1 /* 2 * QEMU 16550A UART emulation 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * Copyright (c) 2008 Citrix Systems, Inc. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "hw/char/serial.h" 27 #include "sysemu/char.h" 28 #include "qemu/timer.h" 29 #include "exec/address-spaces.h" 30 #include "qemu/error-report.h" 31 32 //#define DEBUG_SERIAL 33 34 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */ 35 36 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */ 37 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */ 38 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */ 39 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */ 40 41 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */ 42 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */ 43 44 #define UART_IIR_MSI 0x00 /* Modem status interrupt */ 45 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */ 46 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */ 47 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */ 48 #define UART_IIR_CTI 0x0C /* Character Timeout Indication */ 49 50 #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functionning */ 51 #define UART_IIR_FE 0xC0 /* Fifo enabled */ 52 53 /* 54 * These are the definitions for the Modem Control Register 55 */ 56 #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */ 57 #define UART_MCR_OUT2 0x08 /* Out2 complement */ 58 #define UART_MCR_OUT1 0x04 /* Out1 complement */ 59 #define UART_MCR_RTS 0x02 /* RTS complement */ 60 #define UART_MCR_DTR 0x01 /* DTR complement */ 61 62 /* 63 * These are the definitions for the Modem Status Register 64 */ 65 #define UART_MSR_DCD 0x80 /* Data Carrier Detect */ 66 #define UART_MSR_RI 0x40 /* Ring Indicator */ 67 #define UART_MSR_DSR 0x20 /* Data Set Ready */ 68 #define UART_MSR_CTS 0x10 /* Clear to Send */ 69 #define UART_MSR_DDCD 0x08 /* Delta DCD */ 70 #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */ 71 #define UART_MSR_DDSR 0x02 /* Delta DSR */ 72 #define UART_MSR_DCTS 0x01 /* Delta CTS */ 73 #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */ 74 75 #define UART_LSR_TEMT 0x40 /* Transmitter empty */ 76 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */ 77 #define UART_LSR_BI 0x10 /* Break interrupt indicator */ 78 #define UART_LSR_FE 0x08 /* Frame error indicator */ 79 #define UART_LSR_PE 0x04 /* Parity error indicator */ 80 #define UART_LSR_OE 0x02 /* Overrun error indicator */ 81 #define UART_LSR_DR 0x01 /* Receiver data ready */ 82 #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */ 83 84 /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */ 85 86 #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */ 87 #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */ 88 #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */ 89 #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */ 90 91 #define UART_FCR_DMS 0x08 /* DMA Mode Select */ 92 #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */ 93 #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */ 94 #define UART_FCR_FE 0x01 /* FIFO Enable */ 95 96 #define MAX_XMIT_RETRY 4 97 98 #ifdef DEBUG_SERIAL 99 #define DPRINTF(fmt, ...) \ 100 do { fprintf(stderr, "serial: " fmt , ## __VA_ARGS__); } while (0) 101 #else 102 #define DPRINTF(fmt, ...) \ 103 do {} while (0) 104 #endif 105 106 static