1 /* 2 * QEMU 16550A UART emulation 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * Copyright (c) 2008 Citrix Systems, Inc. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "hw/char/serial.h" 28 #include "sysemu/char.h" 29 #include "qapi/error.h" 30 #include "qemu/timer.h" 31 #include "exec/address-spaces.h" 32 #include "qemu/error-report.h" 33 34 //#define DEBUG_SERIAL 35 36 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */ 37 38 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */ 39 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */ 40 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */ 41 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */ 42 43 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */ 44 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */ 45 46 #define UART_IIR_MSI 0x00 /* Modem status interrupt */ 47 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */ 48 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */ 49 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */ 50 #define UART_IIR_CTI 0x0C /* Character Timeout Indication */ 51 52 #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functionning */ 53 #define UART_IIR_FE 0xC0 /* Fifo enabled */ 54 55 /* 56 * These are the definitions for the Modem Control Register 57 */ 58 #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */ 59 #define UART_MCR_OUT2 0x08 /* Out2 complement */ 60 #define UART_MCR_OUT1 0x04 /* Out1 complement */ 61 #define UART_MCR_RTS 0x02 /* RTS complement */ 62 #define UART_MCR_DTR 0x01 /* DTR complement */ 63 64 /* 65 * These are the definitions for the Modem Status Register 66 */ 67 #define UART_MSR_DCD 0x80 /* Data Carrier Detect */ 68 #define UART_MSR_RI 0x40 /* Ring Indicator */ 69 #define UART_MSR_DSR 0x20 /* Data Set Ready */ 70 #define UART_MSR_CTS 0x10 /* Clear to Send */ 71 #define UART_MSR_DDCD 0x08 /* Delta DCD */ 72 #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */ 73 #define UART_MSR_DDSR 0x02 /* Delta DSR */ 74 #define UART_MSR_DCTS 0x01 /* Delta CTS */ 75 #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */ 76 77 #define UART_LSR_TEMT 0x40 /* Transmitter empty */ 78 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */ 79 #define UART_LSR_BI 0x10 /* Break interrupt indicator */ 80 #define UART_LSR_FE 0x08 /* Frame error indicator */ 81 #define UART_LSR_PE 0x04 /* Parity error indicator */ 82 #define UART_LSR_OE 0x02 /* Overrun error indicator */ 83 #define UART_LSR_DR 0x01 /* Receiver data ready */ 84 #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */ 85 86 /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */ 87 88 #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */ 89 #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */ 90 #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */ 91 #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */ 92 93 #define UART_FCR_DMS 0x08 /* DMA Mode Select */ 94 #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */ 95 #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */ 96 #define UART_FCR_FE 0x01 /* FIFO Enable */ 97 98 #define MAX_XMIT_RETRY 4 99 100 #ifdef DEBUG_SERIAL 101 #define DPRINTF(fmt, ...) \ 102 do { fprintf(stderr, "serial: " fmt , ## __VA_ARGS__); } while (0) 103 #else 104 #define DPRINTF(fmt, ...) \ 105 do {} while (0) 106 #endif 107 108 static void serial_receive1(void *opaque, const uint8_t *buf, int size); 109 static void serial_xmit(SerialState *s); 110 111 static inline void recv_fifo_put(SerialState *s, uint8_t chr) 112 { 113 /* Receive overruns do not overwrite FIFO contents. */ 114 if (!fifo8_is_full(&s->recv_fifo)) { 115 fifo8_push(&s->recv_fifo, chr); 116 } else { 117 s->lsr |= UART_LSR_OE; 118 } 119 } 120 121 static void serial_update_irq(SerialState *s) 122 { 123 uint8_t tmp_iir = UART_IIR_NO_INT; 124 125 if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) { 126 tmp_iir = UART_IIR_RLSI; 127 } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) { 128 /* Note that(s->ier & UART_IER_RDI) can mask this interrupt, 129 * this is not in the specification but is observed on existing 130 * hardware. */ 131 tmp_iir = UART_IIR_CTI; 132 } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) && 133 (!(s->fcr & UART_FCR_FE) || 134 s->recv_fifo.num >= s->recv_fifo_itl)) { 135 tmp_iir = UART_IIR_RDI; 136 } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) { 137 tmp_iir = UART_IIR_THRI; 138 } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) { 139 tmp_iir = UART_IIR_MSI; 140 } 141 142 s->iir = tmp_iir | (s->iir & 0xF0); 143 144 if (tmp_iir != UART_IIR_NO_INT) { 145 qemu_irq_raise(s->irq); 146 } else { 147 qemu_irq_lower(s->irq); 148 } 149 } 150 151 static void serial_update_parameters(SerialState *s) 152 { 153 int speed, parity, data_bits, stop_bits, frame_size; 154 QEMUSerialSetParams ssp; 155 156 if (s->divider == 0 || s->divider > s->baudbase) { 157 return; 158 } 159 160 /* Start bit. */ 161 frame_size = 1; 162 if (s->lcr & 0x08) { 163 /* Parity bit. */ 164 frame_size++; 165 if (s->lcr & 0x10) 166 parity = 'E'; 167 else 168 parity = 'O'; 169 } else { 170 parity = 'N'; 171 } 172 if (s->lcr & 0x04) 173 stop_bits = 2; 174 else 175 stop_bits = 1; 176 177 data_bits = (s->lcr & 0x03) + 5; 178 frame_size += data_bits + stop_bits; 179 speed = s->baudbase / s->divider; 180 ssp.speed = speed; 181 ssp.parity = parity; 182 ssp.data_bits = data_bits; 183 ssp.stop_bits = stop_bits; 184 s->char_transmit_time = (NANOSECONDS_PER_SECOND / speed) * frame_size; 185 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp); 186 187 DPRINTF("speed=%d parity=%c data=%d stop=%d\n", 188 speed, parity, data_bits, stop_bits); 189 } 190 191 static void serial_update_msl(SerialState *s) 192 { 193 uint8_t omsr; 194 int flags; 195 196 timer_del(s->modem_status_poll); 197 198 if (qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM, 199 &flags) == -ENOTSUP) { 200 s->poll_msl = -1; 201 return; 202 } 203 204 omsr = s->msr; 205 206 s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS; 207 s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR; 208 s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD; 209 s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI; 210 211 if (s->msr != omsr) { 212 /* Set delta bits */ 213 s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4)); 214 /* UART_MSR_TERI only if change was from 1 -> 0 */ 215 if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI)) 216 s->msr &= ~UART_MSR_TERI; 217 serial_update_irq(s); 218 } 219 220 /* The real 16550A apparently has a 250ns response latency to line status changes. 221 We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */ 222 223 if (s->poll_msl) { 224 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 225 NANOSECONDS_PER_SECOND / 100); 226 } 227 } 228 229 static gboolean serial_watch_cb(GIOChannel *chan, GIOCondition cond, 230 void *opaque) 231 { 232 SerialState *s = opaque; 233 s->watch_tag = 0; 234 serial_xmit(s); 235 return FALSE; 236 } 237 238 static void serial_xmit(SerialState *s) 239 { 240 do { 241 assert(!