s->char_transmit_time = (NANOSECONDS_PER_SECOND / speed) * frame_size; 189 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp); 190 191 DPRINTF("speed=%.2f parity=%c data=%d stop=%d\n", 192 speed, parity, data_bits, stop_bits); 193 } 194 195 static void serial_update_msl(SerialState *s) 196 { 197 uint8_t omsr; 198 int flags; 199 200 timer_del(s->modem_status_poll); 201 202 if (qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM, 203 &flags) == -ENOTSUP) { 204 s->poll_msl = -1; 205 return; 206 } 207 208 omsr = s->msr; 209 210 s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS; 211 s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR; 212 s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD; 213 s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI; 214 215 if (s->msr != omsr) { 216 /* Set delta bits */ 217 s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4)); 218 /* UART_MSR_TERI only if change was from 1 -> 0 */ 219 if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI)) 220 s->msr &= ~UART_MSR_TERI; 221 serial_update_irq(s); 222 } 223 224 /* The real 16550A apparently has a 250ns response latency to line status changes. 225 We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */ 226 227 if (s->poll_msl) { 228 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 229 NANOSECONDS_PER_SECOND / 100); 230 } 231 } 232 233 static gboolean serial_watch_cb(GIOChannel *chan, GIOCondition cond, 234 void *opaque) 235 { 236 SerialState *s = opaque; 237 s->watch_tag = 0; 238 serial_xmit(s); 239 return FALSE; 240 } 241 242 static void serial_xmit(SerialState *s) 243 { 244 do { 245 assert(!(s->lsr & UART_LSR_TEMT)); 246 if (s->tsr_retry == 0) { 247 assert(!(s->lsr & UART_LSR_THRE)); 248 249 if (s->fcr & UART_FCR_FE) { 250 assert(!fifo8_is_empty(&s->xmit_fifo)); 251 s->tsr = fifo8_pop(&s->xmit_fifo); 252 if (!s->xmit_fifo.num) { 253 s->lsr |= UART_LSR_THRE; 254 } 255 } else { 256 s->tsr = s->thr; 257 s->lsr |= UART_LSR_THRE; 258 } 259 if ((s->lsr & UART_LSR_THRE) && !s->thr_ipending) { 260 s->thr_ipending = 1; 261 serial_update_irq(s); 262 } 263 } 264 265 if (s->mcr & UART_MCR_LOOP) { 266 /* in loopback mode, say that we just received a char */ 267 serial_receive1(s, &s->tsr, 1); 268 } else { 269 int rc = qemu_chr_fe_write(&s->chr, &s->tsr, 1); 270 271 if ((rc == 0 || 272 (rc == -1 && errno == EAGAIN)) && 273 s->tsr_retry < MAX_XMIT_RETRY) { 274 assert(s->watch_tag == 0); 275 s->watch_tag = 276 qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP, 277 serial_watch_cb, s); 278 if (s->watch_tag > 0) { 279 s->tsr_retry++; 280 return; 281 } 282 } 283 } 284 s->tsr_retry = 0; 285 286 /* Transmit another byte if it is already available. It is only 287 possible when FIFO is enabled and not empty. */ 288 } while (!(s->lsr & UART_LSR_THRE)); 289 290 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 291 s->lsr |= UART_LSR_TEMT; 292 } 293 294 /* Setter for FCR. 295 is_load flag means, that value is set while loading VM state 296 and interrupt should not be invoked */ 297 static void serial_write_fcr(SerialState *s, uint8_t val) 298 { 299 /* Set fcr - val only has the bits that are supposed to "stick" */ 300 s->fcr = val; 301 302 if (val & UART_FCR_FE) { 303 s->iir |= UART_IIR_FE; 304 /* Set recv_fifo trigger Level */ 305 switch (val & 0xC0) { 306 case UART_FCR_ITL_1: 307 s->recv_fifo_itl = 1; 308 break; 309 case UART_FCR_ITL_2: 310 s->recv_fifo_itl = 4; 311 