void serial_receive1(void *opaque, const uint8_t *buf, int size); 107 108 static inline void recv_fifo_put(SerialState *s, uint8_t chr) 109 { 110 /* Receive overruns do not overwrite FIFO contents. */ 111 if (!fifo8_is_full(&s->recv_fifo)) { 112 fifo8_push(&s->recv_fifo, chr); 113 } else { 114 s->lsr |= UART_LSR_OE; 115 } 116 } 117 118 static void serial_update_irq(SerialState *s) 119 { 120 uint8_t tmp_iir = UART_IIR_NO_INT; 121 122 if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) { 123 tmp_iir = UART_IIR_RLSI; 124 } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) { 125 /* Note that(s->ier & UART_IER_RDI) can mask this interrupt, 126 * this is not in the specification but is observed on existing 127 * hardware. */ 128 tmp_iir = UART_IIR_CTI; 129 } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) && 130 (!(s->fcr & UART_FCR_FE) || 131 s->recv_fifo.num >= s->recv_fifo_itl)) { 132 tmp_iir = UART_IIR_RDI; 133 } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) { 134 tmp_iir = UART_IIR_THRI; 135 } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) { 136 tmp_iir = UART_IIR_MSI; 137 } 138 139 s->iir = tmp_iir | (s->iir & 0xF0); 140 141 if (tmp_iir != UART_IIR_NO_INT) { 142 qemu_irq_raise(s->irq); 143 } else { 144 qemu_irq_lower(s->irq); 145 } 146 } 147 148 static void serial_update_parameters(SerialState *s) 149 { 150 int speed, parity, data_bits, stop_bits, frame_size; 151 QEMUSerialSetParams ssp; 152 153 if (s->divider == 0) 154 return; 155 156 /* Start bit. */ 157 frame_size = 1; 158 if (s->lcr & 0x08) { 159 /* Parity bit. */ 160 frame_size++; 161 if (s->lcr & 0x10) 162 parity = 'E'; 163 else 164 parity = 'O'; 165 } else { 166 parity = 'N'; 167 } 168 if (s->lcr & 0x04) 169 stop_bits = 2; 170 else 171 stop_bits = 1; 172 173 data_bits = (s->lcr & 0x03) + 5; 174 frame_size += data_bits + stop_bits; 175 speed = s->baudbase / s->divider; 176 ssp.speed = speed; 177 ssp.parity = parity; 178 ssp.data_bits = data_bits; 179 ssp.stop_bits = stop_bits; 180 s->char_transmit_time = (get_ticks_per_sec() / speed) * frame_size; 181 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp); 182 183 DPRINTF("speed=%d parity=%c data=%d stop=%d\n", 184 speed, parity, data_bits, stop_bits); 185 } 186 187 static void serial_update_msl(SerialState *s) 188 { 189 uint8_t omsr; 190 int flags; 191 192 timer_del(s->modem_status_poll); 193 194 if (qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_GET_TIOCM, &flags) == -ENOTSUP) { 195 s->poll_msl = -1; 196 return; 197 } 198 199 omsr = s->msr; 200 201 s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS; 202 s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR; 203 s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD; 204 s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI; 205 206 if (s->msr != omsr) { 207 /* Set delta bits */ 208 s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4)); 209 /* UART_MSR_TERI only if change was from 1 -> 0 */ 210 if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI)) 211 s->msr &= ~UART_MSR_TERI; 212 serial_update_irq(s); 213 } 214 215 /* The real 16550A apparently has a 250ns response latency to line status changes. 