(s->lsr & UART_LSR_TEMT)); 242 if (s->tsr_retry == 0) { 243 assert(!(s->lsr & UART_LSR_THRE)); 244 245 if (s->fcr & UART_FCR_FE) { 246 assert(!fifo8_is_empty(&s->xmit_fifo)); 247 s->tsr = fifo8_pop(&s->xmit_fifo); 248 if (!s->xmit_fifo.num) { 249 s->lsr |= UART_LSR_THRE; 250 } 251 } else { 252 s->tsr = s->thr; 253 s->lsr |= UART_LSR_THRE; 254 } 255 if ((s->lsr & UART_LSR_THRE) && !s->thr_ipending) { 256 s->thr_ipending = 1; 257 serial_update_irq(s); 258 } 259 } 260 261 if (s->mcr & UART_MCR_LOOP) { 262 /* in loopback mode, say that we just received a char */ 263 serial_receive1(s, &s->tsr, 1); 264 } else if (qemu_chr_fe_write(&s->chr, &s->tsr, 1) != 1 && 265 s->tsr_retry < MAX_XMIT_RETRY) { 266 assert(s->watch_tag == 0); 267 s->watch_tag = 268 qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP, 269 serial_watch_cb, s); 270 if (s->watch_tag > 0) { 271 s->tsr_retry++; 272 return; 273 } 274 } 275 s->tsr_retry = 0; 276 277 /* Transmit another byte if it is already available. It is only 278 possible when FIFO is enabled and not empty. */ 279 } while (!(s->lsr & UART_LSR_THRE)); 280 281 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 282 s->lsr |= UART_LSR_TEMT; 283 } 284 285 /* Setter for FCR. 286 is_load flag means, that value is set while loading VM state 287 and interrupt should not be invoked */ 288 static void serial_write_fcr(SerialState *s, uint8_t val) 289 { 290 /* Set fcr - val only has the bits that are supposed to "stick" */ 291 s->fcr = val; 292 293 if (val & UART_FCR_FE) { 294 s->iir |= UART_IIR_FE; 295 /* Set recv_fifo trigger Level */ 296 switch (val & 0xC0) { 297 case UART_FCR_ITL_1: 298 s->recv_fifo_itl = 1; 299 break; 300 case UART_FCR_ITL_2: 301 s->recv_fifo_itl = 4; 302 break; 303 case UART_FCR_ITL_3: 304 s->recv_fifo_itl = 8; 305 break; 306 case UART_FCR_ITL_4: 307 s->recv_fifo_itl = 14; 308 break; 309 } 310 } else { 311 s->iir &= ~UART_IIR_FE; 312 } 313 } 314 315 static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val, 316 unsigned size) 317 { 318 SerialState *s = opaque; 319 320 addr &= 7; 321 DPRINTF("write addr=0x%" HWADDR_PRIx " val=0x%" PRIx64 "\n", addr, val); 322 switch(addr) { 323 default: 324 case 0: 325 if (s->lcr & UART_LCR_DLAB) { 326 s->divider = (s->divider & 0xff00) | val; 327 serial_update_parameters(s); 328 } else { 329 s->thr = (uint8_t) val; 330 if(s->fcr & UART_FCR_FE) { 331 /* xmit overruns overwrite data, so make space if needed */ 332 if (fifo8_is_full(&s->xmit_fifo)) { 333 fifo8_pop(&s->xmit_fifo); 334 } 335 fifo8_push(&s->xmit_fifo, s->thr); 336 } 337 s->thr_ipending = 0; 338 s->lsr &= ~UART_LSR_THRE; 339 s->lsr &= ~UART_LSR_TEMT; 340 serial_update_irq(s); 341 if (s->tsr_retry == 0) { 342 serial_xmit(s); 343 } 344 } 345 break; 346 case 1: 347 if (s->lcr & UART_LCR_DLAB) { 348 s->divider = (s->divider & 0x00ff) | (val << 8); 349 serial_update_parameters(s); 350 } else { 351 uint8_t changed = (s->ier ^ val) & 0x0f; 352 s->ier = val & 0x0f; 353 /* If the backend device is a real serial port, turn polling of the modem 354 * status lines on physical port on or off depending on UART_IER_MSI state. 