break; 312 case UART_FCR_ITL_3: 313 s->recv_fifo_itl = 8; 314 break; 315 case UART_FCR_ITL_4: 316 s->recv_fifo_itl = 14; 317 break; 318 } 319 } else { 320 s->iir &= ~UART_IIR_FE; 321 } 322 } 323 324 static void serial_update_tiocm(SerialState *s) 325 { 326 int flags; 327 328 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM, &flags); 329 330 flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR); 331 332 if (s->mcr & UART_MCR_RTS) { 333 flags |= CHR_TIOCM_RTS; 334 } 335 if (s->mcr & UART_MCR_DTR) { 336 flags |= CHR_TIOCM_DTR; 337 } 338 339 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_TIOCM, &flags); 340 } 341 342 static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val, 343 unsigned size) 344 { 345 SerialState *s = opaque; 346 347 addr &= 7; 348 trace_serial_ioport_write(addr, val); 349 switch(addr) { 350 default: 351 case 0: 352 if (s->lcr & UART_LCR_DLAB) { 353 if (size == 1) { 354 s->divider = (s->divider & 0xff00) | val; 355 } else { 356 s->divider = val; 357 } 358 serial_update_parameters(s); 359 } else { 360 s->thr = (uint8_t) val; 361 if(s->fcr & UART_FCR_FE) { 362 /* xmit overruns overwrite data, so make space if needed */ 363 if (fifo8_is_full(&s->xmit_fifo)) { 364 fifo8_pop(&s->xmit_fifo); 365 } 366 fifo8_push(&s->xmit_fifo, s->thr); 367 } 368 s->thr_ipending = 0; 369 s->lsr &= ~UART_LSR_THRE; 370 s->lsr &= ~UART_LSR_TEMT; 371 serial_update_irq(s); 372 if (s->tsr_retry == 0) { 373 serial_xmit(s); 374 } 375 } 376 break; 377 case 1: 378 if (s->lcr & UART_LCR_DLAB) { 379 s->divider = (s->divider & 0x00ff) | (val << 8); 380 serial_update_parameters(s); 381 } else { 382 uint8_t changed = (s->ier ^ val) & 0x0f; 383 s->ier = val & 0x0f; 384 /* If the backend device is a real serial port, turn polling of the modem 385 * status lines on physical port on or off depending on UART_IER_MSI state. 386 */ 387 if ((changed & UART_IER_MSI) && s->poll_msl >= 0) { 388 if (s->ier & UART_IER_MSI) { 389 s->poll_msl = 1; 390 serial_update_msl(s); 391 } else { 392 timer_del(s->modem_status_poll); 393 s->poll_msl = 0; 394 } 395 } 396 397 /* Turning on the THRE interrupt on IER can trigger the interrupt 398 * if LSR.THRE=1, even if it had been masked before by reading IIR. 399 * This is not in the datasheet, but Windows relies on it. It is 400 * unclear if THRE has to be resampled every time THRI becomes 401 * 1, or only on the rising edge. Bochs does the latter, and Windows 402 * always toggles IER to all zeroes and back to all ones, so do the 403 * same. 404 * 405 * If IER.THRI is zero, thr_ipending is not used. Set it to zero 406 * so that the thr_ipending subsection is not migrated. 407 */ 408 if (changed & UART_IER_THRI) { 409 if ((s->ier & UART_IER_THRI) && (s->lsr & UART_LSR_THRE)) { 410 s->thr_ipending = 1; 411 } else { 412 s->thr_ipending = 0; 413 } 414 } 415 416 if (changed) { 417 serial_update_irq(s); 418 } 419 } 420 break; 421 case 2: 422 /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */ 423 if ((val ^ s->fcr) & UART_FCR_FE) { 424 val |= UART_FCR_XFR | UART_FCR_RFR; 425 } 426 427 /* FIFO clear */ 428 429 if (val & UART_FCR_RFR) { 430 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI); 431 timer_del(s->fifo_timeout_timer); 432 s->timeout_ipending = 0; 433 fifo8_reset(&s->recv_fifo); 434 } 435 436 if (val & UART_FCR_XFR) { 437 s->lsr |= UART_LSR_THRE; 438 s->thr_ipending = 1; 439 fifo8_reset(&s->xmit_fifo); 440 } 441 442 serial_write_fcr(s, val & 0xC9); 443 serial_update_irq(s); 444 break; 445 case 3: 446 { 447 int break_enable; 448 s->lcr = val; 449 serial_update_parameters(s); 450 break_enable = (val >> 6) & 1; 451 if (break_enable != s->last_break_enable) { 452 s->last_break_enable = break_enable; 453 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK, 454 &break_enable); 455 } 456 } 457 break; 458 case 4: 459 { 460 int old_mcr = s->mcr; 461 s->mcr = val & 0x1f; 462 if (val & UART_MCR_LOOP) 463 break; 464 465 if (s->poll_msl >= 0 && old_mcr != s->mcr) { 466 serial_update_tiocm(s); 467 /* Update the modem status after a one-character-send wait-time, since there may be a response 468 from the device/computer at the other end of the serial line */ 469 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time); 470 } 471 } 472 break; 473 case 5: 474 break; 475 case 6: 476 break; 477 case 7: 478 s->scr = val; 479 break; 480 } 481 } 482 483 static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size) 484 { 485 SerialState *s = opaque; 486 uint32_t ret; 487 488 addr &= 7; 489 switch(addr) { 490 default: 491 case 0: 492 if (s->lcr & UART_LCR_DLAB) { 493 ret = s->divider & 0xff; 494 } else { 495 if(s->fcr & UART_FCR_FE) { 496 ret = fifo8_is_empty(&s->recv_fifo) ? 497 0 : fifo8_pop(&s->recv_fifo); 498 if (s->recv_fifo.num == 0) { 499 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI); 500 } else { 501 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4); 502 } 503 s->timeout_ipending = 0; 504 } else { 505 ret = s->rbr; 506 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI); 507 } 508 serial_update_irq(s); 509 if (!(s->mcr & UART_MCR_LOOP)) { 510 /* in loopback mode, don't receive any data */ 511 qemu_chr_fe_accept_input(&s->chr); 512 } 513 } 514 break; 515 case 1: 516 if (s->lcr & UART_LCR_DLAB) { 517 ret = (s->divider >> 8) & 0xff; 518 } else { 519 ret = s->ier; 520 } 521 break; 522 case 2: 523 ret = s->iir; 524 if ((ret & UART_IIR_ID) == UART_IIR_THRI) { 525 s->thr_ipending = 0; 526 serial_update_irq(s); 527 } 528 break; 529 case 3: 530 ret = s->lcr; 531 break; 532 case 4: 533 ret = s->mcr; 534 break; 535 case 5: 536 ret = s->lsr; 537 /* Clear break and overrun interrupts */ 538 if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) { 539 s->lsr &= ~(UART_LSR_BI|UART_LSR_OE); 540 serial_update_irq(s); 541 } 542 break; 543 case 6: 544 if (s->mcr & UART_MCR_LOOP) { 545 /* in loopback, the modem output pins are connected to the 546 inputs */ 547 ret = (s->mcr & 0x0c) << 4; 548 ret |= (s->mcr & 0x02) << 3; 549 ret |= (s->mcr & 0x01) << 5; 550 } else { 551 if (s->poll_msl >= 0) 552 serial_update_msl(s); 553 ret = s->msr; 554 /* Clear delta bits & msr int after read, if they were set */ 555 if (s->msr & UART_MSR_ANY_DELTA) { 556 s->msr &= 0xF0; 557 serial_update_irq(s); 558 } 559 } 560 break; 561 case 7: 562 ret = s->scr; 563 break; 564 } 565 trace_serial_ioport_read(addr, ret); 566 return ret; 567 } 568 569 static int serial_can_receive(SerialState *s) 570 { 571 if(s->fcr & UART_FCR_FE) { 572 if (s->recv_fifo.num < UART_FIFO_LENGTH) { 573 /* 574 * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1 575 * if above. If UART_FIFO_LENGTH - fifo.count is advertised the 576 * effect will be to almost always fill the fifo completely before 577 * the guest has a chance to respond, effectively overriding the ITL 578 * that the guest has set. 579 */ 580 return (s->recv_fifo.num <= s->recv_fifo_itl) ? 