216 We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */ 217 218 if (s->poll_msl) 219 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + get_ticks_per_sec() / 100); 220 } 221 222 static gboolean serial_xmit(GIOChannel *chan, GIOCondition cond, void *opaque) 223 { 224 SerialState *s = opaque; 225 226 do { 227 assert(!(s->lsr & UART_LSR_TEMT)); 228 if (s->tsr_retry <= 0) { 229 assert(!(s->lsr & UART_LSR_THRE)); 230 231 if (s->fcr & UART_FCR_FE) { 232 assert(!fifo8_is_empty(&s->xmit_fifo)); 233 s->tsr = fifo8_pop(&s->xmit_fifo); 234 if (!s->xmit_fifo.num) { 235 s->lsr |= UART_LSR_THRE; 236 } 237 } else { 238 s->tsr = s->thr; 239 s->lsr |= UART_LSR_THRE; 240 } 241 if ((s->lsr & UART_LSR_THRE) && !s->thr_ipending) { 242 s->thr_ipending = 1; 243 serial_update_irq(s); 244 } 245 } 246 247 if (s->mcr & UART_MCR_LOOP) { 248 /* in loopback mode, say that we just received a char */ 249 serial_receive1(s, &s->tsr, 1); 250 } else if (qemu_chr_fe_write(s->chr, &s->tsr, 1) != 1) { 251 if (s->tsr_retry >= 0 && s->tsr_retry < MAX_XMIT_RETRY && 252 qemu_chr_fe_add_watch(s->chr, G_IO_OUT|G_IO_HUP, 253 serial_xmit, s) > 0) { 254 s->tsr_retry++; 255 return FALSE; 256 } 257 s->tsr_retry = 0; 258 } else { 259 s->tsr_retry = 0; 260 } 261 262 /* Transmit another byte if it is already available. It is only 263 possible when FIFO is enabled and not empty. */ 264 } while (!(s->lsr & UART_LSR_THRE)); 265 266 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 267 s->lsr |= UART_LSR_TEMT; 268 269 return FALSE; 270 } 271 272 273 /* Setter for FCR. 274 is_load flag means, that value is set while loading VM state 275 and interrupt should not be invoked */ 276 static void serial_write_fcr(SerialState *s, uint8_t val) 277 { 278 /* Set fcr - val only has the bits that are supposed to "stick" */ 279 s->fcr = val; 280 281 if (val & UART_FCR_FE) { 282 s->iir |= UART_IIR_FE; 283 /* Set recv_fifo trigger Level */ 284 switch (val & 0xC0) { 285 case UART_FCR_ITL_1: 286 s->recv_fifo_itl = 1; 287 break; 288 case UART_FCR_ITL_2: 289 s->recv_fifo_itl = 4; 290 break; 291 case UART_FCR_ITL_3: 292 s->recv_fifo_itl = 8; 293 break; 294 case UART_FCR_ITL_4: 295 s->recv_fifo_itl = 14; 296 break; 297 } 298 } else { 299 s->iir &= ~UART_IIR_FE; 300 } 301 } 302 303 static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val, 304 unsigned size) 305 { 306 SerialState *s = opaque; 307 308 addr &= 7; 309 DPRINTF("write addr=0x%" HWADDR_PRIx " val=0x%" PRIx64 "\n", addr, val); 310 switch(addr) { 311 default: 312 case 0: 313 if (s->lcr & UART_LCR_DLAB) { 314 s->divider = (s->divider & 0xff00) | val; 315 serial_update_parameters(s); 316 } else { 317 s->thr = (uint8_t) val; 318 if(s->fcr & UART_FCR_FE) { 319 /* xmit overruns overwrite data, so make space if needed */ 320 if (fifo8_is_full(&s->xmit_fifo)) { 321 fifo8_pop(&s->xmit_fifo); 322 } 323 fifo8_push(&s->xmit_fifo, s->thr); 324 } 325 s->thr_ipending = 0; 326 s->lsr &= ~UART_LSR_THRE; 327 s->lsr &= ~UART_LSR_TEMT; 328 serial_update_irq(s); 329 if (s->tsr_retry <= 0) { 330 serial_xmit(NULL, G_IO_OUT, s); 331 } 332 } 333 break; 334 case 1: 335 if (s->lcr & UART_LCR_DLAB) { 336 s->divider = (s->divider & 0x00ff) | (val << 8); 337 serial_update_parameters(s); 338 } else { 339 uint8_t changed = (s->ier ^ val) & 0x0f; 340 s->ier = val & 0x0f; 341 /* If the backend device is a real serial port, turn polling of the modem 342 * status lines on physical port on or off depending on UART_IER_MSI state. 