1 /* 2 * QEMU GE IP-Octal 232 IndustryPack emulation 3 * 4 * Copyright (C) 2012 Igalia, S.L. 5 * Author: Alberto Garcia <berto@igalia.com> 6 * 7 * This code is licensed under the GNU GPL v2 or (at your option) any 8 * later version. 9 */ 10 11 #include "qemu/osdep.h" 12 #include "hw/ipack/ipack.h" 13 #include "qemu/bitops.h" 14 #include "sysemu/char.h" 15 16 /* #define DEBUG_IPOCTAL */ 17 18 #ifdef DEBUG_IPOCTAL 19 #define DPRINTF2(fmt, ...) \ 20 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 21 #else 22 #define DPRINTF2(fmt, ...) do { } while (0) 23 #endif 24 25 #define DPRINTF(fmt, ...) DPRINTF2("IP-Octal: " fmt, ## __VA_ARGS__) 26 27 #define RX_FIFO_SIZE 3 28 29 /* The IP-Octal has 8 channels (a-h) 30 divided into 4 blocks (A-D) */ 31 #define N_CHANNELS 8 32 #define N_BLOCKS 4 33 34 #define REG_MRa 0x01 35 #define REG_MRb 0x11 36 #define REG_SRa 0x03 37 #define REG_SRb 0x13 38 #define REG_CSRa 0x03 39 #define REG_CSRb 0x13 40 #define REG_CRa 0x05 41 #define REG_CRb 0x15 42 #define REG_RHRa 0x07 43 #define REG_RHRb 0x17 44 #define REG_THRa 0x07 45 #define REG_THRb 0x17 46 #define REG_ACR 0x09 47 #define REG_ISR 0x0B 48 #define REG_IMR 0x0B 49 #define REG_OPCR 0x1B 50 51 #define CR_ENABLE_RX BIT(0) 52 #define CR_DISABLE_RX BIT(1) 53 #define CR_ENABLE_TX BIT(2) 54 #define CR_DISABLE_TX BIT(3) 55 #define CR_CMD(cr) ((cr) >> 4) 56 #define CR_NO_OP 0 57 #define CR_RESET_MR 1 58 #define CR_RESET_RX 2 59 #define CR_RESET_TX 3 60 #define CR_RESET_ERR 4 61 #define CR_RESET_BRKINT 5 62 #define CR_START_BRK 6 63 #define CR_STOP_BRK 7 64 #define CR_ASSERT_RTSN 8 65 #define CR_NEGATE_RTSN 9 66 #define CR_TIMEOUT_ON 10 67 #define CR_TIMEOUT_OFF 12 68 69 #define SR_RXRDY BIT(0) 70 #define SR_FFULL BIT(1) 71 #define SR_TXRDY BIT(2) 72 #define SR_TXEMT BIT(3) 73 #define SR_OVERRUN BIT(4) 74 #define SR_PARITY BIT(5) 75 #define SR_FRAMING BIT(6) 76 #define SR_BREAK BIT(7) 77 78 #define ISR_TXRDYA BIT(0) 79 #define ISR_RXRDYA BIT(1) 80 #define ISR_BREAKA BIT(2) 81 #define ISR_CNTRDY BIT(3) 82 #define ISR_TXRDYB BIT(4) 83 #define ISR_RXRDYB BIT(5) 84 #define ISR_BREAKB BIT(6) 85 #define ISR_MPICHG BIT(7) 86 #define ISR_TXRDY(CH) (((CH) & 1) ? BIT(4) : BIT(0)) 87 #define ISR_RXRDY(CH) (((CH) & 1) ? BIT(5) : BIT(1)) 88 #define ISR_BREAK(CH) (((CH) & 1) ? BIT(6) : BIT(2)) 89 90 typedef struct IPOctalState IPOctalState; 91 typedef struct SCC2698Channel SCC2698Channel; 92 typedef struct SCC2698Block SCC2698Block; 93 94 struct SCC2698Channel { 95 IPOctalState *ipoctal; 96 CharBackend dev; 97 bool rx_enabled; 98 uint8_t mr[2]; 99 uint8_t mr_idx; 100 uint8_t sr; 101 uint8_t rhr[RX_FIFO_SIZE]; 102 uint8_t rhr_idx; 103 uint8_t rx_pending; 104 }; 105 106 struct SCC2698Block { 107 uint8_t