1 /* 2 * QEMU 16550A UART emulation 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * Copyright (c) 2008 Citrix Systems, Inc. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "hw/char/serial.h" 27 #include "sysemu/char.h" 28 #include "qemu/timer.h" 29 #include "exec/address-spaces.h" 30 #include "qemu/error-report.h" 31 32 //#define DEBUG_SERIAL 33 34 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */ 35 36 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */ 37 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */ 38 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */ 39 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */ 40 41 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */ 42 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */ 43 44 #define UART_IIR_MSI 0x00 /* Modem status interrupt */ 45 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */ 46 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */ 47 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */ 48 #define UART_IIR_CTI 0x0C /* Character Timeout Indication */ 49 50 #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functionning */ 51 #define UART_IIR_FE 0xC0 /* Fifo enabled */ 52 53 /* 54 * These are the definitions for the Modem Control Register 55 */ 56 #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */ 57 #define UART_MCR_OUT2 0x08 /* Out2 complement */ 58 #define UART_MCR_OUT1 0x04 /* Out1 complement */ 59 #define UART_MCR_RTS 0x02 /* RTS complement */ 60 #define UART_MCR_DTR 0x01 /* DTR complement */ 61 62 /* 63 * These are the definitions for the Modem Status Register 64 */ 65 #define UART_MSR_DCD 0x80 /* Data Carrier Detect */ 66 #define UART_MSR_RI 0x40 /* Ring Indicator */ 67 #define UART_MSR_DSR 0x20 /* Data Set Ready */ 68 #define UART_MSR_CTS 0x10 /* Clear to Send */ 69 #define UART_MSR_DDCD 0x08 /* Delta DCD */ 70 #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */ 71 #define UART_MSR_DDSR 0x02 /* Delta DSR */ 72 #define UART_MSR_DCTS 0x01 /* Delta CTS */ 73 #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */ 74 75 #define UART_LSR_TEMT 0x40 /* Transmitter empty */ 76 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */ 77 #define UART_LSR_BI 0x10 /* Break interrupt indicator */ 78 #define UART_LSR_FE 0x08 /* Frame error indicator */ 79 #define UART_LSR_PE 0x04 /* Parity error indicator */ 80 #define UART_LSR_OE 0x02 /* Overrun error indicator */ 81 #define UART_LSR_DR 0x01 /* Receiver data ready */ 82 #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */ 83 84 /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */ 85 86 #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */ 87 #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */ 88 #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */ 89 #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */ 90 91 #define UART_FCR_DMS 0x08 /* DMA Mode Select */ 92 #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */ 93 #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */ 94 #define UART_FCR_FE 0x01 /* FIFO Enable */ 95 96 #define MAX_XMIT_RETRY 4 97 98 #ifdef DEBUG_SERIAL 99 #define DPRINTF(fmt, ...) \ 100 do { fprintf(stderr, "serial: " fmt , ## __VA_ARGS__); } while (0) 101 #else 102 #define DPRINTF(fmt, ...) \ 103 do {} while (0) 104 #endif 105 106 static void serial_receive1(void *opaque, const uint8_t *buf, int size); 107 108 static inline void recv_fifo_put(SerialState *s, uint8_t chr) 109 { 110 /* Receive overruns do not