581 s->recv_fifo_itl - s->recv_fifo.num : 1; 582 } else { 583 return 0; 584 } 585 } else { 586 return !(s->lsr & UART_LSR_DR); 587 } 588 } 589 590 static void serial_receive_break(SerialState *s) 591 { 592 s->rbr = 0; 593 /* When the LSR_DR is set a null byte is pushed into the fifo */ 594 recv_fifo_put(s, '\0'); 595 s->lsr |= UART_LSR_BI | UART_LSR_DR; 596 serial_update_irq(s); 597 } 598 599 /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */ 600 static void fifo_timeout_int (void *opaque) { 601 SerialState *s = opaque; 602 if (s->recv_fifo.num) { 603 s->timeout_ipending = 1; 604 serial_update_irq(s); 605 } 606 } 607 608 static int serial_can_receive1(void *opaque) 609 { 610 SerialState *s = opaque; 611 return serial_can_receive(s); 612 } 613 614 static void serial_receive1(void *opaque, const uint8_t *buf, int size) 615 { 616 SerialState *s = opaque; 617 618 if (s->wakeup) { 619 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER, NULL); 620 } 621 if(s->fcr & UART_FCR_FE) { 622 int i; 623 for (i = 0; i < size; i++) { 624 recv_fifo_put(s, buf[i]); 625 } 626 s->lsr |= UART_LSR_DR; 627 /* call the timeout receive callback in 4 char transmit time */ 628 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4); 629 } else { 630 if (s->lsr & UART_LSR_DR) 631 s->lsr |= UART_LSR_OE; 632 s->rbr = buf[0]; 633 s->lsr |= UART_LSR_DR; 634 } 635 serial_update_irq(s); 636 } 637 638 static void serial_event(void *opaque, QEMUChrEvent event) 639 { 640 SerialState *s = opaque; 641 DPRINTF("event %x\n", event); 642 if (event == CHR_EVENT_BREAK) 643 serial_receive_break(s); 644 } 645 646 static int serial_pre_save(void *opaque) 647 { 648 SerialState *s = opaque; 649 s->fcr_vmstate = s->fcr; 650 651 return 0; 652 } 653 654 static int serial_pre_load(void *opaque) 655 { 656 SerialState *s = opaque; 657 s->thr_ipending = -1; 658 s->poll_msl = -1; 659 return 0; 660 } 661 662 static int serial_post_load(void *opaque, int version_id) 663 { 664 SerialState *s = opaque; 665 666 if (version_id < 3) { 667 s->fcr_vmstate = 0; 668 } 669 if (s->thr_ipending == -1) { 670 s->thr_ipending = ((s->iir & UART_IIR_ID) == UART_IIR_THRI); 671 } 672 673 if (s->tsr_retry > 0) { 674 /* tsr_retry > 0 implies LSR.TEMT = 0 (transmitter not empty). */ 675 if (s->lsr & UART_LSR_TEMT) { 676 error_report("inconsistent state in serial device " 677 "(tsr empty, tsr_retry=%d", s->tsr_retry); 678 return -1; 679 } 680 681 if (s->tsr_retry > MAX_XMIT_RETRY) { 682 s->tsr_retry = MAX_XMIT_RETRY; 683 } 684 685 assert(s->watch_tag == 0); 686 s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP, 687 serial_watch_cb, s); 688 } else { 689 /* tsr_retry == 0 implies LSR.TEMT = 1 (transmitter empty). */ 690 if (!(s->lsr & UART_LSR_TEMT)) { 691 error_report("inconsistent state in serial device " 692 "(tsr not empty, tsr_retry=0"); 693 return -1; 694 } 695 } 696 697 s->last_break_enable = (s->lcr >> 6) & 1; 698 /* Initialize fcr via setter to perform essential side-effects */ 699 serial_write_fcr(s, s->fcr_vmstate); 700 serial_update_parameters(s); 701 return 0; 702 } 703 704 static bool serial_thr_ipending_needed(void *opaque) 705 { 706 SerialState *s = opaque; 707 708 if (s->ier & UART_IER_THRI) { 709 bool expected_value = ((s->iir & UART_IIR_ID) == UART_IIR_THRI); 710 return s->thr_ipending != expected_value; 711 } else { 712 /* LSR.THRE will be sampled again when the interrupt is 713 * enabled. thr_ipending is not used in this