imr; 108 uint8_t isr; 109 }; 110 111 struct IPOctalState { 112 IPackDevice parent_obj; 113 114 SCC2698Channel ch[N_CHANNELS]; 115 SCC2698Block blk[N_BLOCKS]; 116 uint8_t irq_vector; 117 }; 118 119 #define TYPE_IPOCTAL "ipoctal232" 120 121 #define IPOCTAL(obj) \ 122 OBJECT_CHECK(IPOctalState, (obj), TYPE_IPOCTAL) 123 124 static const VMStateDescription vmstate_scc2698_channel = { 125 .name = "scc2698_channel", 126 .version_id = 1, 127 .minimum_version_id = 1, 128 .fields = (VMStateField[]) { 129 VMSTATE_BOOL(rx_enabled, SCC2698Channel), 130 VMSTATE_UINT8_ARRAY(mr, SCC2698Channel, 2), 131 VMSTATE_UINT8(mr_idx, SCC2698Channel), 132 VMSTATE_UINT8(sr, SCC2698Channel), 133 VMSTATE_UINT8_ARRAY(rhr, SCC2698Channel, RX_FIFO_SIZE), 134 VMSTATE_UINT8(rhr_idx, SCC2698Channel), 135 VMSTATE_UINT8(rx_pending, SCC2698Channel), 136 VMSTATE_END_OF_LIST() 137 } 138 }; 139 140 static const VMStateDescription vmstate_scc2698_block = { 141 .name = "scc2698_block", 142 .version_id = 1, 143 .minimum_version_id = 1, 144 .fields = (VMStateField[]) { 145 VMSTATE_UINT8(imr, SCC2698Block), 146 VMSTATE_UINT8(isr, SCC2698Block), 147 VMSTATE_END_OF_LIST() 148 } 149 }; 150 151 static const VMStateDescription vmstate_ipoctal = { 152 .name = "ipoctal232", 153 .version_id = 1, 154 .minimum_version_id = 1, 155 .fields = (VMStateField[]) { 156 VMSTATE_IPACK_DEVICE(parent_obj, IPOctalState), 157 VMSTATE_STRUCT_ARRAY(ch, IPOctalState, N_CHANNELS, 1, 158 vmstate_scc2698_channel, SCC2698Channel), 159 VMSTATE_STRUCT_ARRAY(blk, IPOctalState, N_BLOCKS, 1, 160 vmstate_scc2698_block, SCC2698Block), 161 VMSTATE_UINT8(irq_vector, IPOctalState), 162 VMSTATE_END_OF_LIST() 163 } 164 }; 165 166 /* data[10] is 0x0C, not 0x0B as the doc says */ 167 static const uint8_t id_prom_data[] = { 168 0x49, 0x50, 0x41, 0x43, 0xF0, 0x22, 169 0xA1, 0x00, 0x00, 0x00, 0x0C, 0xCC 170 }; 171 172 static void update_irq(IPOctalState *dev, unsigned block) 173 { 174 IPackDevice *idev = IPACK_DEVICE(dev); 175 /* Blocks A and B interrupt on INT0#, C and D on INT1#. 176 Thus, to get the status we have to check two blocks. */ 177 SCC2698Block *blk0 = &dev->blk[block]; 178 SCC2698Block *blk1 = &dev->blk[block^1]; 179 unsigned intno = block / 2; 180 181 if ((blk0->isr & blk0->imr) || (blk1->isr & blk1->imr)) { 182 qemu_irq_raise(idev->irq[intno]); 183 } else { 184 qemu_irq_lower(idev->irq[intno]); 185 } 186 } 187 188 static void write_cr(IPOctalState *dev, unsigned channel, uint8_t val) 189 { 190 SCC2698Channel *ch = &dev->ch[channel]; 191 SCC2698Block *blk = &dev->blk[channel / 2]; 192 193 DPRINTF("Write CR%c %u: ", channel + 'a', val); 194 195 /* The lower 4 bits are used to enable and disable Tx and Rx */ 196 if (val & CR_ENABLE_RX) { 197 