343 */ 344 if ((changed & UART_IER_MSI) && s->poll_msl >= 0) { 345 if (s->ier & UART_IER_MSI) { 346 s->poll_msl = 1; 347 serial_update_msl(s); 348 } else { 349 timer_del(s->modem_status_poll); 350 s->poll_msl = 0; 351 } 352 } 353 354 /* Turning on the THRE interrupt on IER can trigger the interrupt 355 * if LSR.THRE=1, even if it had been masked before by reading IIR. 356 * This is not in the datasheet, but Windows relies on it. It is 357 * unclear if THRE has to be resampled every time THRI becomes 358 * 1, or only on the rising edge. Bochs does the latter, and Windows 359 * always toggles IER to all zeroes and back to all ones, so do the 360 * same. 361 * 362 * If IER.THRI is zero, thr_ipending is not used. Set it to zero 363 * so that the thr_ipending subsection is not migrated. 364 */ 365 if (changed & UART_IER_THRI) { 366 if ((s->ier & UART_IER_THRI) && (s->lsr & UART_LSR_THRE)) { 367 s->thr_ipending = 1; 368 } else { 369 s->thr_ipending = 0; 370 } 371 } 372 373 if (changed) { 374 serial_update_irq(s); 375 } 376 } 377 break; 378 case 2: 379 /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */ 380 if ((val ^ s->fcr) & UART_FCR_FE) { 381 val |= UART_FCR_XFR | UART_FCR_RFR; 382 } 383 384 /* FIFO clear */ 385 386 if (val & UART_FCR_RFR) { 387 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI); 388 timer_del(s->fifo_timeout_timer); 389 s->timeout_ipending = 0; 390 fifo8_reset(&s->recv_fifo); 391 } 392 393 if (val & UART_FCR_XFR) { 394 s->lsr |= UART_LSR_THRE; 395 s->thr_ipending = 1; 396 fifo8_reset(&s->xmit_fifo); 397 } 398 399 serial_write_fcr(s, val & 0xC9); 400 serial_update_irq(s); 401 break; 402 case 3: 403 { 404 int break_enable; 405 s->lcr = val; 406 serial_update_parameters(s); 407 break_enable = (val >> 6) & 1; 408 if (break_enable != s->last_break_enable) { 409 s->last_break_enable = break_enable; 410 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK, 411 &break_enable); 412 } 413 } 414 break; 415 case 4: 416 { 417 int flags; 418 int old_mcr = s->mcr; 419 s->mcr = val & 0x1f; 420 if (val & UART_MCR_LOOP) 421 break; 422 423 if (s->poll_msl >= 0 && old_mcr != s->mcr) { 424 425 qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_GET_TIOCM, &flags); 426 427 flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR); 428 429 if (val & UART_MCR_RTS) 430 flags |= CHR_TIOCM_RTS; 431 if (val & UART_MCR_DTR) 432 flags |= CHR_TIOCM_DTR; 433 434 qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_SET_TIOCM, &flags); 435 /* Update the modem status after a one-character-send wait-time, since there may be a response 436 from the device/computer at the other end of the serial line */ 437 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time); 438 } 439 } 440 break; 441 case 5: 442 break; 443 case 6: 444 break; 445 case 7: 446 s->scr = val; 447 break; 448 } 449 } 450 451 static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size) 452 { 453 SerialState *s = opaque; 454 uint32_t ret; 455 456 addr &= 7; 457 switch(addr) { 458 default: 459 case 0: 460 if (s->lcr & UART_LCR_DLAB) { 461 ret = s->divider & 0xff; 462 } else { 463 if(s->fcr & UART_FCR_FE) { 464 ret = fifo8_is_empty(&s->recv_fifo) ? 