355 */ 356 if ((changed & UART_IER_MSI) && s->poll_msl >= 0) { 357 if (s->ier & UART_IER_MSI) { 358 s->poll_msl = 1; 359 serial_update_msl(s); 360 } else { 361 timer_del(s->modem_status_poll); 362 s->poll_msl = 0; 363 } 364 } 365 366 /* Turning on the THRE interrupt on IER can trigger the interrupt 367 * if LSR.THRE=1, even if it had been masked before by reading IIR. 368 * This is not in the datasheet, but Windows relies on it. It is 369 * unclear if THRE has to be resampled every time THRI becomes 370 * 1, or only on the rising edge. Bochs does the latter, and Windows 371 * always toggles IER to all zeroes and back to all ones, so do the 372 * same. 373 * 374 * If IER.THRI is zero, thr_ipending is not used. Set it to zero 375 * so that the thr_ipending subsection is not migrated. 376 */ 377 if (changed & UART_IER_THRI) { 378 if ((s->ier & UART_IER_THRI) && (s->lsr & UART_LSR_THRE)) { 379 s->thr_ipending = 1; 380 } else { 381 s->thr_ipending = 0; 382 } 383 } 384 385 if (changed) { 386 serial_update_irq(s); 387 } 388 } 389 break; 390 case 2: 391 /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */ 392 if ((val ^ s->fcr) & UART_FCR_FE) { 393 val |= UART_FCR_XFR | UART_FCR_RFR; 394 } 395 396 /* FIFO clear */ 397 398 if (val & UART_FCR_RFR) { 399 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI); 400 timer_del(s->fifo_timeout_timer); 401 s->timeout_ipending = 0; 402 fifo8_reset(&s->recv_fifo); 403 } 404 405 if (val & UART_FCR_XFR) { 406 s->lsr |= UART_LSR_THRE; 407 s->thr_ipending = 1; 408 fifo8_reset(&s->xmit_fifo); 409 } 410 411 serial_write_fcr(s, val & 0xC9); 412 serial_update_irq(s); 413 break; 414 case 3: 415 { 416 int break_enable; 417 s->lcr = val; 418 serial_update_parameters(s); 419 break_enable = (val >> 6) & 1; 420 if (break_enable != s->last_break_enable) { 421 s->last_break_enable = break_enable; 422 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK, 423 &break_enable); 424 } 425 } 426 break; 427 case 4: 428 { 429 int flags; 430 int old_mcr = s->mcr; 431 s->mcr = val & 0x1f; 432 if (val & UART_MCR_LOOP) 433 break; 434 435 if (s->poll_msl >= 0 && old_mcr != s->mcr) { 436 437 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM, &flags); 438 439 flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR); 440 441 if (val & UART_MCR_RTS) 442 flags |= CHR_TIOCM_RTS; 443 if (val & UART_MCR_DTR) 444 flags |= CHR_TIOCM_DTR; 445 446 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_TIOCM, &flags); 447 /* Update the modem status after a one-character-send wait-time, since there may be a response 448 from the device/computer at the other end of the serial line */ 449 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time); 450 } 451 } 452 break; 453 case 5: 454 break; 455 case 6: 456 break; 457 case 7: 458 s->scr = val; 459 break; 460 } 461 } 462 463 static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size) 464 { 465 SerialState *s = opaque; 466 uint32_t ret; 467 468 addr &= 7; 469 switch(addr) { 470 default: 471 case 0: 472 if (s->lcr & UART_LCR_DLAB) { 473 ret = s->divider & 0xff; 474 } else { 475 if(s->fcr & UART_FCR_FE) { 476 ret = fifo8_is_empty(&s->recv_fifo) ? 477 0 : fifo8_pop(&s->recv_fifo); 478 if (s->recv_fifo.num == 0) { 479 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI); 480 } else { 481 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4); 482 } 483 s->timeout_ipending = 0; 484 } else { 485 ret = s->rbr; 486 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI); 487 } 488 serial_update_irq(s); 489 if (!