DPRINTF2("Rx on, "); 198 ch->rx_enabled = true; 199 } 200 if (val & CR_DISABLE_RX) { 201 DPRINTF2("Rx off, "); 202 ch->rx_enabled = false; 203 } 204 if (val & CR_ENABLE_TX) { 205 DPRINTF2("Tx on, "); 206 ch->sr |= SR_TXRDY | SR_TXEMT; 207 blk->isr |= ISR_TXRDY(channel); 208 } 209 if (val & CR_DISABLE_TX) { 210 DPRINTF2("Tx off, "); 211 ch->sr &= ~(SR_TXRDY | SR_TXEMT); 212 blk->isr &= ~ISR_TXRDY(channel); 213 } 214 215 DPRINTF2("cmd: "); 216 217 /* The rest of the bits implement different commands */ 218 switch (CR_CMD(val)) { 219 case CR_NO_OP: 220 DPRINTF2("none"); 221 break; 222 case CR_RESET_MR: 223 DPRINTF2("reset MR"); 224 ch->mr_idx = 0; 225 break; 226 case CR_RESET_RX: 227 DPRINTF2("reset Rx"); 228 ch->rx_enabled = false; 229 ch->rx_pending = 0; 230 ch->sr &= ~SR_RXRDY; 231 blk->isr &= ~ISR_RXRDY(channel); 232 break; 233 case CR_RESET_TX: 234 DPRINTF2("reset Tx"); 235 ch->sr &= ~(SR_TXRDY | SR_TXEMT); 236 blk->isr &= ~ISR_TXRDY(channel); 237 break; 238 case CR_RESET_ERR: 239 DPRINTF2("reset err"); 240 ch->sr &= ~(SR_OVERRUN | SR_PARITY | SR_FRAMING | SR_BREAK); 241 break; 242 case CR_RESET_BRKINT: 243 DPRINTF2("reset brk ch int"); 244 blk->isr &= ~(ISR_BREAKA | ISR_BREAKB); 245 break; 246 default: 247 DPRINTF2("unsupported 0x%x", CR_CMD(val)); 248 } 249 250 DPRINTF2("\n"); 251 } 252 253 static uint16_t io_read(IPackDevice *ip, uint8_t addr) 254 { 255 IPOctalState *dev = IPOCTAL(ip); 256 uint16_t ret = 0; 257 /* addr[7:6]: block (A-D) 258 addr[7:5]: channel (a-h) 259 addr[5:0]: register */ 260 unsigned block = addr >> 5; 261 unsigned channel = addr >> 4; 262 /* Big endian, accessed using 8-bit bytes at odd locations */ 263 unsigned offset = (addr & 0x1F) ^ 1; 264 SCC2698Channel *ch = &dev->ch[channel]; 265 SCC2698Block *blk = &dev->blk[block]; 266 uint8_t old_isr = blk->isr; 267 268 switch (offset) { 269 270 case REG_MRa: 271 case REG_MRb: 272 ret = ch->mr[ch->mr_idx]; 273 DPRINTF("Read MR%u%c: 0x%x\n", ch->mr_idx + 1, channel + 'a', ret); 274 ch->mr_idx = 1; 275 break; 276 277 case REG_SRa: 278 case REG_SRb: 279 ret = ch->sr; 280 DPRINTF("Read SR%c: 0x%x\n", channel + 'a', ret); 281 break; 282 283 case REG_RHRa: 284 case REG_RHRb: 285 ret = ch->rhr[ch->rhr_idx]; 286 if (ch->rx_pending > 0) { 287 ch->rx_pending--; 288 if (ch->rx_pending == 0) { 289 ch->sr &= ~SR_RXRDY; 290 blk->isr &= ~ISR_RXRDY(channel); 291 qemu_chr_fe_accept_input(&ch->dev); 292 } else { 293 ch->rhr_idx = (ch->rhr_idx + 1) % RX_FIFO_SIZE; 294 } 295 if (ch->sr & SR_BREAK) { 296 ch->sr &= ~SR_BREAK; 297 blk->isr |= ISR_BREAK(channel); 298 } 299 } 300 DPRINTF("Read RHR%c (0x%x)\n", channel + 'a', ret); 301 break; 302 303 case REG_ISR: 304 ret = blk->isr; 305 DPRINTF("Read ISR%c: 0x%x\n", block + 'A', ret); 306 break; 307 308 default: 309 DPRINTF("Read unknown/unsupported register 0x%02x\n", offset); 310 } 311 312 if (old_isr != blk->isr) { 313 update_irq(dev, block); 314 } 315 316 return ret; 317 } 318 319 static void io_write(IPackDevice *ip, uint8_t addr, uint16_t val) 320 { 321 IPOctalState *dev = IPOCTAL(ip); 322 unsigned reg = val & 0xFF; 323 /* addr[7:6]: block (A-D) 324 addr[7:5]: channel (a-h) 325 addr[5:0]: register */ 326 unsigned block = addr >> 5; 327 unsigned channel = addr >> 4; 328 /* Big endian, accessed using 8-bit bytes at odd locations */ 329 unsigned offset = (addr & 0x1F) ^ 1; 330 SCC2698Channel *ch = &dev->ch[channel]; 331 SCC2698Block *blk = &dev->blk[block]; 332 uint8_t old_isr = blk->isr; 333 uint8_t old_imr = blk->imr; 334 335 switch (offset) { 336 337 case REG_MRa: 338 case REG_MRb: 339 ch->mr[ch->mr_idx] = reg; 340 DPRINTF("Write MR%u%c 0x%x\n", ch->mr_idx + 1, channel + 'a', reg); 341 ch->mr_idx = 1; 342 break; 343 344 /* Not implemented */ 345 case REG_CSRa: 346 case REG_CSRb: 347 DPRINTF("Write CSR%c: 0x%x\n", channel + 'a', reg); 348 break; 349 350 case REG_CRa: 351 case REG_CRb: 352 write_cr(dev, channel, reg); 353 break; 354 355 case REG_THRa: 356 case REG_THRb: 357 if (ch->sr & SR_TXRDY) { 358 uint8_t thr = reg; 359 DPRINTF("Write THR%c (0x%x)\n", channel + 'a', reg); 360 /* XXX this blocks entire thread. Rewrite to use 361 * qemu_chr_fe_write and background I/O callbacks */ 362 qemu_chr_fe_write_all(&ch->dev, &thr, 1); 363 } else { 364 DPRINTF("Write THR%c (0x%x), Tx disabled\n", channel + 'a', reg); 365 } 366 break; 367 368 /* Not implemented */ 369 case REG_ACR: 370 DPRINTF("Write ACR%c 0x%x\n", block + 'A', val); 371 break; 372 373 case REG_IMR: 374 DPRINTF("Write IMR%c 0x%x\n", block + 'A', val); 375 blk->imr = reg; 376 break; 377 378 /* Not implemented */ 379 case REG_OPCR: 380 DPRINTF("Write OPCR%c 0x%x\n", block + 'A', val); 381 break; 382 383 default: 384 DPRINTF("Write unknown/unsupported register 0x%02x %u\n", offset, val); 385 } 386 387 if (old_isr != blk->isr || old_imr != blk->imr) { 388 update_irq(dev, block); 389 } 390 } 391 392 static uint16_t id_read(IPackDevice *ip, uint8_t addr) 393 { 394 uint16_t ret = 0; 395 unsigned pos = addr / 2; /* The ID PROM data is stored every other byte */ 396 397 if (pos < ARRAY_SIZE(id_prom_data)) { 398 ret = id_prom_data[pos]; 399 } else { 400 DPRINTF("Attempt to read unavailable PROM data at 0x%x\n", addr); 401 } 402 403 return ret; 404 } 405 406 static void id_write(IPackDevice *ip, uint8_t addr, uint16_t val) 407 { 408 IPOctalState *dev = IPOCTAL(ip); 409 if (addr == 1) { 410 DPRINTF("Write IRQ vector: %u\n", (unsigned) val); 411 dev->irq_vector = val; /* Undocumented, but