1 /* 2 * QEMU GE IP-Octal 232 IndustryPack emulation 3 * 4 * Copyright (C) 2012 Igalia, S.L. 5 * Author: Alberto Garcia <agarcia@igalia.com> 6 * 7 * This code is licensed under the GNU GPL v2 or (at your option) any 8 * later version. 9 */ 10 11 #include "hw/ipack/ipack.h" 12 #include "qemu/bitops.h" 13 #include "sysemu/char.h" 14 15 /* #define DEBUG_IPOCTAL */ 16 17 #ifdef DEBUG_IPOCTAL 18 #define DPRINTF2(fmt, ...) \ 19 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 20 #else 21 #define DPRINTF2(fmt, ...) do { } while (0) 22 #endif 23 24 #define DPRINTF(fmt, ...) DPRINTF2("IP-Octal: " fmt, ## __VA_ARGS__) 25 26 #define RX_FIFO_SIZE 3 27 28 /* The IP-Octal has 8 channels (a-h) 29 divided into 4 blocks (A-D) */ 30 #define N_CHANNELS 8 31 #define N_BLOCKS 4 32 33 #define REG_MRa 0x01 34 #define REG_MRb 0x11 35 #define REG_SRa 0x03 36 #define REG_SRb 0x13 37 #define REG_CSRa 0x03 38 #define REG_CSRb 0x13 39 #define REG_CRa 0x05 40 #define REG_CRb 0x15 41 #define REG_RHRa 0x07 42 #define REG_RHRb 0x17 43 #define REG_THRa 0x07 44 #define REG_THRb 0x17 45 #define REG_ACR 0x09 46 #define REG_ISR 0x0B 47 #define REG_IMR 0x0B 48 #define REG_OPCR 0x1B 49 50 #define CR_ENABLE_RX BIT(0) 51 #define CR_DISABLE_RX BIT(1) 52 #define CR_ENABLE_TX BIT(2) 53 #define CR_DISABLE_TX BIT(3) 54 #define CR_CMD(cr) ((cr) >> 4) 55 #define CR_NO_OP 0 56 #define CR_RESET_MR 1 57 #define CR_RESET_RX 2 58 #define CR_RESET_TX 3 59 #define CR_RESET_ERR 4 60 #define CR_RESET_BRKINT 5 61 #define CR_START_BRK 6 62 #define CR_STOP_BRK 7 63 #define CR_ASSERT_RTSN 8 64 #define CR_NEGATE_RTSN 9 65 #define CR_TIMEOUT_ON 10 66 #define CR_TIMEOUT_OFF 12 67 68 #define SR_RXRDY BIT(0) 69 #define SR_FFULL BIT(1) 70 #define SR_TXRDY BIT(2) 71 #define SR_TXEMT BIT(3) 72 #define SR_OVERRUN BIT(4) 73 #define SR_PARITY BIT(5) 74 #define SR_FRAMING BIT(6) 75 #define SR_BREAK BIT(7) 76 77 #define ISR_TXRDYA BIT(0) 78 #define ISR_RXRDYA BIT(1) 79 #define ISR_BREAKA BIT(2) 80 #define ISR_CNTRDY BIT(3) 81 #define ISR_TXRDYB BIT(4) 82 #define ISR_RXRDYB BIT(5) 83 #define ISR_BREAKB BIT(6) 84 #define ISR_MPICHG BIT(7) 85 #define ISR_TXRDY(CH) (((CH) & 1) ? BIT(4) : BIT(0)) 86 #define ISR_RXRDY(CH) (((CH) & 1) ? BIT(5) : BIT(1)) 87 #define ISR_BREAK(CH) (((CH) & 1) ? BIT(6) : BIT(2)) 88 89 typedef struct IPOctalState IPOctalState; 90 typedef struct SCC2698Channel SCC2698Channel; 91 typedef struct SCC2698Block SCC2698Block; 92 93 struct SCC2698Channel { 94 IPOctalState *ipoctal; 95 CharDriverState *dev; 96 bool rx_enabled; 97 uint8_t mr[2]; 98 uint8_t mr_idx; 99 uint8_t sr; 100 uint8_t rhr[RX_FIFO_SIZE]; 101 uint8_t rhr_idx; 102 uint8_t rx_pending; 103 }; 104 105 struct SCC2698Block { 106 uint8_t imr; 107 uint8_t