xref: /openbmc/qemu/hw/char/nrf51_uart.c (revision 503bb0b9)
1 /*
2  * nRF51 SoC UART emulation
3  *
4  * See nRF51 Series Reference Manual, "29 Universal Asynchronous
5  * Receiver/Transmitter" for hardware specifications:
6  * http://infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.pdf
7  *
8  * Copyright (c) 2018 Julia Suvorova <jusual@mail.ru>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 or
12  * (at your option) any later version.
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qemu/log.h"
17 #include "hw/char/nrf51_uart.h"
18 #include "trace.h"
19 
20 static void nrf51_uart_update_irq(NRF51UARTState *s)
21 {
22     bool irq = false;
23 
24     irq |= (s->reg[R_UART_RXDRDY] &&
25             (s->reg[R_UART_INTEN] & R_UART_INTEN_RXDRDY_MASK));
26     irq |= (s->reg[R_UART_TXDRDY] &&
27             (s->reg[R_UART_INTEN] & R_UART_INTEN_TXDRDY_MASK));
28     irq |= (s->reg[R_UART_ERROR]  &&
29             (s->reg[R_UART_INTEN] & R_UART_INTEN_ERROR_MASK));
30     irq |= (s->reg[R_UART_RXTO]   &&
31             (s->reg[R_UART_INTEN] & R_UART_INTEN_RXTO_MASK));
32 
33     qemu_set_irq(s->irq, irq);
34 }
35 
36 static uint64_t uart_read(void *opaque, hwaddr addr, unsigned int size)
37 {
38     NRF51UARTState *s = NRF51_UART(opaque);
39     uint64_t r;
40 
41     if (!s->enabled) {
42         return 0;
43     }
44 
45     switch (addr) {
46     case A_UART_RXD:
47         r = s->rx_fifo[s->rx_fifo_pos];
48         if (s->rx_started && s->rx_fifo_len) {
49             s->rx_fifo_pos = (s->rx_fifo_pos + 1) % UART_FIFO_LENGTH;
50             s->rx_fifo_len--;
51             if (s->rx_fifo_len) {
52                 s->reg[R_UART_RXDRDY] = 1;
53                 nrf51_uart_update_irq(s);
54             }
55             qemu_chr_fe_accept_input(&s->chr);
56         }
57         break;
58     case A_UART_INTENSET:
59     case A_UART_INTENCLR:
60     case A_UART_INTEN:
61         r = s->reg[R_UART_INTEN];
62         break;
63     default:
64         r = s->reg[addr / 4];
65         break;
66     }
67 
68     trace_nrf51_uart_read(addr, r, size);
69 
70     return r;
71 }
72 
73 static gboolean uart_transmit(GIOChannel *chan, GIOCondition cond, void *opaque)
74 {
75     NRF51UARTState *s = NRF51_UART(opaque);
76     int r;
77     uint8_t c = s->reg[R_UART_TXD];
78 
79     s->watch_tag = 0;
80 
81     r = qemu_chr_fe_write(&s->chr, &c, 1);
82     if (r <= 0) {
83         s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
84                                              uart_transmit, s);
85         if (!s->watch_tag) {
86             /* The hardware has no transmit error reporting,
87              * so silently drop the byte
88              */
89             goto buffer_drained;
90         }
91         return FALSE;
92     }
93 
94 buffer_drained:
95     s->reg[R_UART_TXDRDY] = 1;
96     s->pending_tx_byte = false;
97     return FALSE;
98 }
99 
100 static void uart_cancel_transmit(NRF51UARTState *s)
101 {
102     if (s->watch_tag) {
103         g_source_remove(s->watch_tag);
104         s->watch_tag = 0;
105     }
106 }
107 
108 static void uart_write(void *opaque, hwaddr addr,
109                        uint64_t value, unsigned int size)
110 {
111     NRF51UARTState *s = NRF51_UART(opaque);
112 
113     trace_nrf51_uart_write(addr, value, size);
114 
115     if (!s->enabled && (addr != A_UART_ENABLE)) {
116         return;
117     }
118 
119     switch (addr) {
120     case A_UART_TXD:
121         if (!s->pending_tx_byte && s->tx_started) {
122             s->reg[R_UART_TXD] = value;
123             s->pending_tx_byte = true;
124             uart_transmit(NULL, G_IO_OUT, s);
125         }
126         break;
127     case A_UART_INTEN:
128         s->reg[R_UART_INTEN] = value;
129         break;
130     case A_UART_INTENSET:
131         s->reg[R_UART_INTEN] |= value;
132         break;
133     case A_UART_INTENCLR:
134         s->reg[R_UART_INTEN] &= ~value;
135         break;
136     case A_UART_TXDRDY ... A_UART_RXTO:
137         s->reg[addr / 4] = value;
138         break;
139     case A_UART_ERRORSRC:
140         s->reg[addr / 4] &= ~value;
141         break;
142     case A_UART_RXD:
143         break;
144     case A_UART_RXDRDY:
145         if (value == 0) {
146             s->reg[R_UART_RXDRDY] = 0;
147         }
148         break;
149     case A_UART_STARTTX:
150         if (value == 1) {
151             s->tx_started = true;
152         }
153         break;
154     case A_UART_STARTRX:
155         if (value == 1) {
156             s->rx_started = true;
157         }
158         break;
159     case A_UART_ENABLE:
160         if (value) {
161             if (value == 4) {
162                 s->enabled = true;
163             }
164             break;
165         }
166         s->enabled = false;
167         value = 1;
168         /* fall through */