overwrite FIFO contents. */ 111 if (!fifo8_is_full(&s->recv_fifo)) { 112 fifo8_push(&s->recv_fifo, chr); 113 } else { 114 s->lsr |= UART_LSR_OE; 115 } 116 } 117 118 static void serial_update_irq(SerialState *s) 119 { 120 uint8_t tmp_iir = UART_IIR_NO_INT; 121 122 if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) { 123 tmp_iir = UART_IIR_RLSI; 124 } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) { 125 /* Note that(s->ier & UART_IER_RDI) can mask this interrupt, 126 * this is not in the specification but is observed on existing 127 * hardware. */ 128 tmp_iir = UART_IIR_CTI; 129 } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) && 130 (!(s->fcr & UART_FCR_FE) || 131 s->recv_fifo.num >= s->recv_fifo_itl)) { 132 tmp_iir = UART_IIR_RDI; 133 } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) { 134 tmp_iir = UART_IIR_THRI; 135 } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) { 136 tmp_iir = UART_IIR_MSI; 137 } 138 139 s->iir = tmp_iir | (s->iir & 0xF0); 140 141 if (tmp_iir != UART_IIR_NO_INT) { 142 qemu_irq_raise(s->irq); 143 } else { 144 qemu_irq_lower(s->irq); 145 } 146 } 147 148 static void serial_update_parameters(SerialState *s) 149 { 150 int speed, parity, data_bits, stop_bits, frame_size; 151 QEMUSerialSetParams ssp; 152 153 if (s->divider == 0) 154 return; 155 156 /* Start bit. */ 157 frame_size = 1; 158 if (s->lcr & 0x08) { 159 /* Parity bit. */ 160 frame_size++; 161 if (s->lcr & 0x10) 162 parity = 'E'; 163 else 164 parity = 'O'; 165 } else { 166 parity = 'N'; 167 } 168 if (s->lcr & 0x04) 169 stop_bits = 2; 170 else 171 stop_bits = 1; 172 173 data_bits = (s->lcr & 0x03) + 5; 174 frame_size += data_bits + stop_bits; 175 speed = s->baudbase / s->divider; 176 ssp.speed = speed; 177 ssp.parity = parity; 178 ssp.data_bits = data_bits; 179 ssp.stop_bits = stop_bits; 180 s->char_transmit_time = (get_ticks_per_sec() / speed) * frame_size; 181 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp); 182 183 DPRINTF("speed=%d parity=%c data=%d stop=%d\n", 184 speed, parity, data_bits, stop_bits); 185 } 186 187 static void serial_update_msl(SerialState *s) 188 { 189 uint8_t omsr; 190 int flags; 191 192 timer_del(s->modem_status_poll); 193 194 if (qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_GET_TIOCM, &flags) == -ENOTSUP) { 195 s->poll_msl = -1; 196 return; 197 } 198 199 omsr = s->msr; 200 201 s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS; 202 s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR; 203 s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD; 204 s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI; 205 206 if (s->msr != omsr) { 207 /* Set delta bits */ 208 s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4)); 209 /* UART_MSR_TERI only if change was from 1 -> 0 */ 210 if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI)) 211 s->msr &= ~UART_MSR_TERI; 212 serial_update_irq(s); 213 } 214 215 /* The real 16550A apparently has a 250ns response latency to line status changes. 216 We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */ 217 218 if (s->poll_msl) 219 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + get_ticks_per_sec() / 100); 220 } 221 222 static gboolean serial_xmit(GIOChannel *chan, GIOCondition cond, void *opaque) 223 { 224 SerialState *s = opaque; 225 226 if (s->tsr_retry <= 0) { 227 if (s->fcr & UART_FCR_FE) { 228 s->tsr = fifo8_is_empty(&s->xmit_fifo) ? 