isr; 108 }; 109 110 struct IPOctalState { 111 IPackDevice parent_obj; 112 113 SCC2698Channel ch[N_CHANNELS]; 114 SCC2698Block blk[N_BLOCKS]; 115 uint8_t irq_vector; 116 }; 117 118 #define TYPE_IPOCTAL "ipoctal232" 119 120 #define IPOCTAL(obj) \ 121 OBJECT_CHECK(IPOctalState, (obj), TYPE_IPOCTAL) 122 123 static const VMStateDescription vmstate_scc2698_channel = { 124 .name = "scc2698_channel", 125 .version_id = 1, 126 .minimum_version_id = 1, 127 .minimum_version_id_old = 1, 128 .fields = (VMStateField[]) { 129 VMSTATE_BOOL(rx_enabled, SCC2698Channel), 130 VMSTATE_UINT8_ARRAY(mr, SCC2698Channel, 2), 131 VMSTATE_UINT8(mr_idx, SCC2698Channel), 132 VMSTATE_UINT8(sr, SCC2698Channel), 133 VMSTATE_UINT8_ARRAY(rhr, SCC2698Channel, RX_FIFO_SIZE), 134 VMSTATE_UINT8(rhr_idx, SCC2698Channel), 135 VMSTATE_UINT8(rx_pending, SCC2698Channel), 136 VMSTATE_END_OF_LIST() 137 } 138 }; 139 140 static const VMStateDescription vmstate_scc2698_block = { 141 .name = "scc2698_block", 142 .version_id = 1, 143 .minimum_version_id = 1, 144 .minimum_version_id_old = 1, 145 .fields = (VMStateField[]) { 146 VMSTATE_UINT8(imr, SCC2698Block), 147 VMSTATE_UINT8(isr, SCC2698Block), 148 VMSTATE_END_OF_LIST() 149 } 150 }; 151 152 static const VMStateDescription vmstate_ipoctal = { 153 .name = "ipoctal232", 154 .version_id = 1, 155 .minimum_version_id = 1, 156 .minimum_version_id_old = 1, 157 .fields = (VMStateField[]) { 158 VMSTATE_IPACK_DEVICE(parent_obj, IPOctalState), 159 VMSTATE_STRUCT_ARRAY(ch, IPOctalState, N_CHANNELS, 1, 160 vmstate_scc2698_channel, SCC2698Channel), 161 VMSTATE_STRUCT_ARRAY(blk, IPOctalState, N_BLOCKS, 1, 162 vmstate_scc2698_block, SCC2698Block), 163 VMSTATE_UINT8(irq_vector, IPOctalState), 164 VMSTATE_END_OF_LIST() 165 } 166 }; 167 168 /* data[10] is 0x0C, not 0x0B as the doc says */ 169 static const uint8_t id_prom_data[] = { 170 0x49, 0x50, 0x41, 0x43, 0xF0, 0x22, 171 0xA1, 0x00, 0x00, 0x00, 0x0C, 0xCC 172 }; 173 174 static void update_irq(IPOctalState *dev, unsigned block) 175 { 176 IPackDevice *idev = IPACK_DEVICE(dev); 177 /* Blocks A and B interrupt on INT0#, C and D on INT1#. 178 Thus, to get the status we have to check two blocks. */ 179 SCC2698Block *blk0 = &dev->blk[block]; 180 SCC2698Block *blk1 = &dev->blk[block^1]; 181 unsigned intno = block / 2; 182 183 if ((blk0->isr & blk0->imr) || (blk1->isr & blk1->imr)) { 184 qemu_irq_raise(idev->irq[intno]); 185 } else { 186 qemu_irq_lower(idev->irq[intno]); 187 } 188 } 189 190 static void write_cr(IPOctalState *dev, unsigned channel, uint8_t val) 191 { 192 SCC2698Channel *ch = &dev->ch[channel]; 193 SCC2698Block *blk = &dev->blk[channel / 2]; 194 195 DPRINTF("Write CR%c %u: ", channel + 'a', val); 196 197 /* The