(s->mcr & UART_MCR_LOOP)) { 490 /* in loopback mode, don't receive any data */ 491 qemu_chr_fe_accept_input(&s->chr); 492 } 493 } 494 break; 495 case 1: 496 if (s->lcr & UART_LCR_DLAB) { 497 ret = (s->divider >> 8) & 0xff; 498 } else { 499 ret = s->ier; 500 } 501 break; 502 case 2: 503 ret = s->iir; 504 if ((ret & UART_IIR_ID) == UART_IIR_THRI) { 505 s->thr_ipending = 0; 506 serial_update_irq(s); 507 } 508 break; 509 case 3: 510 ret = s->lcr; 511 break; 512 case 4: 513 ret = s->mcr; 514 break; 515 case 5: 516 ret = s->lsr; 517 /* Clear break and overrun interrupts */ 518 if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) { 519 s->lsr &= ~(UART_LSR_BI|UART_LSR_OE); 520 serial_update_irq(s); 521 } 522 break; 523 case 6: 524 if (s->mcr & UART_MCR_LOOP) { 525 /* in loopback, the modem output pins are connected to the 526 inputs */ 527 ret = (s->mcr & 0x0c) << 4; 528 ret |= (s->mcr & 0x02) << 3; 529 ret |= (s->mcr & 0x01) << 5; 530 } else { 531 if (s->poll_msl >= 0) 532 serial_update_msl(s); 533 ret = s->msr; 534 /* Clear delta bits & msr int after read, if they were set */ 535 if (s->msr & UART_MSR_ANY_DELTA) { 536 s->msr &= 0xF0; 537 serial_update_irq(s); 538 } 539 } 540 break; 541 case 7: 542 ret = s->scr; 543 break; 544 } 545 DPRINTF("read addr=0x%" HWADDR_PRIx " val=0x%02x\n", addr, ret); 546 return ret; 547 } 548 549 static int serial_can_receive(SerialState *s) 550 { 551 if(s->fcr & UART_FCR_FE) { 552 if (s->recv_fifo.num < UART_FIFO_LENGTH) { 553 /* 554 * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1 555 * if above. If UART_FIFO_LENGTH - fifo.count is advertised the 556 * effect will be to almost always fill the fifo completely before 557 * the guest has a chance to respond, effectively overriding the ITL 558 * that the guest has set. 559 */ 560 return (s->recv_fifo.num <= s->recv_fifo_itl) ? 561 s->recv_fifo_itl - s->recv_fifo.num : 1; 562 } else { 563 return 0; 564 } 565 } else { 566 return !(s->lsr & UART_LSR_DR); 567 } 568 } 569 570 static void serial_receive_break(SerialState *s) 571 { 572 s->rbr = 0; 573 /* When the LSR_DR is set a null byte is pushed into the fifo */ 574 recv_fifo_put(s, '\0'); 575 s->lsr |= UART_LSR_BI | UART_LSR_DR; 576 serial_update_irq(s); 577 } 578 579 /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */ 580 static void fifo_timeout_int (void *opaque) { 581 SerialState *s = opaque; 582 if (s->recv_fifo.num) { 583 s->timeout_ipending = 1; 584 serial_update_irq(s); 585 } 586 } 587 588 static int serial_can_receive1(void *opaque) 589 { 590 SerialState *s = opaque; 591 return serial_can_receive(s); 592 } 593 594 static void serial_receive1(void *opaque, const uint8_t *buf, int size) 595 { 596 SerialState *s = opaque; 597 598 if (s->wakeup) { 599 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER); 600 } 601 if(s->fcr & UART_FCR_FE) { 602 int i; 603 for (i = 0; i < size; i++) { 604 recv_fifo_put(s, buf[i]); 605 } 606 s->lsr |= UART_LSR_DR; 607 /* call the timeout receive callback in 4 char transmit time */ 608 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4); 609 } else { 610 if (s->lsr & UART_LSR_DR) 611 s->lsr |= UART_LSR_OE; 612 s->rbr = buf[0]; 613 s->lsr |= UART_LSR_DR; 614 } 615 serial_update_irq(s); 616 } 617 618 static void serial_event(void *opaque, int event) 619 { 620 SerialState *s = opaque; 621 DPRINTF("event %x\n", event); 622 if (event == CHR_EVENT_BREAK) 623 serial_receive_break(s); 624 } 625 626 static void serial_pre_save(void *opaque) 627 { 628 SerialState *s = opaque; 629 s->fcr_vmstate = s->fcr; 630 } 631 632 static int