229 0 : fifo8_pop(&s->xmit_fifo); 230 if (!s->xmit_fifo.num) { 231 s->lsr |= UART_LSR_THRE; 232 } 233 } else if ((s->lsr & UART_LSR_THRE)) { 234 return FALSE; 235 } else { 236 s->tsr = s->thr; 237 s->lsr |= UART_LSR_THRE; 238 s->lsr &= ~UART_LSR_TEMT; 239 } 240 } 241 242 if (s->mcr & UART_MCR_LOOP) { 243 /* in loopback mode, say that we just received a char */ 244 serial_receive1(s, &s->tsr, 1); 245 } else if (qemu_chr_fe_write(s->chr, &s->tsr, 1) != 1) { 246 if (s->tsr_retry >= 0 && s->tsr_retry < MAX_XMIT_RETRY && 247 qemu_chr_fe_add_watch(s->chr, G_IO_OUT, serial_xmit, s) > 0) { 248 s->tsr_retry++; 249 return FALSE; 250 } 251 s->tsr_retry = 0; 252 } else { 253 s->tsr_retry = 0; 254 } 255 256 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 257 258 if (s->lsr & UART_LSR_THRE) { 259 s->lsr |= UART_LSR_TEMT; 260 s->thr_ipending = 1; 261 serial_update_irq(s); 262 } 263 264 return FALSE; 265 } 266 267 268 static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val, 269 unsigned size) 270 { 271 SerialState *s = opaque; 272 273 addr &= 7; 274 DPRINTF("write addr=0x%" HWADDR_PRIx " val=0x%" PRIx64 "\n", addr, val); 275 switch(addr) { 276 default: 277 case 0: 278 if (s->lcr & UART_LCR_DLAB) { 279 s->divider = (s->divider & 0xff00) | val; 280 serial_update_parameters(s); 281 } else { 282 s->thr = (uint8_t) val; 283 if(s->fcr & UART_FCR_FE) { 284 /* xmit overruns overwrite data, so make space if needed */ 285 if (fifo8_is_full(&s->xmit_fifo)) { 286 fifo8_pop(&s->xmit_fifo); 287 } 288 fifo8_push(&s->xmit_fifo, s->thr); 289 s->lsr &= ~UART_LSR_TEMT; 290 } 291 s->thr_ipending = 0; 292 s->lsr &= ~UART_LSR_THRE; 293 serial_update_irq(s); 294 serial_xmit(NULL, G_IO_OUT, s); 295 } 296 break; 297 case 1: 298 if (s->lcr & UART_LCR_DLAB) { 299 s->divider = (s->divider & 0x00ff) | (val << 8); 300 serial_update_parameters(s); 301 } else { 302 s->ier = val & 0x0f; 303 /* If the backend device is a real serial port, turn polling of the modem 304 status lines on physical port on or off depending on UART_IER_MSI state */ 305 if (s->poll_msl >= 0) { 306 if (s->ier & UART_IER_MSI) { 307 s->poll_msl = 1; 308 serial_update_msl(s); 309 } else { 310 timer_del(s->modem_status_poll); 311 s->poll_msl = 0; 312 } 313 } 314 if (s->lsr & UART_LSR_THRE) { 315 s->thr_ipending = 1; 316 serial_update_irq(s); 317 } 318 } 319 break; 320 case 2: 321 val = val & 0xFF; 322 323 if (s->fcr == val) 324 break; 325 326 /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */ 327 if ((val ^ s->fcr) & UART_FCR_FE) 328 val |= UART_FCR_XFR | UART_FCR_RFR; 329 330 /* FIFO clear */ 331 332 if (val & UART_FCR_RFR) { 333 timer_del(s->fifo_timeout_timer); 334 s->timeout_ipending=0; 335 fifo8_reset(&s->recv_fifo); 336 } 337 338 if (val & UART_FCR_XFR) { 339 fifo8_reset(&s->xmit_fifo); 340 } 341 342 if (val & UART_FCR_FE) { 343 s->iir |= UART_IIR_FE; 344 /* Set recv_fifo trigger Level */ 345 switch (val & 0xC0) { 346 case UART_FCR_ITL_1: 347 s->recv_fifo_itl = 1; 348 break; 349 case UART_FCR_ITL_2: 350 s->recv_fifo_itl = 4; 351 break; 352 case UART_FCR_ITL_3: 353 s->recv_fifo_itl = 8; 354 break; 355 case UART_FCR_ITL_4: 356 s->recv_fifo_itl = 14; 357 break; 358 } 359 } else 360 s->iir &= ~UART_IIR_FE; 361 362 /* Set fcr - or at least the bits in it that are supposed to "stick" */ 363 s->fcr = val & 0xC9; 364 serial_update_irq(s); 365 break; 366 case 3: 367 { 368 int break_enable; 369 s->lcr = val; 370 serial_update_parameters(s); 371 break_enable = (val >> 6) & 1; 372 if (break_enable != s->last_break_enable) { 373 s->last_break_enable = break_enable; 374 