465 0 : fifo8_pop(&s->recv_fifo); 466 if (s->recv_fifo.num == 0) { 467 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI); 468 } else { 469 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4); 470 } 471 s->timeout_ipending = 0; 472 } else { 473 ret = s->rbr; 474 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI); 475 } 476 serial_update_irq(s); 477 if (!(s->mcr & UART_MCR_LOOP)) { 478 /* in loopback mode, don't receive any data */ 479 qemu_chr_accept_input(s->chr); 480 } 481 } 482 break; 483 case 1: 484 if (s->lcr & UART_LCR_DLAB) { 485 ret = (s->divider >> 8) & 0xff; 486 } else { 487 ret = s->ier; 488 } 489 break; 490 case 2: 491 ret = s->iir; 492 if ((ret & UART_IIR_ID) == UART_IIR_THRI) { 493 s->thr_ipending = 0; 494 serial_update_irq(s); 495 } 496 break; 497 case 3: 498 ret = s->lcr; 499 break; 500 case 4: 501 ret = s->mcr; 502 break; 503 case 5: 504 ret = s->lsr; 505 /* Clear break and overrun interrupts */ 506 if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) { 507 s->lsr &= ~(UART_LSR_BI|UART_LSR_OE); 508 serial_update_irq(s); 509 } 510 break; 511 case 6: 512 if (s->mcr & UART_MCR_LOOP) { 513 /* in loopback, the modem output pins are connected to the 514 inputs */ 515 ret = (s->mcr & 0x0c) << 4; 516 ret |= (s->mcr & 0x02) << 3; 517 ret |= (s->mcr & 0x01) << 5; 518 } else { 519 if (s->poll_msl >= 0) 520 serial_update_msl(s); 521 ret = s->msr; 522 /* Clear delta bits & msr int after read, if they were set */ 523 if (s->msr & UART_MSR_ANY_DELTA) { 524 s->msr &= 0xF0; 525 serial_update_irq(s); 526 } 527 } 528 break; 529 case 7: 530 ret = s->scr; 531 break; 532 } 533 DPRINTF("read addr=0x%" HWADDR_PRIx " val=0x%02x\n", addr, ret); 534 return ret; 535 } 536 537 static int serial_can_receive(SerialState *s) 538 { 539 if(s->fcr & UART_FCR_FE) { 540 if (s->recv_fifo.num < UART_FIFO_LENGTH) { 541 /* 542 * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1 543 * if above. If UART_FIFO_LENGTH - fifo.count is advertised the 544 * effect will be to almost always fill the fifo completely before 545 * the guest has a chance to respond, effectively overriding the ITL 546 * that the guest has set. 547 */ 548 return (s->recv_fifo.num <= s->recv_fifo_itl) ? 549 s->recv_fifo_itl - s->recv_fifo.num : 1; 550 } else { 551 return 0; 552 } 553 } else { 554 return !(s->lsr & UART_LSR_DR); 555 } 556 } 557 558 static void serial_receive_break(SerialState *s) 559 { 560 s->rbr = 0; 561 /* When the LSR_DR is set a null byte is pushed into the fifo */ 562 recv_fifo_put(s, '\0'); 563 s->lsr |= UART_LSR_BI | UART_LSR_DR; 564 serial_update_irq(s); 565 } 566 567 /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */ 568 static void fifo_timeout_int (void *opaque) { 569 SerialState *s = opaque; 570 if (s->recv_fifo.num) { 571 s->timeout_ipending = 1; 572 serial_update_irq(s); 573 } 574 } 575 576 static int serial_can_receive1(void *opaque) 577 { 578 SerialState *s = opaque; 579 return serial_can_receive(s); 580 } 581 582 static void serial_receive1(void *opaque, const uint8_t *buf, int size) 583 { 584 SerialState *s = opaque; 585 586 if (s->wakeup) { 587 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER); 588 } 589 if(s->fcr & UART_FCR_FE) { 590 int i; 591 for (i = 0; i < size; i++) { 592 recv_fifo_put(s, buf[i]); 593 } 594 s->lsr |= UART_LSR_DR; 595 /* call the timeout receive callback in 4 char transmit time */ 596 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4); 597 } else { 598 if (s->lsr & UART_LSR_DR) 599 s->lsr |= UART_LSR_OE; 600 s->rbr = buf[0]; 601 s->lsr |= UART_LSR_DR; 602 } 603 serial_update_irq(s); 604 } 605 606 static void serial_event(void *opaque, int event) 607 { 608 SerialState *s = opaque; 609 DPRINTF("event %x\n", event); 610 if (event == CHR_EVENT_BREAK) 611 serial_receive_break(s); 612 } 613 614 static void serial_pre_save(void *opaque) 615 { 616 SerialState *s = opaque; 617 s->fcr_vmstate = s->fcr; 618 } 619 620 static int serial_pre_load(void *opaque) 621 { 622 SerialState *s = opaque; 623 s->thr_ipending = -1; 624 s->poll_msl = -1; 625 return 0; 626 } 627 628 static int serial_post_load(void *opaque, int version_id) 629 { 630 SerialState *s = opaque; 631 632 if (version_id < 3) { 633 s->fcr_vmstate = 0; 634 } 635 if (s->thr_ipending == -1) { 636 s->thr_ipending = ((s->iir & UART_IIR_ID) == UART_IIR_THRI); 637 } 638 s->last_break_enable = (s->lcr >> 6) & 1; 639 /* Initialize fcr via setter to perform essential side-effects */ 640 serial_write_fcr(s, s->fcr_vmstate); 641 serial_update_parameters(s); 642 return 0; 643 } 644 645 static bool serial_thr_ipending_needed(void *opaque) 646 { 647 SerialState *s = opaque; 648 649 if (s->ier & UART_IER_THRI) { 650 bool expected_value = ((s->iir & UART_IIR_ID) == UART_IIR_THRI); 651 return s->thr_ipending != expected_value; 652 } else { 653 /* LSR.THRE will be sampled again when the interrupt is 654 * enabled. thr_ipending is not used in this case, do 655 * not migrate it. 656 */ 657 return false; 658 } 659 } 660 661 static const VMStateDescription vmstate_serial_thr_ipending = { 662 .name = "serial/thr_ipending", 663 .version_id = 1, 664 .minimum_version_id = 1, 665 .needed = serial_thr_ipending_needed, 666 .fields = (VMStateField[]) { 667 VMSTATE_INT32(thr_ipending, SerialState), 668 VMSTATE_END_OF_LIST() 669 } 670 }; 671 672 static bool serial_tsr_needed(void *opaque) 673 { 674 SerialState *s = (SerialState *)opaque; 675 return s->tsr_retry != 0; 676 } 677 678 static const VMStateDescription vmstate_serial_tsr = { 679 .name = "serial/tsr", 680 .version_id = 1, 681 .minimum_version_id = 1, 682 .needed = serial_tsr_needed, 683 .fields = (VMStateField[]) { 684 VMSTATE_INT32(tsr_retry, SerialState), 685 VMSTATE_UINT8(thr, SerialState), 686 VMSTATE_UINT8(tsr, SerialState), 687 VMSTATE_END_OF_LIST() 688 } 689 }; 690 691 static bool serial_recv_fifo_needed(void *opaque) 692 { 693 SerialState *s = (SerialState *)opaque; 694 return !fifo8_is_empty(&s->recv_fifo); 695 696 } 697 698 static const VMStateDescription vmstate_serial_recv_fifo = { 699 .name = "serial/recv_fifo", 700 .version_id = 1, 701 .minimum_version_id = 1, 702 .needed = serial_recv_fifo_needed, 703 .fields = (VMStateField[]) { 704 VMSTATE_STRUCT(recv_fifo, SerialState, 1, vmstate_fifo8, Fifo8), 705 VMSTATE_END_OF_LIST() 706 } 707 }; 708 709 static bool serial_xmit_fifo_needed(void *opaque) 710 { 711 SerialState *s = (SerialState *)opaque; 712 return !fifo8_is_empty(&s->xmit_fifo); 713 } 714 715 static const VMStateDescription vmstate_serial_xmit_fifo = { 716 .name = "serial/xmit_fifo", 717 .version_id = 1, 718 .minimum_version_id = 1, 719 .needed = serial_xmit_fifo_needed, 720 .fields = (VMStateField[]) { 721 VMSTATE_STRUCT(xmit_fifo, SerialState, 1, vmstate_fifo8, Fifo8), 722 VMSTATE_END_OF_LIST() 723 } 724 }; 725 726 static