lower 4 bits are used to enable and disable Tx and Rx */ 198 if (val & CR_ENABLE_RX) { 199 DPRINTF2("Rx on, "); 200 ch->rx_enabled = true; 201 } 202 if (val & CR_DISABLE_RX) { 203 DPRINTF2("Rx off, "); 204 ch->rx_enabled = false; 205 } 206 if (val & CR_ENABLE_TX) { 207 DPRINTF2("Tx on, "); 208 ch->sr |= SR_TXRDY | SR_TXEMT; 209 blk->isr |= ISR_TXRDY(channel); 210 } 211 if (val & CR_DISABLE_TX) { 212 DPRINTF2("Tx off, "); 213 ch->sr &= ~(SR_TXRDY | SR_TXEMT); 214 blk->isr &= ~ISR_TXRDY(channel); 215 } 216 217 DPRINTF2("cmd: "); 218 219 /* The rest of the bits implement different commands */ 220 switch (CR_CMD(val)) { 221 case CR_NO_OP: 222 DPRINTF2("none"); 223 break; 224 case CR_RESET_MR: 225 DPRINTF2("reset MR"); 226 ch->mr_idx = 0; 227 break; 228 case CR_RESET_RX: 229 DPRINTF2("reset Rx"); 230 ch->rx_enabled = false; 231 ch->rx_pending = 0; 232 ch->sr &= ~SR_RXRDY; 233 blk->isr &= ~ISR_RXRDY(channel); 234 break; 235 case CR_RESET_TX: 236 DPRINTF2("reset Tx"); 237 ch->sr &= ~(SR_TXRDY | SR_TXEMT); 238 blk->isr &= ~ISR_TXRDY(channel); 239 break; 240 case CR_RESET_ERR: 241 DPRINTF2("reset err"); 242 ch->sr &= ~(SR_OVERRUN | SR_PARITY | SR_FRAMING | SR_BREAK); 243 break; 244 case CR_RESET_BRKINT: 245 DPRINTF2("reset brk ch int"); 246 blk->isr &= ~(ISR_BREAKA | ISR_BREAKB); 247 break; 248 default: 249 DPRINTF2("unsupported 0x%x", CR_CMD(val)); 250 } 251 252 DPRINTF2("\n"); 253 } 254 255 static uint16_t io_read(IPackDevice *ip, uint8_t addr) 256 { 257 IPOctalState *dev = IPOCTAL(ip); 258 uint16_t ret = 0; 259 /* addr[7:6]: block (A-D) 260 addr[7:5]: channel (a-h) 261 addr[5:0]: register */ 262 unsigned block = addr >> 5; 263 unsigned channel = addr >> 4; 264 /* Big endian, accessed using 8-bit bytes at odd locations */ 265 unsigned offset = (addr & 0x1F) ^ 1; 266 SCC2698Channel *ch = &dev->ch[channel]; 267 SCC2698Block *blk = &dev->blk[block]; 268 uint8_t old_isr = blk->isr; 269 270 switch (offset) { 271 272 case REG_MRa: 273 case REG_MRb: 274 ret = ch->mr[ch->mr_idx]; 275 DPRINTF("Read MR%u%c: 0x%x\n", ch->mr_idx + 1, channel + 'a', ret); 276 ch->mr_idx = 1; 277 break; 278 279 case REG_SRa: 280 case REG_SRb: 281 ret = ch->sr; 282 DPRINTF("Read SR%c: 0x%x\n", channel + 'a', ret); 283 break; 284 285 case REG_RHRa: 286 case REG_RHRb: 287 ret = ch->rhr[ch->rhr_idx]; 288 if (ch->rx_pending > 0) { 289 ch->rx_pending--; 290 if (ch->rx_pending == 0) { 291 ch->sr &= ~SR_RXRDY; 292 blk->isr &= ~ISR_RXRDY(channel); 293 if (ch->dev) { 294 qemu_chr_accept_input(ch->dev); 295 } 296 } else { 297 ch->rhr_idx = (ch->rhr_idx + 1) % RX_FIFO_SIZE; 298 } 299 if (ch->sr & SR_BREAK) { 300 ch->sr &= ~SR_BREAK; 301 blk->isr |= ISR_BREAK(channel); 302 } 303 } 304 DPRINTF("Read RHR%c (0x%x)\n", channel + 'a', ret); 305 break; 306 307 case REG_ISR: 308 ret = blk->isr; 309 DPRINTF("Read ISR%c: 0x%x\n", block + 'A', ret); 310 break; 311 312 default: 313 DPRINTF("Read unknown/unsupported register 0x%02x\n", offset); 314 } 315 316 if (old_isr != blk->isr) { 317 update_irq(dev, block); 318 } 319 320 return ret; 321 } 322 323 static void io_write(IPackDevice *ip, uint8_t addr, uint16_t val) 324 { 325 IPOctalState *dev = IPOCTAL(ip); 326 unsigned reg = val & 0xFF; 327 /* addr[7:6]: block (A-D) 328 addr[7:5]: channel (a-h) 329 addr[5:0]: register */ 330 unsigned block = addr >> 5; 331 unsigned channel = addr >> 4; 332 /* Big endian, accessed using 8-bit bytes at odd locations */ 333 unsigned offset = (addr & 0x1F) ^ 1; 334 SCC2698Channel *ch = &dev->ch[channel]; 335 SCC2698Block *blk = &dev->blk[block]; 336 uint8_t old_isr = blk->isr; 337 uint8_t old_imr = blk->imr; 338 339 switch (offset) { 340 341 case REG_MRa: 342 case REG_MRb: 343 ch->mr[ch->mr_idx] = reg; 344 DPRINTF("Write MR%u%c 0x%x\n", ch->mr_idx + 1, channel + 'a', reg); 345 ch->mr_idx = 1; 346 break; 347 348 /* Not implemented */ 349 case REG_CSRa: 350 case REG_CSRb: 351 DPRINTF("Write CSR%c: 0x%x\n", channel + 'a', reg); 352 break; 353 354 case REG_CRa: 355 case REG_CRb: 356 write_cr(dev, channel, reg); 357 break; 358 359 case REG_THRa: 360 case REG_THRb: 361 if (ch->sr & SR_TXRDY) { 362 DPRINTF("Write THR%c (0x%x)\n", channel + 'a', reg); 363 if (ch->dev) { 364 uint8_t thr = reg; 365 qemu_chr_fe_write(ch->dev, &thr, 1); 366 } 367 } else { 368 DPRINTF("Write THR%c (0x%x), Tx disabled\n", channel + 'a', reg); 369 } 370 break; 371 372 /* Not implemented */ 373 case REG_ACR: 374 DPRINTF("Write ACR%c 0x%x\n", block + 'A', val); 375 break; 376 377 case REG_IMR: 378 DPRINTF("Write IMR%c 0x%x\n", block + 'A', val); 379 blk->imr = reg; 380 break; 381 382 /* Not implemented */ 383 case REG_OPCR: 384 DPRINTF("Write OPCR%c 0x%x\n", block + 'A', val); 385 break; 386 387 default: 388 DPRINTF("Write unknown/unsupported register 0x%02x %u\n", offset, val); 389 } 390 391 if (old_isr != blk->isr || old_imr != blk->imr) { 392 update_irq(dev, block); 393 } 394 } 395 396 static uint16_t id_read(IPackDevice *ip, uint8_t addr) 397 { 398 uint16_t ret = 0; 399 unsigned pos = addr / 2; /* The ID PROM data is stored every other byte */ 400 401 if (pos < ARRAY_SIZE(id_prom_data)) { 402 ret = id_prom_data[pos]; 403 } else { 404 DPRINTF("Attempt to read unavailable PROM data at 0x%x\n", addr); 405 } 406 407 return ret; 408 } 409 410 static void id_write(IPackDevice *ip, uint8_t addr, uint16_t val) 411 { 412 IPOctalState *dev = IPOCTAL(ip); 413 if (addr == 1) { 414 DPRINTF("Write IRQ vector: %u\n", (unsigned) val); 415 