169     case A_UART_SUSPEND:
170     case A_UART_STOPTX:
171         if (value == 1) {
172             s->tx_started = false;
173         }
174         /* fall through */
175     case A_UART_STOPRX:
176         if (addr != A_UART_STOPTX && value == 1) {
177             s->rx_started = false;
178             s->reg[R_UART_RXTO] = 1;
179         }
180         break;
181     default:
182         s->reg[addr / 4] = value;
183         break;
184     }
185     nrf51_uart_update_irq(s);
186 }
187 
188 static const MemoryRegionOps uart_ops = {
189     .read =  uart_read,
190     .write = uart_write,
191     .endianness = DEVICE_LITTLE_ENDIAN,
192 };
193 
194 static void nrf51_uart_reset(DeviceState *dev)
195 {
196     NRF51UARTState *s = NRF51_UART(dev);
197 
198     s->pending_tx_byte = 0;
199 
200     uart_cancel_transmit(s);
201 
202     memset(s->reg, 0, sizeof(s->reg));
203 
204     s->reg[R_UART_PSELRTS] = 0xFFFFFFFF;
205     s->reg[R_UART_PSELTXD] = 0xFFFFFFFF;
206     s->reg[R_UART_PSELCTS] = 0xFFFFFFFF;
207     s->reg[R_UART_PSELRXD] = 0xFFFFFFFF;
208     s->reg[R_UART_BAUDRATE] = 0x4000000;
209 
210     s->rx_fifo_len = 0;
211     s->rx_fifo_pos = 0;
212     s->rx_started = false;
213     s->tx_started = false;
214     s->enabled = false;
215 }
216 
217 static void uart_receive(void *opaque, const uint8_t *buf, int size)
218 {
219 
220     NRF51UARTState *s = NRF51_UART(opaque);
221     int i;
222 
223     if (size == 0 || s->rx_fifo_len >= UART_FIFO_LENGTH) {
224         return;
225     }
226 
227     for (i = 0; i < size; i++) {
228         uint32_t pos = (s->rx_fifo_pos + s->rx_fifo_len) % UART_FIFO_LENGTH;
229         s->rx_fifo[pos] = buf[i];
230         s->rx_fifo_len++;
231     }
232 
233     s->reg[R_UART_RXDRDY] = 1;
234     nrf51_uart_update_irq(s);
235 }
236 
237 static int uart_can_receive(void *opaque)
238 {
239     NRF51UARTState *s = NRF51_UART(opaque);
240 
241     return s->rx_started ? (UART_FIFO_LENGTH - s->rx_fifo_len) : 0;
242 }
243 
244 static void uart_event(void *opaque, int event)
245 {
246     NRF51UARTState *s = NRF51_UART(opaque);
247 
248     if (event == CHR_EVENT_BREAK) {
249         s->reg[R_UART_ERRORSRC] |= 3;
250         s->reg[R_UART_ERROR] = 1;
251         nrf51_uart_update_irq(s);
252     }
253 }
254 
255 static void nrf51_uart_realize(DeviceState *dev, Error **errp)
256 {
257     NRF51UARTState *s = NRF51_UART(dev);
258 
259     qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
260                              uart_event, NULL, s, NULL, true);
261 }
262 
263 static void nrf51_uart_init(Object *obj)
264 {
265     NRF51UARTState *s = NRF51_UART(obj);
266     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
267 
268     memory_region_init_io(&s->iomem, obj, &uart_ops, s,
269                           "nrf51_soc.uart", UART_SIZE);
270     sysbus_init_mmio(sbd, &s->iomem);
271     sysbus_init_irq(sbd, &s->irq);
272 }
273 
274 static int nrf51_uart_post_load(void *opaque, int version_id)
275 {
276     NRF51UARTState *s = NRF51_UART(opaque);
277 
278     if (s->pending_tx_byte) {
279         s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
280                                              uart_transmit, s);
281     }
282 
283     return 0;
284 }
285 
286 static const VMStateDescription nrf51_uart_vmstate = {
287     .name = "nrf51_soc.uart",
288     .post_load = nrf51_uart_post_load,
289     .fields = (VMStateField[]) {
290         VMSTATE_UINT32_ARRAY(reg, NRF51UARTState, 0x56C),
291         VMSTATE_UINT8_ARRAY(rx_fifo, NRF51UARTState, UART_FIFO_LENGTH),
292         VMSTATE_UINT32(rx_fifo_pos, NRF51UARTState),
293         VMSTATE_UINT32(rx_fifo_len, NRF51UARTState),
294         VMSTATE_BOOL(rx_started, NRF51UARTState),
295         VMSTATE_BOOL(tx_started, NRF51UARTState),
296         VMSTATE_BOOL(pending_tx_byte, NRF51UARTState),
297         VMSTATE_BOOL(enabled, NRF51UARTState),
298         VMSTATE_END_OF_LIST()
299     }
300 };
301 
302 static Property nrf51_uart_properties[] = {
303     DEFINE_PROP_CHR("chardev", NRF51UARTState, chr),
304     DEFINE_PROP_END_OF_LIST(),
305 };
306 
307 static void nrf51_uart_class_init(ObjectClass *klass, void *data)
308 {
309     DeviceClass *dc = DEVICE_CLASS(klass);
310 
311     dc->reset = nrf51_uart_reset;
312     dc->realize = nrf51_uart_realize;
313     dc->props = nrf51_uart_properties;
314     dc->vmsd = &nrf51_uart_vmstate;
315 }
316 
317 static const TypeInfo nrf51_uart_info = {
318     .name = TYPE_NRF51_UART,
319     .parent = TYPE_SYS_BUS_DEVICE,
320     .instance_size = sizeof(NRF51UARTState),
321     .instance_init = nrf51_uart_init,
322     .class_init = nrf51_uart_class_init
323 };
324 
325 static void nrf51_uart_register_types(void)
326 {
327     type_register_static(&nrf51_uart_info);
328 }
329 
330 type_init(nrf51_uart_register_types)
331