bool serial_fifo_timeout_timer_needed(void *opaque) 727 { 728 SerialState *s = (SerialState *)opaque; 729 return timer_pending(s->fifo_timeout_timer); 730 } 731 732 static const VMStateDescription vmstate_serial_fifo_timeout_timer = { 733 .name = "serial/fifo_timeout_timer", 734 .version_id = 1, 735 .minimum_version_id = 1, 736 .needed = serial_fifo_timeout_timer_needed, 737 .fields = (VMStateField[]) { 738 VMSTATE_TIMER_PTR(fifo_timeout_timer, SerialState), 739 VMSTATE_END_OF_LIST() 740 } 741 }; 742 743 static bool serial_timeout_ipending_needed(void *opaque) 744 { 745 SerialState *s = (SerialState *)opaque; 746 return s->timeout_ipending != 0; 747 } 748 749 static const VMStateDescription vmstate_serial_timeout_ipending = { 750 .name = "serial/timeout_ipending", 751 .version_id = 1, 752 .minimum_version_id = 1, 753 .needed = serial_timeout_ipending_needed, 754 .fields = (VMStateField[]) { 755 VMSTATE_INT32(timeout_ipending, SerialState), 756 VMSTATE_END_OF_LIST() 757 } 758 }; 759 760 static bool serial_poll_needed(void *opaque) 761 { 762 SerialState *s = (SerialState *)opaque; 763 return s->poll_msl >= 0; 764 } 765 766 static const VMStateDescription vmstate_serial_poll = { 767 .name = "serial/poll", 768 .version_id = 1, 769 .needed = serial_poll_needed, 770 .minimum_version_id = 1, 771 .fields = (VMStateField[]) { 772 VMSTATE_INT32(poll_msl, SerialState), 773 VMSTATE_TIMER_PTR(modem_status_poll, SerialState), 774 VMSTATE_END_OF_LIST() 775 } 776 }; 777 778 const VMStateDescription vmstate_serial = { 779 .name = "serial", 780 .version_id = 3, 781 .minimum_version_id = 2, 782 .pre_save = serial_pre_save, 783 .pre_load = serial_pre_load, 784 .post_load = serial_post_load, 785 .fields = (VMStateField[]) { 786 VMSTATE_UINT16_V(divider, SerialState, 2), 787 VMSTATE_UINT8(rbr, SerialState), 788 VMSTATE_UINT8(ier, SerialState), 789 VMSTATE_UINT8(iir, SerialState), 790 VMSTATE_UINT8(lcr, SerialState), 791 VMSTATE_UINT8(mcr, SerialState), 792 VMSTATE_UINT8(lsr, SerialState), 793 VMSTATE_UINT8(msr, SerialState), 794 VMSTATE_UINT8(scr, SerialState), 795 VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3), 796 VMSTATE_END_OF_LIST() 797 }, 798 .subsections = (const VMStateDescription*[]) { 799 &vmstate_serial_thr_ipending, 800 &vmstate_serial_tsr, 801 &vmstate_serial_recv_fifo, 802 &vmstate_serial_xmit_fifo, 803 &vmstate_serial_fifo_timeout_timer, 804 &vmstate_serial_timeout_ipending, 805 &vmstate_serial_poll, 806 NULL 807 } 808 }; 809 810 static void serial_reset(void *opaque) 811 { 812 SerialState *s = opaque; 813 814 s->rbr = 0; 815 s->ier = 0; 816 s->iir = UART_IIR_NO_INT; 817 s->lcr = 0; 818 s->lsr = UART_LSR_TEMT | UART_LSR_THRE; 819 s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS; 820 /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */ 821 s->divider = 0x0C; 822 s->mcr = UART_MCR_OUT2; 823 s->scr = 0; 824 s->tsr_retry = 0; 825 s->char_transmit_time = (get_ticks_per_sec() / 9600) * 10; 826 s->poll_msl = 0; 827 828 s->timeout_ipending = 0; 829 timer_del(s->fifo_timeout_timer); 830 timer_del(s->modem_status_poll); 831 832 fifo8_reset(&s->recv_fifo); 833 fifo8_reset(&s->xmit_fifo); 834 835 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 836 837 s->thr_ipending = 0; 838 s->last_break_enable = 0; 839 qemu_irq_lower(s->irq); 840 841 serial_update_msl(s); 