dev->irq_vector = val; /* Undocumented, but the hw works like that */ 416 } else { 417 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr); 418 } 419 } 420 421 static uint16_t int_read(IPackDevice *ip, uint8_t addr) 422 { 423 IPOctalState *dev = IPOCTAL(ip); 424 /* Read address 0 to ACK INT0# and address 2 to ACK INT1# */ 425 if (addr != 0 && addr != 2) { 426 DPRINTF("Attempt to read from 0x%x\n", addr); 427 return 0; 428 } else { 429 /* Update interrupts if necessary */ 430 update_irq(dev, addr); 431 return dev->irq_vector; 432 } 433 } 434 435 static void int_write(IPackDevice *ip, uint8_t addr, uint16_t val) 436 { 437 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr); 438 } 439 440 static uint16_t mem_read16(IPackDevice *ip, uint32_t addr) 441 { 442 DPRINTF("Attempt to read from 0x%x\n", addr); 443 return 0; 444 } 445 446 static void mem_write16(IPackDevice *ip, uint32_t addr, uint16_t val) 447 { 448 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr); 449 } 450 451 static uint8_t mem_read8(IPackDevice *ip, uint32_t addr) 452 { 453 DPRINTF("Attempt to read from 0x%x\n", addr); 454 return 0; 455 } 456 457 static void mem_write8(IPackDevice *ip, uint32_t addr, uint8_t val) 458 { 459 IPOctalState *dev = IPOCTAL(ip); 460 if (addr == 1) { 461 DPRINTF("Write IRQ vector: %u\n", (unsigned) val); 462 dev->irq_vector = val; 463 } else { 464 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr); 465 } 466 } 467 468 static int hostdev_can_receive(void *opaque) 469 { 470 SCC2698Channel *ch = opaque; 471 int available_bytes = RX_FIFO_SIZE - ch->rx_pending; 472 return ch->rx_enabled ? available_bytes : 0; 473 } 474 475 static void hostdev_receive(void *opaque, const uint8_t *buf, int size) 476 { 477 SCC2698Channel *ch = opaque; 478 IPOctalState *dev = ch->ipoctal; 479 unsigned pos = ch->rhr_idx + ch->rx_pending; 480 int i; 481 482 assert(size + ch->rx_pending <= RX_FIFO_SIZE); 483 484 /* Copy data to the RxFIFO */ 485 for (i = 0; i < size; i++) { 486 pos %= RX_FIFO_SIZE; 487 ch->rhr[pos++] = buf[i]; 488 } 489 490 ch->rx_pending += size; 491 492 /* If the RxFIFO was empty raise an interrupt */ 493 if (!(ch->sr & SR_RXRDY)) { 494 unsigned block, channel = 0; 495 /* Find channel number to update the ISR register */ 496 while (&dev->ch[channel] != ch) { 497 channel++; 498 } 499 block = channel / 2; 500 dev->blk[block].isr |= ISR_RXRDY(channel); 501 ch->sr |= SR_RXRDY; 502 update_irq(dev, block); 503 } 504 } 505 506 static void hostdev_event(void *opaque, int event) 507 { 508 SCC2698Channel *ch = opaque; 509 switch (event) { 510 case CHR_EVENT_OPENED: 511 DPRINTF("Device %s opened\n", ch->dev->label); 512 break; 513 case CHR_EVENT_BREAK: { 514 uint8_t zero = 0; 515 DPRINTF("Device %s received break\n", ch->dev->label); 516 517 if (!