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK, 375 &break_enable); 376 } 377 } 378 break; 379 case 4: 380 { 381 int flags; 382 int old_mcr = s->mcr; 383 s->mcr = val & 0x1f; 384 if (val & UART_MCR_LOOP) 385 break; 386 387 if (s->poll_msl >= 0 && old_mcr != s->mcr) { 388 389 qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_GET_TIOCM, &flags); 390 391 flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR); 392 393 if (val & UART_MCR_RTS) 394 flags |= CHR_TIOCM_RTS; 395 if (val & UART_MCR_DTR) 396 flags |= CHR_TIOCM_DTR; 397 398 qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_SET_TIOCM, &flags); 399 /* Update the modem status after a one-character-send wait-time, since there may be a response 400 from the device/computer at the other end of the serial line */ 401 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time); 402 } 403 } 404 break; 405 case 5: 406 break; 407 case 6: 408 break; 409 case 7: 410 s->scr = val; 411 break; 412 } 413 } 414 415 static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size) 416 { 417 SerialState *s = opaque; 418 uint32_t ret; 419 420 addr &= 7; 421 switch(addr) { 422 default: 423 case 0: 424 if (s->lcr & UART_LCR_DLAB) { 425 ret = s->divider & 0xff; 426 } else { 427 if(s->fcr & UART_FCR_FE) { 428 ret = fifo8_is_empty(&s->recv_fifo) ? 429 0 : fifo8_pop(&s->recv_fifo); 430 if (s->recv_fifo.num == 0) { 431 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI); 432 } else { 433 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4); 434 } 435 s->timeout_ipending = 0; 436 } else { 437 ret = s->rbr; 438 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI); 439 } 440 serial_update_irq(s); 441 if (!(s->mcr & UART_MCR_LOOP)) { 442 /* in loopback mode, don't receive any data */ 443 qemu_chr_accept_input(s->chr); 444 } 445 } 446 break; 447 case 1: 448 if (s->lcr & UART_LCR_DLAB) { 449 ret = (s->divider >> 8) & 0xff; 450 } else { 451 ret = s->ier; 452 } 453 break; 454 case 2: 455 ret = s->iir; 456 if ((ret & UART_IIR_ID) == UART_IIR_THRI) { 457 s->thr_ipending = 0; 458 serial_update_irq(s); 459 } 460 break; 461 case 3: 462 ret = s->lcr; 463 break; 464 case 4: 465 ret = s->mcr; 466 break; 467 case 5: 468 ret = s->lsr; 469 /* Clear break and overrun interrupts */ 470 if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) { 471 s->lsr &= ~(UART_LSR_BI|UART_LSR_OE); 472 serial_update_irq(s); 473 } 474 break; 475 case 6: 476 if (s->mcr & UART_MCR_LOOP) { 477 /* in loopback, the modem output pins are connected to the 478 inputs */ 479 ret = (s->mcr & 0x0c) << 4; 480 ret |= (s->mcr & 0x02) << 3; 481 ret |= (s->mcr & 0x01) << 5; 482 } else { 483 if (s->poll_msl >= 0) 484 serial_update_msl(s); 485 ret = s->msr; 486 /* Clear delta bits & msr int after read, if they were set */ 487 if (s->msr & UART_MSR_ANY_DELTA) { 488 s->msr &= 0xF0; 489 serial_update_irq(s); 490 } 491 } 492 break; 493 case 7: 494 ret = s->scr; 495 break; 496 } 497 DPRINTF("read addr=0x%" HWADDR_PRIx " val=0x%02x\n", addr, ret); 498 return ret; 499 } 500 501 static int serial_can_receive(SerialState *s) 502 { 503 if(s->fcr & UART_FCR_FE) { 504 if (s->recv_fifo.num < UART_FIFO_LENGTH) { 505 /* 506 * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1 507 * if above. If UART_FIFO_LENGTH - fifo.count is advertised the 508 * effect will be to almost always fill the fifo completely before 509 * the guest has a chance to respond, effectively overriding the ITL 510 * that the guest has set. 511 */ 512 return (s->recv_fifo.num <= s->recv_fifo_itl) ? 