case, do 714 * not migrate it. 715 */ 716 return false; 717 } 718 } 719 720 static const VMStateDescription vmstate_serial_thr_ipending = { 721 .name = "serial/thr_ipending", 722 .version_id = 1, 723 .minimum_version_id = 1, 724 .needed = serial_thr_ipending_needed, 725 .fields = (VMStateField[]) { 726 VMSTATE_INT32(thr_ipending, SerialState), 727 VMSTATE_END_OF_LIST() 728 } 729 }; 730 731 static bool serial_tsr_needed(void *opaque) 732 { 733 SerialState *s = (SerialState *)opaque; 734 return s->tsr_retry != 0; 735 } 736 737 static const VMStateDescription vmstate_serial_tsr = { 738 .name = "serial/tsr", 739 .version_id = 1, 740 .minimum_version_id = 1, 741 .needed = serial_tsr_needed, 742 .fields = (VMStateField[]) { 743 VMSTATE_UINT32(tsr_retry, SerialState), 744 VMSTATE_UINT8(thr, SerialState), 745 VMSTATE_UINT8(tsr, SerialState), 746 VMSTATE_END_OF_LIST() 747 } 748 }; 749 750 static bool serial_recv_fifo_needed(void *opaque) 751 { 752 SerialState *s = (SerialState *)opaque; 753 return !fifo8_is_empty(&s->recv_fifo); 754 755 } 756 757 static const VMStateDescription vmstate_serial_recv_fifo = { 758 .name = "serial/recv_fifo", 759 .version_id = 1, 760 .minimum_version_id = 1, 761 .needed = serial_recv_fifo_needed, 762 .fields = (VMStateField[]) { 763 VMSTATE_STRUCT(recv_fifo, SerialState, 1, vmstate_fifo8, Fifo8), 764 VMSTATE_END_OF_LIST() 765 } 766 }; 767 768 static bool serial_xmit_fifo_needed(void *opaque) 769 { 770 SerialState *s = (SerialState *)opaque; 771 return !fifo8_is_empty(&s->xmit_fifo); 772 } 773 774 static const VMStateDescription vmstate_serial_xmit_fifo = { 775 .name = "serial/xmit_fifo", 776 .version_id = 1, 777 .minimum_version_id = 1, 778 .needed = serial_xmit_fifo_needed, 779 .fields = (VMStateField[]) { 780 VMSTATE_STRUCT(xmit_fifo, SerialState, 1, vmstate_fifo8, Fifo8), 781 VMSTATE_END_OF_LIST() 782 } 783 }; 784 785 static bool serial_fifo_timeout_timer_needed(void *opaque) 786 { 787 SerialState *s = (SerialState *)opaque; 788 return timer_pending(s->fifo_timeout_timer); 789 } 790 791 static const VMStateDescription vmstate_serial_fifo_timeout_timer = { 792 .name = "serial/fifo_timeout_timer", 793 .version_id = 1, 794 .minimum_version_id = 1, 795 .needed = serial_fifo_timeout_timer_needed, 796 .fields = (VMStateField[]) { 797 VMSTATE_TIMER_PTR(fifo_timeout_timer, SerialState), 798 VMSTATE_END_OF_LIST() 799 } 800 }; 801 802 static bool serial_timeout_ipending_needed(void *opaque) 803 { 804 SerialState *s = (SerialState *)opaque; 805 return s->timeout_ipending != 0; 806 } 807 808 static const VMStateDescription vmstate_serial_timeout_ipending = { 809 .name = "serial/timeout_ipending", 810 .version_id = 1, 811 .minimum_version_id = 1, 812 .needed = serial_timeout_ipending_needed, 813 .fields = (VMStateField[]) { 814 VMSTATE_INT32(timeout_ipending, SerialState), 815 VMSTATE_END_OF_LIST() 816 } 817 }; 818 819 static bool serial_poll_needed(void *opaque) 820 { 821 SerialState *s = (SerialState *)opaque; 822 return s->poll_msl >= 0; 823 } 824 825 static const VMStateDescription vmstate_serial_poll = { 826 .name = "serial/poll", 827 .version_id = 1, 828 .needed = serial_poll_needed, 829 .minimum_version_id = 1, 830 .fields = (VMStateField[]) { 831 VMSTATE_INT32(poll_msl, SerialState), 832 VMSTATE_TIMER_PTR(modem_status_poll, SerialState), 833 VMSTATE_END_OF_LIST() 834 } 835 }; 836 837 const VMStateDescription vmstate_serial = { 838 .name = "serial", 839 .version_id = 3, 840 .minimum_version_id = 2, 841 .pre_save = serial_pre_save, 842 .pre_load = serial_pre_load, 843 .post_load = serial_post_load, 844 .fields = (VMStateField[]) { 845 VMSTATE_UINT16_V(divider, SerialState, 2), 846 VMSTATE_UINT8(rbr, SerialState), 847 VMSTATE_UINT8(ier, SerialState), 848 VMSTATE_UINT8(iir, SerialState), 849 VMSTATE_UINT8(lcr, SerialState), 850 VMSTATE_UINT8(mcr, SerialState), 851 VMSTATE_UINT8(lsr, SerialState), 852 VMSTATE_UINT8(msr, SerialState), 853 VMSTATE_UINT8(scr, SerialState), 854 VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3), 855 VMSTATE_END_OF_LIST() 856 }, 857 .subsections = (const VMStateDescription*[]) { 858 &vmstate_serial_thr_ipending, 859 &vmstate_serial_tsr, 860 &vmstate_serial_recv_fifo, 861 &vmstate_serial_xmit_fifo, 862 &vmstate_serial_fifo_timeout_timer, 863 &vmstate_serial_timeout_ipending, 864 &vmstate_serial_poll, 865 NULL 866 } 867 }; 868 869 static void serial_reset(void *opaque) 870 { 871 SerialState *s = opaque; 872 873 if (s->watch_tag > 0) { 874 g_source_remove(s->watch_tag); 875 s->watch_tag = 0; 876 } 877 878 s->rbr = 0; 879 s->ier = 0; 880 s->iir = UART_IIR_NO_INT; 881 s->lcr = 0; 882 s->lsr = UART_LSR_TEMT | UART_LSR_THRE; 883 s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS; 884 /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */ 885 s->divider = 0x0C; 886 s->mcr = UART_MCR_OUT2; 887 s->scr = 0; 888 s->tsr_retry = 0; 889 s->char_transmit_time = (NANOSECONDS_PER_SECOND / 9600) * 10; 890 s->poll_msl = 0; 891 892 s->timeout_ipending = 0; 893 timer_del(s->fifo_timeout_timer); 894 timer_del(s->modem_status_poll); 895 896 fifo8_reset(&s->recv_fifo); 897 fifo8_reset(&s->xmit_fifo); 898 899 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 900 901 s->thr_ipending = 0; 902 s->last_break_enable = 0; 903 qemu_irq_lower(s->irq); 904 905 serial_update_msl(s); 906 s->msr &= ~UART_MSR_ANY_DELTA; 907 } 908 909 static int serial_be_change(void *opaque) 910 { 911 SerialState *s = opaque; 912 913 qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1, 914 serial_event, serial_be_change, s, NULL, true); 915 916 serial_update_parameters(s); 917 918 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK, 919 &s->last_break_enable); 920 921 s->poll_msl = (s->ier & UART_IER_MSI) ? 1 : 0; 922 serial_update_msl(s); 923 924 if (s->poll_msl >= 0 && !(s->mcr & UART_MCR_LOOP)) { 925 serial_update_tiocm(s); 926 } 927 928 if (s->watch_tag > 0) { 929 g_source_remove(s->watch_tag); 930 s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP, 931 serial_watch_cb, s); 932 } 933 934 return 0; 935 } 936 937 static void serial_realize(DeviceState *dev, Error **errp) 938 { 939 SerialState *s = SERIAL(dev); 940 941 s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s); 942 943 s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s); 944 qemu_register_reset(serial_reset, s); 945 946 qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1, 947 serial_event, serial_be_change, s, NULL, true); 948 fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH); 949 fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH); 950 serial_reset(s); 951 } 952 953 static void serial_unrealize(DeviceState *dev) 954 { 955 SerialState *s = SERIAL(dev); 956 957 qemu_chr_fe_deinit(&s->chr, false); 958 959 timer_del(s->modem_status_poll); 960 timer_free(s->modem_status_poll); 961 962 timer_del(s->fifo_timeout_timer); 963 timer_free(s->fifo_timeout_timer); 