(ch->sr & SR_BREAK)) { 518 IPOctalState *dev = ch->ipoctal; 519 unsigned block, channel = 0; 520 521 while (&dev->ch[channel] != ch) { 522 channel++; 523 } 524 block = channel / 2; 525 526 ch->sr |= SR_BREAK; 527 dev->blk[block].isr |= ISR_BREAK(channel); 528 } 529 530 /* Put a zero character in the buffer */ 531 hostdev_receive(ch, &zero, 1); 532 } 533 break; 534 default: 535 DPRINTF("Device %s received event %d\n", ch->dev->label, event); 536 } 537 } 538 539 static void ipoctal_realize(DeviceState *dev, Error **errp) 540 { 541 IPOctalState *s = IPOCTAL(dev); 542 unsigned i; 543 544 for (i = 0; i < N_CHANNELS; i++) { 545 SCC2698Channel *ch = &s->ch[i]; 546 ch->ipoctal = s; 547 548 /* Redirect IP-Octal channels to host character devices */ 549 if (ch->dev) { 550 qemu_chr_add_handlers(ch->dev, hostdev_can_receive, 551 hostdev_receive, hostdev_event, ch); 552 DPRINTF("Redirecting channel %u to %s\n", i, ch->dev->label); 553 } else { 554 DPRINTF("Could not redirect channel %u, no chardev set\n", i); 555 } 556 } 557 } 558 559 static Property ipoctal_properties[] = { 560 DEFINE_PROP_CHR("chardev0", IPOctalState, ch[0].dev), 561 DEFINE_PROP_CHR("chardev1", IPOctalState, ch[1].dev), 562 DEFINE_PROP_CHR("chardev2", IPOctalState, ch[2].dev), 563 DEFINE_PROP_CHR("chardev3", IPOctalState, ch[3].dev), 564 DEFINE_PROP_CHR("chardev4", IPOctalState, ch[4].dev), 565 DEFINE_PROP_CHR("chardev5", IPOctalState, ch[5].dev), 566 DEFINE_PROP_CHR("chardev6", IPOctalState, ch[6].dev), 567 DEFINE_PROP_CHR("chardev7", IPOctalState, ch[7].dev), 568 DEFINE_PROP_END_OF_LIST(), 569 }; 570 571 static void ipoctal_class_init(ObjectClass *klass, void *data) 572 { 573 DeviceClass *dc = DEVICE_CLASS(klass); 574 IPackDeviceClass *ic = IPACK_DEVICE_CLASS(klass); 575 576 ic->realize = ipoctal_realize; 577 ic->io_read = io_read; 578 ic->io_write = io_write; 579 ic->id_read = id_read; 580 ic->id_write = id_write; 581 ic->int_read = int_read; 582 ic->int_write = int_write; 583 ic->mem_read16 = mem_read16; 584 ic->mem_write16 = mem_write16; 585 ic->mem_read8 = mem_read8; 586 ic->mem_write8 = mem_write8; 587 588 set_bit(DEVICE_CATEGORY_INPUT, dc->categories); 589 dc->desc = "GE IP-Octal 232 8-channel RS-232 IndustryPack"; 590 dc->props = ipoctal_properties; 591 dc->vmsd = &vmstate_ipoctal; 592 } 593 594 static const TypeInfo ipoctal_info = { 595 .name = TYPE_IPOCTAL, 596 .parent = TYPE_IPACK_DEVICE, 597 .instance_size = sizeof(IPOctalState), 598 .class_init = ipoctal_class_init, 599 }; 600 601 static void ipoctal_register_types(void) 602 { 603 type_register_static(&ipoctal_info); 604 } 605 606 type_init(ipoctal_register_types) 607