513 s->recv_fifo_itl - s->recv_fifo.num : 1; 514 } else { 515 return 0; 516 } 517 } else { 518 return !(s->lsr & UART_LSR_DR); 519 } 520 } 521 522 static void serial_receive_break(SerialState *s) 523 { 524 s->rbr = 0; 525 /* When the LSR_DR is set a null byte is pushed into the fifo */ 526 recv_fifo_put(s, '\0'); 527 s->lsr |= UART_LSR_BI | UART_LSR_DR; 528 serial_update_irq(s); 529 } 530 531 /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */ 532 static void fifo_timeout_int (void *opaque) { 533 SerialState *s = opaque; 534 if (s->recv_fifo.num) { 535 s->timeout_ipending = 1; 536 serial_update_irq(s); 537 } 538 } 539 540 static int serial_can_receive1(void *opaque) 541 { 542 SerialState *s = opaque; 543 return serial_can_receive(s); 544 } 545 546 static void serial_receive1(void *opaque, const uint8_t *buf, int size) 547 { 548 SerialState *s = opaque; 549 550 if (s->wakeup) { 551 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER); 552 } 553 if(s->fcr & UART_FCR_FE) { 554 int i; 555 for (i = 0; i < size; i++) { 556 recv_fifo_put(s, buf[i]); 557 } 558 s->lsr |= UART_LSR_DR; 559 /* call the timeout receive callback in 4 char transmit time */ 560 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4); 561 } else { 562 if (s->lsr & UART_LSR_DR) 563 s->lsr |= UART_LSR_OE; 564 s->rbr = buf[0]; 565 s->lsr |= UART_LSR_DR; 566 } 567 serial_update_irq(s); 568 } 569 570 static void serial_event(void *opaque, int event) 571 { 572 SerialState *s = opaque; 573 DPRINTF("event %x\n", event); 574 if (event == CHR_EVENT_BREAK) 575 serial_receive_break(s); 576 } 577 578 static void serial_pre_save(void *opaque) 579 { 580 SerialState *s = opaque; 581 s->fcr_vmstate = s->fcr; 582 } 583 584 static int serial_post_load(void *opaque, int version_id) 585 { 586 SerialState *s = opaque; 587 588 if (version_id < 3) { 589 s->fcr_vmstate = 0; 590 } 591 /* Initialize fcr via setter to perform essential side-effects */ 592 serial_ioport_write(s, 0x02, s->fcr_vmstate, 1); 593 serial_update_parameters(s); 594 return 0; 595 } 596 597 const VMStateDescription vmstate_serial = { 598 .name = "serial", 599 .version_id = 3, 600 .minimum_version_id = 2, 601 .pre_save = serial_pre_save, 602 .post_load = serial_post_load, 603 .fields = (VMStateField []) { 604 VMSTATE_UINT16_V(divider, SerialState, 2), 605 VMSTATE_UINT8(rbr, SerialState), 606 VMSTATE_UINT8(ier, SerialState), 607 VMSTATE_UINT8(iir, SerialState), 608 VMSTATE_UINT8(lcr, SerialState), 609 VMSTATE_UINT8(mcr, SerialState), 610 VMSTATE_UINT8(lsr, SerialState), 611 VMSTATE_UINT8(msr, SerialState), 612 VMSTATE_UINT8(scr, SerialState), 613 VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3), 614 VMSTATE_END_OF_LIST() 615 } 616 }; 617 618 static void serial_reset(void *opaque) 619 { 620 SerialState *s = opaque; 621 622 s->rbr = 0; 623 s->ier = 0; 624 s->iir = UART_IIR_NO_INT; 625 s->lcr = 0; 626 s->lsr = UART_LSR_TEMT | UART_LSR_THRE; 627 s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS; 628 /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */ 629 s->divider = 0x0C; 630 s->mcr = UART_MCR_OUT2; 631 s->scr = 0; 632 s->tsr_retry = 0; 633 s->char_transmit_time = (get_ticks_per_sec() / 9600) * 10; 634 s->poll_msl = 0; 635 636 fifo8_reset(&s->recv_fifo); 637 fifo8_reset(&s->xmit_fifo); 638 639 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 640 641 s->thr_ipending = 0; 642 s->last_break_enable = 0; 643 qemu_irq_lower(s->irq); 644 } 645 646 void serial_realize_core(SerialState *s, Error **errp) 647 { 648 if (!s->chr) { 649 error_setg(errp, "Can't create serial device, empty char device"); 650 return; 651 } 652 653 s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s); 654 655 s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s); 656 qemu_register_reset(serial_reset, s); 657 658 qemu_chr_add_handlers(s->chr, serial_can_receive1, serial_receive1, 659 serial_event, s); 660 fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH); 661 fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH); 662 } 663 664 void serial_exit_core(SerialState *s) 665 { 666 qemu_chr_add_handlers(s->chr, NULL, NULL, NULL, NULL); 667 qemu_unregister_reset(serial_reset, s); 668 } 669 670 /* Change the main reference oscillator frequency. */ 671 void serial_set_frequency(SerialState *s, uint32_t frequency) 672 { 673 s->baudbase = frequency; 674 serial_update_parameters(s); 675 } 676 677 const MemoryRegionOps serial_io_ops = { 678 .read = serial_ioport_read, 679 .write = serial_ioport_write, 680 .impl = { 681 .min_access_size = 1, 682 .max_access_size = 1, 683 }, 684 .endianness = DEVICE_LITTLE_ENDIAN, 685 }; 686 687 SerialState *serial_init(int base, qemu_irq irq, int baudbase, 688 CharDriverState *chr, MemoryRegion *system_io) 689 { 690 SerialState *s; 691 Error *err = NULL; 692 693 s = g_malloc0(sizeof(SerialState)); 694 695 s->irq = irq; 696 s->baudbase = baudbase; 697 s->chr = chr; 698 serial_realize_core(s, &err); 699 if (err != NULL) { 700 error_report("%s", error_get_pretty(err)); 701 error_free(err); 702 exit(1); 703 } 704 705 vmstate_register(NULL, base, &vmstate_serial, s); 706 707 memory_region_init_io(&s->io, NULL, &serial_io_ops, s, "serial", 8); 708 memory_region_add_subregion(system_io, base, &s->io); 709 710 return s; 711 } 712 713 /* Memory mapped interface */ 714 static uint64_t serial_mm_read(void *opaque, hwaddr addr, 715 unsigned size) 716 { 717 SerialState *s = opaque; 718 return serial_ioport_read(s, addr >> s->it_shift, 1); 719 } 720 721 static void serial_mm_write(void *opaque, hwaddr addr, 722 uint64_t value, unsigned size) 723 { 724 SerialState *s = opaque; 725 value &= ~0u >> (32 - (size * 8)); 726 serial_ioport_write(s, addr >> s->it_shift, value, 1); 727 } 728 729 static const MemoryRegionOps serial_mm_ops[3] = { 730 [DEVICE_NATIVE_ENDIAN] = { 731 .read = serial_mm_read, 732 .write = serial_mm_write, 733 .endianness = DEVICE_NATIVE_ENDIAN, 734 }, 735 [DEVICE_LITTLE_ENDIAN] = { 736 .read = serial_mm_read, 737 .write = serial_mm_write, 738 .endianness = DEVICE_LITTLE_ENDIAN, 739 }, 740 [DEVICE_BIG_ENDIAN] = { 741 .read = serial_mm_read, 742 .write = serial_mm_write, 743 .endianness = DEVICE_BIG_ENDIAN, 744 }, 745 }; 746 747 SerialState *serial_mm_init(MemoryRegion *address_space, 748 hwaddr base, int it_shift, 749 qemu_irq irq, int baudbase, 750 CharDriverState *chr, enum device_endian end) 751 { 752 SerialState *s; 753 Error *err = NULL; 754 755 s = g_malloc0(sizeof(SerialState)); 756 757 s->it_shift = it_shift; 758 s->irq = irq; 759 s->baudbase = baudbase; 760 s->chr = chr; 761 762 serial_realize_core(s, &err); 763 if (err != NULL) { 764 error_report("%s", error_get_pretty(err)); 765 error_free(err); 766 exit(1); 767 } 768 vmstate_register(NULL, base, &vmstate_serial, s); 769 770 memory_region_init_io(&s->io, NULL, &serial_mm_ops[end], s, 771 "serial", 8 << it_shift); 772 memory_region_add_subregion(address_space, base, &s->io); 773 774 serial_update_msl(s); 775 return s; 776 } 777