serial_pre_load(void *opaque) 633 { 634 SerialState *s = opaque; 635 s->thr_ipending = -1; 636 s->poll_msl = -1; 637 return 0; 638 } 639 640 static int serial_post_load(void *opaque, int version_id) 641 { 642 SerialState *s = opaque; 643 644 if (version_id < 3) { 645 s->fcr_vmstate = 0; 646 } 647 if (s->thr_ipending == -1) { 648 s->thr_ipending = ((s->iir & UART_IIR_ID) == UART_IIR_THRI); 649 } 650 651 if (s->tsr_retry > 0) { 652 /* tsr_retry > 0 implies LSR.TEMT = 0 (transmitter not empty). */ 653 if (s->lsr & UART_LSR_TEMT) { 654 error_report("inconsistent state in serial device " 655 "(tsr empty, tsr_retry=%d", s->tsr_retry); 656 return -1; 657 } 658 659 if (s->tsr_retry > MAX_XMIT_RETRY) { 660 s->tsr_retry = MAX_XMIT_RETRY; 661 } 662 663 assert(s->watch_tag == 0); 664 s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP, 665 serial_watch_cb, s); 666 } else { 667 /* tsr_retry == 0 implies LSR.TEMT = 1 (transmitter empty). */ 668 if (!(s->lsr & UART_LSR_TEMT)) { 669 error_report("inconsistent state in serial device " 670 "(tsr not empty, tsr_retry=0"); 671 return -1; 672 } 673 } 674 675 s->last_break_enable = (s->lcr >> 6) & 1; 676 /* Initialize fcr via setter to perform essential side-effects */ 677 serial_write_fcr(s, s->fcr_vmstate); 678 serial_update_parameters(s); 679 return 0; 680 } 681 682 static bool serial_thr_ipending_needed(void *opaque) 683 { 684 SerialState *s = opaque; 685 686 if (s->ier & UART_IER_THRI) { 687 bool expected_value = ((s->iir & UART_IIR_ID) == UART_IIR_THRI); 688 return s->thr_ipending != expected_value; 689 } else { 690 /* LSR.THRE will be sampled again when the interrupt is 691 * enabled. thr_ipending is not used in this case, do 692 * not migrate it. 693 */ 694 return false; 695 } 696 } 697 698 static const VMStateDescription vmstate_serial_thr_ipending = { 699 .name = "serial/thr_ipending", 700 .version_id = 1, 701 .minimum_version_id = 1, 702 .needed = serial_thr_ipending_needed, 703 .fields = (VMStateField[]) { 704 VMSTATE_INT32(thr_ipending, SerialState), 705 VMSTATE_END_OF_LIST() 706 } 707 }; 708 709 static bool serial_tsr_needed(void *opaque) 710 { 711 SerialState *s = (SerialState *)opaque; 712 return s->tsr_retry != 0; 713 } 714 715 static const VMStateDescription vmstate_serial_tsr = { 716 .name = "serial/tsr", 717 .version_id = 1, 718 .minimum_version_id = 1, 719 .needed = serial_tsr_needed, 720 .fields = (VMStateField[]) { 721 VMSTATE_UINT32(tsr_retry, SerialState), 722 VMSTATE_UINT8(thr, SerialState), 723 VMSTATE_UINT8(tsr, SerialState), 724 VMSTATE_END_OF_LIST() 725 } 726 }; 727 728 static bool serial_recv_fifo_needed(void *opaque) 729 { 730 SerialState *s = (SerialState *)opaque; 731 return !fifo8_is_empty(&s->recv_fifo); 732 733 } 734 735 static const VMStateDescription vmstate_serial_recv_fifo = { 736 .name = "serial/recv_fifo", 737 .version_id = 1, 738 .minimum_version_id = 1, 739 .needed = serial_recv_fifo_needed, 740 .fields = (VMStateField[]) { 741 VMSTATE_STRUCT(recv_fifo, SerialState, 1, vmstate_fifo8, Fifo8), 742 VMSTATE_END_OF_LIST() 743 } 744 }; 745 746 static bool serial_xmit_fifo_needed(void *opaque) 747 { 748 SerialState *s = (SerialState *)opaque; 749 return !fifo8_is_empty(&s->xmit_fifo); 750 } 751 752 static const VMStateDescription vmstate_serial_xmit_fifo = { 753 .name = "serial/xmit_fifo", 754 .version_id = 1, 755 .minimum_version_id = 1, 756 .needed = serial_xmit_fifo_needed, 757 .fields = (VMStateField[]) { 758 