842 s->msr &= ~UART_MSR_ANY_DELTA; 843 } 844 845 void serial_realize_core(SerialState *s, Error **errp) 846 { 847 if (!s->chr) { 848 error_setg(errp, "Can't create serial device, empty char device"); 849 return; 850 } 851 852 s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s); 853 854 s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s); 855 qemu_register_reset(serial_reset, s); 856 857 qemu_chr_add_handlers(s->chr, serial_can_receive1, serial_receive1, 858 serial_event, s); 859 fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH); 860 fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH); 861 serial_reset(s); 862 } 863 864 void serial_exit_core(SerialState *s) 865 { 866 qemu_chr_add_handlers(s->chr, NULL, NULL, NULL, NULL); 867 qemu_unregister_reset(serial_reset, s); 868 } 869 870 /* Change the main reference oscillator frequency. */ 871 void serial_set_frequency(SerialState *s, uint32_t frequency) 872 { 873 s->baudbase = frequency; 874 serial_update_parameters(s); 875 } 876 877 const MemoryRegionOps serial_io_ops = { 878 .read = serial_ioport_read, 879 .write = serial_ioport_write, 880 .impl = { 881 .min_access_size = 1, 882 .max_access_size = 1, 883 }, 884 .endianness = DEVICE_LITTLE_ENDIAN, 885 }; 886 887 SerialState *serial_init(int base, qemu_irq irq, int baudbase, 888 CharDriverState *chr, MemoryRegion *system_io) 889 { 890 SerialState *s; 891 892 s = g_malloc0(sizeof(SerialState)); 893 894 s->irq = irq; 895 s->baudbase = baudbase; 896 s->chr = chr; 897 serial_realize_core(s, &error_fatal); 898 899 vmstate_register(NULL, base, &vmstate_serial, s); 900 901 memory_region_init_io(&s->io, NULL, &serial_io_ops, s, "serial", 8); 902 memory_region_add_subregion(system_io, base, &s->io); 903 904 return s; 905 } 906 907 /* Memory mapped interface */ 908 static uint64_t serial_mm_read(void *opaque, hwaddr addr, 909 unsigned size) 910 { 911 SerialState *s = opaque; 912 return serial_ioport_read(s, addr >> s->it_shift, 1); 913 } 914 915 static void serial_mm_write(void *opaque, hwaddr addr, 916 uint64_t value, unsigned size) 917 { 918 SerialState *s = opaque; 919 value &= ~0u >> (32 - (size * 8)); 920 serial_ioport_write(s, addr >> s->it_shift, value, 1); 921 } 922 923 static const MemoryRegionOps serial_mm_ops[3] = { 924 [DEVICE_NATIVE_ENDIAN] = { 925 .read = serial_mm_read, 926 .write = serial_mm_write, 927 .endianness = DEVICE_NATIVE_ENDIAN, 928 }, 929 [DEVICE_LITTLE_ENDIAN] = { 930 .read = serial_mm_read, 931 .write = serial_mm_write, 932 .endianness = DEVICE_LITTLE_ENDIAN, 933 }, 934 [DEVICE_BIG_ENDIAN] = { 935 .read = serial_mm_read, 936 .write = serial_mm_write, 937 .endianness = DEVICE_BIG_ENDIAN, 938 }, 939 }; 940 941 SerialState *serial_mm_init(MemoryRegion *address_space, 942 hwaddr base, int it_shift, 943 qemu_irq irq, int baudbase, 944 CharDriverState *chr, enum device_endian end) 945 { 946 SerialState *s; 947 948 s = g_malloc0(sizeof(SerialState)); 949 950 s->it_shift = it_shift; 951 s->irq = irq; 952 s->baudbase = baudbase; 953 s->chr = chr; 954 955 serial_realize_core(s, &error_fatal); 956 vmstate_register(NULL, base, &vmstate_serial, s); 957 958 memory_region_init_io(&s->io, NULL, &serial_mm_ops[end], s, 959 "serial", 8 << it_shift); 960 memory_region_add_subregion(address_space, base, &s->io); 961 return s; 962 } 963