the hw works like that */ 412 } else { 413 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr); 414 } 415 } 416 417 static uint16_t int_read(IPackDevice *ip, uint8_t addr) 418 { 419 IPOctalState *dev = IPOCTAL(ip); 420 /* Read address 0 to ACK INT0# and address 2 to ACK INT1# */ 421 if (addr != 0 && addr != 2) { 422 DPRINTF("Attempt to read from 0x%x\n", addr); 423 return 0; 424 } else { 425 /* Update interrupts if necessary */ 426 update_irq(dev, addr); 427 return dev->irq_vector; 428 } 429 } 430 431 static void int_write(IPackDevice *ip, uint8_t addr, uint16_t val) 432 { 433 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr); 434 } 435 436 static uint16_t mem_read16(IPackDevice *ip, uint32_t addr) 437 { 438 DPRINTF("Attempt to read from 0x%x\n", addr); 439 return 0; 440 } 441 442 static void mem_write16(IPackDevice *ip, uint32_t addr, uint16_t val) 443 { 444 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr); 445 } 446 447 static uint8_t mem_read8(IPackDevice *ip, uint32_t addr) 448 { 449 DPRINTF("Attempt to read from 0x%x\n", addr); 450 return 0; 451 } 452 453 static void mem_write8(IPackDevice *ip, uint32_t addr, uint8_t val) 454 { 455 IPOctalState *dev = IPOCTAL(ip); 456 if (addr == 1) { 457 DPRINTF("Write IRQ vector: %u\n", (unsigned) val); 458 dev->irq_vector = val; 459 } else { 460 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr); 461 } 462 } 463 464 static int hostdev_can_receive(void *opaque) 465 { 466 SCC2698Channel *ch = opaque; 467 int available_bytes = RX_FIFO_SIZE - ch->rx_pending; 468 return ch->rx_enabled ? available_bytes : 0; 469 } 470 471 static void hostdev_receive(void *opaque, const uint8_t *buf, int size) 472 { 473 SCC2698Channel *ch = opaque; 474 IPOctalState *dev = ch->ipoctal; 475 unsigned pos = ch->rhr_idx + ch->rx_pending; 476 int i; 477 478 assert(size + ch->rx_pending <= RX_FIFO_SIZE); 479 480 /* Copy data to the RxFIFO */ 481 for (i = 0; i < size; i++) { 482 pos %= RX_FIFO_SIZE; 483 ch->rhr[pos++] = buf[i]; 484 } 485 486 ch->rx_pending += size; 487 488 /* If the RxFIFO was empty raise an interrupt */ 489 if (!(ch->sr & SR_RXRDY)) { 490 unsigned block, channel = 0; 491 /* Find channel number to update the ISR register */ 492 while (&dev->ch[channel] != ch) { 493 channel++; 494 } 495 block = channel / 2; 496 dev->blk[block].isr |= ISR_RXRDY(channel); 497 ch->sr |= SR_RXRDY; 498 update_irq(dev, block); 499 } 500 } 501 502 static void hostdev_event(void *opaque, int event) 503 { 504 SCC2698Channel *ch = opaque; 505 switch (event) { 506 case CHR_EVENT_OPENED: 507 DPRINTF("Device %s opened\n", ch->dev->label); 508 break; 509 case CHR_EVENT_BREAK: { 510 uint8_t zero = 0; 511 DPRINTF("Device %s received break\n", ch->dev->label); 512 513 if (!