VMSTATE_STRUCT(xmit_fifo, SerialState, 1, vmstate_fifo8, Fifo8), 759 VMSTATE_END_OF_LIST() 760 } 761 }; 762 763 static bool serial_fifo_timeout_timer_needed(void *opaque) 764 { 765 SerialState *s = (SerialState *)opaque; 766 return timer_pending(s->fifo_timeout_timer); 767 } 768 769 static const VMStateDescription vmstate_serial_fifo_timeout_timer = { 770 .name = "serial/fifo_timeout_timer", 771 .version_id = 1, 772 .minimum_version_id = 1, 773 .needed = serial_fifo_timeout_timer_needed, 774 .fields = (VMStateField[]) { 775 VMSTATE_TIMER_PTR(fifo_timeout_timer, SerialState), 776 VMSTATE_END_OF_LIST() 777 } 778 }; 779 780 static bool serial_timeout_ipending_needed(void *opaque) 781 { 782 SerialState *s = (SerialState *)opaque; 783 return s->timeout_ipending != 0; 784 } 785 786 static const VMStateDescription vmstate_serial_timeout_ipending = { 787 .name = "serial/timeout_ipending", 788 .version_id = 1, 789 .minimum_version_id = 1, 790 .needed = serial_timeout_ipending_needed, 791 .fields = (VMStateField[]) { 792 VMSTATE_INT32(timeout_ipending, SerialState), 793 VMSTATE_END_OF_LIST() 794 } 795 }; 796 797 static bool serial_poll_needed(void *opaque) 798 { 799 SerialState *s = (SerialState *)opaque; 800 return s->poll_msl >= 0; 801 } 802 803 static const VMStateDescription vmstate_serial_poll = { 804 .name = "serial/poll", 805 .version_id = 1, 806 .needed = serial_poll_needed, 807 .minimum_version_id = 1, 808 .fields = (VMStateField[]) { 809 VMSTATE_INT32(poll_msl, SerialState), 810 VMSTATE_TIMER_PTR(modem_status_poll, SerialState), 811 VMSTATE_END_OF_LIST() 812 } 813 }; 814 815 const VMStateDescription vmstate_serial = { 816 .name = "serial", 817 .version_id = 3, 818 .minimum_version_id = 2, 819 .pre_save = serial_pre_save, 820 .pre_load = serial_pre_load, 821 .post_load = serial_post_load, 822 .fields = (VMStateField[]) { 823 VMSTATE_UINT16_V(divider, SerialState, 2), 824 VMSTATE_UINT8(rbr, SerialState), 825 VMSTATE_UINT8(ier, SerialState), 826 VMSTATE_UINT8(iir, SerialState), 827 VMSTATE_UINT8(lcr, SerialState), 828 VMSTATE_UINT8(mcr, SerialState), 829 VMSTATE_UINT8(lsr, SerialState), 830 VMSTATE_UINT8(msr, SerialState), 831 VMSTATE_UINT8(scr, SerialState), 832 VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3), 833 VMSTATE_END_OF_LIST() 834 }, 835 .subsections = (const VMStateDescription*[]) { 836 &vmstate_serial_thr_ipending, 837 &vmstate_serial_tsr, 838 &vmstate_serial_recv_fifo, 839 &vmstate_serial_xmit_fifo, 840 &vmstate_serial_fifo_timeout_timer, 841 &vmstate_serial_timeout_ipending, 842 &vmstate_serial_poll, 843 NULL 844 } 845 }; 846 847 static void serial_reset(void *opaque) 848 { 849 SerialState *s = opaque; 850 851 if (s->watch_tag > 0) { 852 g_source_remove(s->watch_tag); 853 s->watch_tag = 0; 854 } 855 856 s->rbr = 0; 857 s->ier = 0; 858 s->iir = UART_IIR_NO_INT; 859 s->lcr = 0; 860 s->lsr = UART_LSR_TEMT | UART_LSR_THRE; 861 s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS; 862 /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */ 863 s->divider = 0x0C; 864 s->mcr = UART_MCR_OUT2; 865 s->scr = 0; 866 s->tsr_retry = 0; 867 s->char_transmit_time = (NANOSECONDS_PER_SECOND / 9600) * 10; 868 s->poll_msl = 0; 869 870 s->timeout_ipending = 0; 871 timer_del(s->fifo_timeout_timer); 872 timer_del(s->modem_status_poll); 873 874 fifo8_reset(&s->recv_fifo); 875 fifo8_reset(&s->xmit_fifo); 876 877 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 878 879 s->thr_ipending = 0; 880 