964 965 fifo8_destroy(&s->recv_fifo); 966 fifo8_destroy(&s->xmit_fifo); 967 968 qemu_unregister_reset(serial_reset, s); 969 } 970 971 /* Change the main reference oscillator frequency. */ 972 void serial_set_frequency(SerialState *s, uint32_t frequency) 973 { 974 s->baudbase = frequency; 975 serial_update_parameters(s); 976 } 977 978 const MemoryRegionOps serial_io_ops = { 979 .read = serial_ioport_read, 980 .write = serial_ioport_write, 981 .impl = { 982 .min_access_size = 1, 983 .max_access_size = 1, 984 }, 985 .endianness = DEVICE_LITTLE_ENDIAN, 986 }; 987 988 static void serial_io_realize(DeviceState *dev, Error **errp) 989 { 990 SerialIO *sio = SERIAL_IO(dev); 991 SerialState *s = &sio->serial; 992 Error *local_err = NULL; 993 994 qdev_realize(DEVICE(s), NULL, &local_err); 995 if (local_err) { 996 error_propagate(errp, local_err); 997 return; 998 } 999 1000 memory_region_init_io(&s->io, OBJECT(dev), &serial_io_ops, s, "serial", 8); 1001 sysbus_init_mmio(SYS_BUS_DEVICE(sio), &s->io); 1002 sysbus_init_irq(SYS_BUS_DEVICE(sio), &s->irq); 1003 } 1004 1005 static void serial_io_class_init(ObjectClass *klass, void* data) 1006 { 1007 DeviceClass *dc = DEVICE_CLASS(klass); 1008 1009 dc->realize = serial_io_realize; 1010 /* No dc->vmsd: class has no migratable state */ 1011 } 1012 1013 static void serial_io_instance_init(Object *o) 1014 { 1015 SerialIO *sio = SERIAL_IO(o); 1016 1017 object_initialize_child(o, "serial", &sio->serial, TYPE_SERIAL); 1018 1019 qdev_alias_all_properties(DEVICE(&sio->serial), o); 1020 } 1021 1022 1023 static const TypeInfo serial_io_info = { 1024 .name = TYPE_SERIAL_IO, 1025 .parent = TYPE_SYS_BUS_DEVICE, 1026 .instance_size = sizeof(SerialIO), 1027 .instance_init = serial_io_instance_init, 1028 .class_init = serial_io_class_init, 1029 }; 1030 1031 static Property serial_properties[] = { 1032 DEFINE_PROP_CHR("chardev", SerialState, chr), 1033 DEFINE_PROP_UINT32("baudbase", SerialState, baudbase, 115200), 1034 DEFINE_PROP_END_OF_LIST(), 1035 }; 1036 1037 static void serial_class_init(ObjectClass *klass, void* data) 1038 { 1039 DeviceClass *dc = DEVICE_CLASS(klass); 1040 1041 /* internal device for serialio/serialmm, not user-creatable */ 1042 dc->user_creatable = false; 1043 dc->realize = serial_realize; 1044 dc->unrealize = serial_unrealize; 1045 device_class_set_props(dc, serial_properties); 1046 } 1047 1048 static const TypeInfo serial_info = { 1049 .name = TYPE_SERIAL, 1050 .parent = TYPE_DEVICE, 1051 .instance_size = sizeof(SerialState), 1052 .class_init = serial_class_init, 1053 }; 1054 1055 /* Memory mapped interface */ 1056 static uint64_t serial_mm_read(void *opaque, hwaddr addr, 1057 unsigned size) 1058 { 1059 SerialMM *s = SERIAL_MM(opaque); 1060 return serial_ioport_read(&s->serial, addr >> s->regshift, 1); 1061 } 1062 1063 static void serial_mm_write(void *opaque, hwaddr addr, 1064 uint64_t value, unsigned size) 1065 { 1066 SerialMM *s = SERIAL_MM(opaque); 1067 value &= 255; 1068 serial_ioport_write(&s->serial, addr >> s->regshift, value, 1); 1069 } 1070 1071 static const MemoryRegionOps serial_mm_ops[3] = { 1072 [DEVICE_NATIVE_ENDIAN] = { 1073 .read = serial_mm_read, 1074 .write = serial_mm_write, 1075 .endianness = DEVICE_NATIVE_ENDIAN, 1076 .valid.max_access_size = 8, 1077 .impl.max_access_size = 8, 1078 }, 1079 [DEVICE_LITTLE_ENDIAN] = { 1080 .read = serial_mm_read, 1081 .write = serial_mm_write, 1082 .endianness = DEVICE_LITTLE_ENDIAN, 1083 .valid.max_access_size = 8, 1084 .impl.max_access_size = 8, 1085 }, 1086 [DEVICE_BIG_ENDIAN] = { 1087 .read = serial_mm_read, 1088 .write = serial_mm_write, 1089 .endianness = DEVICE_BIG_ENDIAN, 1090 .valid.max_access_size = 8, 1091 .impl.max_access_size = 8, 1092 }, 1093 }; 1094 1095 static void serial_mm_realize(DeviceState *dev, Error **errp) 1096 { 1097 SerialMM *smm = SERIAL_MM(dev); 1098 SerialState *s = &smm->serial; 1099 Error *local_err = NULL; 1100 1101 qdev_realize(DEVICE(s), NULL, &local_err); 1102 if (local_err) { 1103 error_propagate(errp, local_err); 1104 return; 1105 } 1106 1107 memory_region_init_io(&s->io, OBJECT(dev), 1108 &serial_mm_ops[smm->endianness], smm, "serial", 1109 8 << smm->regshift); 1110 sysbus_init_mmio(SYS_BUS_DEVICE(smm), &s->io); 1111 sysbus_init_irq(SYS_BUS_DEVICE(smm), &smm->serial.irq); 1112 } 1113 1114 static const VMStateDescription vmstate_serial_mm = { 1115 .name = "serial", 1116 .version_id = 3, 1117 .minimum_version_id = 2, 1118 .fields = (VMStateField[]) { 1119 VMSTATE_STRUCT(serial, SerialMM, 0, vmstate_serial, SerialState), 1120 VMSTATE_END_OF_LIST() 1121 } 1122 }; 1123 1124 SerialMM *serial_mm_init(MemoryRegion *address_space, 1125 hwaddr base, int regshift, 1126 qemu_irq irq, int baudbase, 1127 Chardev *chr, enum device_endian end) 1128 { 1129 SerialMM *smm = SERIAL_MM(qdev_new(TYPE_SERIAL_MM)); 1130 MemoryRegion *mr; 1131 1132 qdev_prop_set_uint8(DEVICE(smm), "regshift", regshift); 1133 qdev_prop_set_uint32(DEVICE(smm), "baudbase", baudbase); 1134 qdev_prop_set_chr(DEVICE(smm), "chardev", chr); 1135 qdev_set_legacy_instance_id(DEVICE(smm), base, 2); 1136 qdev_prop_set_uint8(DEVICE(smm), "endianness", end); 1137 sysbus_realize_and_unref(SYS_BUS_DEVICE(smm), &error_fatal); 1138 1139 sysbus_connect_irq(SYS_BUS_DEVICE(smm), 0, irq); 1140 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(smm), 0); 1141 memory_region_add_subregion(address_space, base, mr); 1142 1143 return smm; 1144 } 1145 1146 static void serial_mm_instance_init(Object *o) 1147 { 1148 SerialMM *smm = SERIAL_MM(o); 1149 1150 object_initialize_child(o, "serial", &smm->serial, TYPE_SERIAL); 1151 1152 qdev_alias_all_properties(DEVICE(&smm->serial), o); 1153 } 1154 1155 static Property serial_mm_properties[] = { 1156 /* 1157 * Set the spacing between adjacent memory-mapped UART registers. 1158 * Each register will be at (1 << regshift) bytes after the 1159 * previous one. 1160 */ 1161 DEFINE_PROP_UINT8("regshift", SerialMM, regshift, 0), 1162 DEFINE_PROP_UINT8("endianness", SerialMM, endianness, DEVICE_NATIVE_ENDIAN), 1163 DEFINE_PROP_END_OF_LIST(), 1164 }; 1165 1166 static void serial_mm_class_init(ObjectClass *oc, void *data) 1167 { 1168 DeviceClass *dc = DEVICE_CLASS(oc); 1169 1170 device_class_set_props(dc, serial_mm_properties); 1171 dc->realize = serial_mm_realize; 1172 dc->vmsd = &vmstate_serial_mm; 1173 } 1174 1175 static const TypeInfo serial_mm_info = { 1176 .name = TYPE_SERIAL_MM, 1177 .parent = TYPE_SYS_BUS_DEVICE, 1178 .class_init = serial_mm_class_init, 1179 .instance_init = serial_mm_instance_init, 1180 .instance_size = sizeof(SerialMM), 1181 .class_init = serial_mm_class_init, 1182 }; 1183 1184 static void serial_register_types(void) 1185 { 1186 type_register_static(&serial_info); 1187 type_register_static(&serial_io_info); 1188 type_register_static(&serial_mm_info); 1189 } 1190 1191 type_init(serial_register_types) 1192