(ch->sr & SR_BREAK)) { 514 IPOctalState *dev = ch->ipoctal; 515 unsigned block, channel = 0; 516 517 while (&dev->ch[channel] != ch) { 518 channel++; 519 } 520 block = channel / 2; 521 522 ch->sr |= SR_BREAK; 523 dev->blk[block].isr |= ISR_BREAK(channel); 524 } 525 526 /* Put a zero character in the buffer */ 527 hostdev_receive(ch, &zero, 1); 528 } 529 break; 530 default: 531 DPRINTF("Device %s received event %d\n", ch->dev->label, event); 532 } 533 } 534 535 static void ipoctal_realize(DeviceState *dev, Error **errp) 536 { 537 IPOctalState *s = IPOCTAL(dev); 538 unsigned i; 539 540 for (i = 0; i < N_CHANNELS; i++) { 541 SCC2698Channel *ch = &s->ch[i]; 542 ch->ipoctal = s; 543 544 /* Redirect IP-Octal channels to host character devices */ 545 if (qemu_chr_fe_get_driver(&ch->dev)) { 546 qemu_chr_fe_set_handlers(&ch->dev, hostdev_can_receive, 547 hostdev_receive, hostdev_event, 548 ch, NULL, true); 549 DPRINTF("Redirecting channel %u to %s\n", i, ch->dev->label); 550 } else { 551 DPRINTF("Could not redirect channel %u, no chardev set\n", i); 552 } 553 } 554 } 555 556 static Property ipoctal_properties[] = { 557 DEFINE_PROP_CHR("chardev0", IPOctalState, ch[0].dev), 558 DEFINE_PROP_CHR("chardev1", IPOctalState, ch[1].dev), 559 DEFINE_PROP_CHR("chardev2", IPOctalState, ch[2].dev), 560 DEFINE_PROP_CHR("chardev3", IPOctalState, ch[3].dev), 561 DEFINE_PROP_CHR("chardev4", IPOctalState, ch[4].dev), 562 DEFINE_PROP_CHR("chardev5", IPOctalState, ch[5].dev), 563 DEFINE_PROP_CHR("chardev6", IPOctalState, ch[6].dev), 564 DEFINE_PROP_CHR("chardev7", IPOctalState, ch[7].dev), 565 DEFINE_PROP_END_OF_LIST(), 566 }; 567 568 static void ipoctal_class_init(ObjectClass *klass, void *data) 569 { 570 DeviceClass *dc = DEVICE_CLASS(klass); 571 IPackDeviceClass *ic = IPACK_DEVICE_CLASS(klass); 572 573 ic->realize = ipoctal_realize; 574 ic->io_read = io_read; 575 ic->io_write = io_write; 576 ic->id_read = id_read; 577 ic->id_write = id_write; 578 ic->int_read = int_read; 579 ic->int_write = int_write; 580 ic->mem_read16 = mem_read16; 581 ic->mem_write16 = mem_write16; 582 ic->mem_read8 = mem_read8; 583 ic->mem_write8 = mem_write8; 584 585 set_bit(DEVICE_CATEGORY_INPUT, dc->categories); 586 dc->desc = "GE IP-Octal 232 8-channel RS-232 IndustryPack"; 587 dc->props = ipoctal_properties; 588 dc->vmsd = &vmstate_ipoctal; 589 } 590 591 static const TypeInfo ipoctal_info = { 592 .name = TYPE_IPOCTAL, 593 .parent = TYPE_IPACK_DEVICE, 594 .instance_size = sizeof(IPOctalState), 595 .class_init = ipoctal_class_init, 596 }; 597 598 static void ipoctal_register_types(void) 599 { 600 type_register_static(&ipoctal_info); 601 } 602 603 type_init(ipoctal_register_types) 604