s->last_break_enable = 0; 881 qemu_irq_lower(s->irq); 882 883 serial_update_msl(s); 884 s->msr &= ~UART_MSR_ANY_DELTA; 885 } 886 887 void serial_realize_core(SerialState *s, Error **errp) 888 { 889 if (!qemu_chr_fe_get_driver(&s->chr)) { 890 error_setg(errp, "Can't create serial device, empty char device"); 891 return; 892 } 893 894 s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s); 895 896 s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s); 897 qemu_register_reset(serial_reset, s); 898 899 qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1, 900 serial_event, s, NULL, true); 901 fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH); 902 fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH); 903 serial_reset(s); 904 } 905 906 void serial_exit_core(SerialState *s) 907 { 908 qemu_chr_fe_deinit(&s->chr); 909 qemu_unregister_reset(serial_reset, s); 910 } 911 912 /* Change the main reference oscillator frequency. */ 913 void serial_set_frequency(SerialState *s, uint32_t frequency) 914 { 915 s->baudbase = frequency; 916 serial_update_parameters(s); 917 } 918 919 const MemoryRegionOps serial_io_ops = { 920 .read = serial_ioport_read, 921 .write = serial_ioport_write, 922 .impl = { 923 .min_access_size = 1, 924 .max_access_size = 1, 925 }, 926 .endianness = DEVICE_LITTLE_ENDIAN, 927 }; 928 929 SerialState *serial_init(int base, qemu_irq irq, int baudbase, 930 CharDriverState *chr, MemoryRegion *system_io) 931 { 932 SerialState *s; 933 934 s = g_malloc0(sizeof(SerialState)); 935 936 s->irq = irq; 937 s->baudbase = baudbase; 938 qemu_chr_fe_init(&s->chr, chr, &error_abort); 939 serial_realize_core(s, &error_fatal); 940 941 vmstate_register(NULL, base, &vmstate_serial, s); 942 943 memory_region_init_io(&s->io, NULL, &serial_io_ops, s, "serial", 8); 944 memory_region_add_subregion(system_io, base, &s->io); 945 946 return s; 947 } 948 949 /* Memory mapped interface */ 950 static uint64_t serial_mm_read(void *opaque, hwaddr addr, 951 unsigned size) 952 { 953 SerialState *s = opaque; 954 return serial_ioport_read(s, addr >> s->it_shift, 1); 955 } 956 957 static void serial_mm_write(void *opaque, hwaddr addr, 958 uint64_t value, unsigned size) 959 { 960 SerialState *s = opaque; 961 value &= ~0u >> (32 - (size * 8)); 962 serial_ioport_write(s, addr >> s->it_shift, value, 1); 963 } 964 965 static const MemoryRegionOps serial_mm_ops[3] = { 966 [DEVICE_NATIVE_ENDIAN] = { 967 .read = serial_mm_read, 968 .write = serial_mm_write, 969 .endianness = DEVICE_NATIVE_ENDIAN, 970 }, 971 [DEVICE_LITTLE_ENDIAN] = { 972 .read = serial_mm_read, 973 .write = serial_mm_write, 974 .endianness = DEVICE_LITTLE_ENDIAN, 975 }, 976 [DEVICE_BIG_ENDIAN] = { 977 .read = serial_mm_read, 978 .write = serial_mm_write, 979 .endianness = DEVICE_BIG_ENDIAN, 980 }, 981 }; 982 983 SerialState *serial_mm_init(MemoryRegion *address_space, 984 hwaddr base, int it_shift, 985 qemu_irq irq, int baudbase, 986 CharDriverState *chr, enum device_endian end) 987 { 988 SerialState *s; 989 990 s = g_malloc0(sizeof(SerialState)); 991 992 s->it_shift = it_shift; 993 s->irq = irq; 994 s->baudbase = baudbase; 995 qemu_chr_fe_init(&s->chr, chr, &error_abort); 996 997 serial_realize_core(s, &error_fatal); 998 vmstate_register(NULL, base, &vmstate_serial, s); 999 1000 memory_region_init_io(&s->io, NULL, &serial_mm_ops[end], s, 1001 "serial", 8 << it_shift); 1002 memory_region_add_subregion(address_space, base, &s->io); 1003 return s; 1004 } 1005