1 /* 2 * QEMU GE IP-Octal 232 IndustryPack emulation 3 * 4 * Copyright (C) 2012 Igalia, S.L. 5 * Author: Alberto Garcia <agarcia@igalia.com> 6 * 7 * This code is licensed under the GNU GPL v2 or (at your option) any 8 * later version. 9 */ 10 11 #include "ipack.h" 12 #include "qemu/bitops.h" 13 #include "sysemu/char.h" 14 15 /* #define DEBUG_IPOCTAL */ 16 17 #ifdef DEBUG_IPOCTAL 18 #define DPRINTF2(fmt, ...) \ 19 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 20 #else 21 #define DPRINTF2(fmt, ...) do { } while (0) 22 #endif 23 24 #define DPRINTF(fmt, ...) DPRINTF2("IP-Octal: " fmt, ## __VA_ARGS__) 25 26 #define RX_FIFO_SIZE 3 27 28 /* The IP-Octal has 8 channels (a-h) 29 divided into 4 blocks (A-D) */ 30 #define N_CHANNELS 8 31 #define N_BLOCKS 4 32 33 #define REG_MRa 0x01 34 #define REG_MRb 0x11 35 #define REG_SRa 0x03 36 #define REG_SRb 0x13 37 #define REG_CSRa 0x03 38 #define REG_CSRb 0x13 39 #define REG_CRa 0x05 40 #define REG_CRb 0x15 41 #define REG_RHRa 0x07 42 #define REG_RHRb 0x17 43 #define REG_THRa 0x07 44 #define REG_THRb 0x17 45 #define REG_ACR 0x09 46 #define REG_ISR 0x0B 47 #define REG_IMR 0x0B 48 #define REG_OPCR 0x1B 49 50 #define CR_ENABLE_RX BIT(0) 51 #define CR_DISABLE_RX BIT(1) 52 #define CR_ENABLE_TX BIT(2) 53 #define CR_DISABLE_TX BIT(3) 54 #define CR_CMD(cr) ((cr) >> 4) 55 #define CR_NO_OP 0 56 #define CR_RESET_MR 1 57 #define CR_RESET_RX 2 58 #define CR_RESET_TX 3 59 #define CR_RESET_ERR 4 60 #define CR_RESET_BRKINT 5 61 #define CR_START_BRK 6 62 #define CR_STOP_BRK 7 63 #define CR_ASSERT_RTSN 8 64 #define CR_NEGATE_RTSN 9 65 #define CR_TIMEOUT_ON 10 66 #define CR_TIMEOUT_OFF 12 67 68 #define SR_RXRDY BIT(0) 69 #define SR_FFULL BIT(1) 70 #define SR_TXRDY BIT(2) 71 #define SR_TXEMT BIT(3) 72 #define SR_OVERRUN BIT(4) 73 #define SR_PARITY BIT(5) 74 #define SR_FRAMING BIT(6) 75 #define SR_BREAK BIT(7) 76 77 #define ISR_TXRDYA BIT(0) 78 #define ISR_RXRDYA BIT(1) 79 #define ISR_BREAKA BIT(2) 80 #define ISR_CNTRDY BIT(3) 81 #define ISR_TXRDYB BIT(4) 82 #define ISR_RXRDYB BIT(5) 83 #define ISR_BREAKB BIT(6) 84 #define ISR_MPICHG BIT(7) 85 #define ISR_TXRDY(CH) (((CH) & 1) ? BIT(4) : BIT(0)) 86 #define ISR_RXRDY(CH) (((CH) & 1) ? BIT(5) : BIT(1)) 87 #define ISR_BREAK(CH) (((CH) & 1) ? BIT(6) : BIT(2)) 88 89 typedef struct IPOctalState IPOctalState; 90 typedef struct SCC2698Channel SCC2698Channel; 91 typedef struct SCC2698Block SCC2698Block; 92 93 struct SCC2698Channel { 94 IPOctalState *ipoctal; 95 CharDriverState *dev; 96 bool rx_enabled; 97 uint8_t mr[2]; 98 uint8_t mr_idx; 99 uint8_t sr; 100 uint8_t rhr[RX_FIFO_SIZE]; 101 uint8_t rhr_idx; 102 uint8_t rx_pending; 103 }; 104 105 struct SCC2698Block { 106 uint8_t imr; 107 uint8_t isr; 108 }; 109 110 struct IPOctalState { 111 IPackDevice dev; 112 SCC2698Channel ch[N_CHANNELS]; 113 SCC2698Block blk[N_BLOCKS]; 114 uint8_t irq_vector; 115 }; 116 117 #define TYPE_IPOCTAL "ipoctal232" 118 119 #define IPOCTAL(obj) \ 120 OBJECT_CHECK(IPOctalState, (obj), TYPE_IPOCTAL) 121 122 static const VMStateDescription vmstate_scc2698_channel = { 123 .name = "scc2698_channel", 124 .version_id = 1, 125 .minimum_version_id = 1, 126 .minimum_version_id_old = 1, 127 .fields = (VMStateField[]) { 128 VMSTATE_BOOL(rx_enabled, SCC2698Channel), 129 VMSTATE_UINT8_ARRAY(mr, SCC2698Channel, 2), 130 VMSTATE_UINT8(mr_idx, SCC2698Channel), 131 VMSTATE_UINT8(sr, SCC2698Channel), 132 VMSTATE_UINT8_ARRAY(rhr, SCC2698Channel, RX_FIFO_SIZE), 133 VMSTATE_UINT8(rhr_idx, SCC2698Channel), 134 VMSTATE_UINT8(rx_pending, SCC2698Channel), 135 VMSTATE_END_OF_LIST() 136 } 137 }; 138 139 static const VMStateDescription vmstate_scc2698_block = { 140 .name = "scc2698_block", 141 .version_id = 1, 142 .minimum_version_id = 1, 143 .minimum_version_id_old = 1, 144 .fields = (VMStateField[]) { 145 VMSTATE_UINT8(imr, SCC2698Block), 146 VMSTATE_UINT8(isr, SCC2698Block), 147 VMSTATE_END_OF_LIST() 148 } 149 }; 150 151 static const VMStateDescription vmstate_ipoctal = { 152 .name = "ipoctal232", 153 .version_id = 1, 154 .minimum_version_id = 1, 155 .minimum_version_id_old = 1, 156 .fields = (VMStateField[]) { 157 VMSTATE_IPACK_DEVICE(dev, IPOctalState), 158 VMSTATE_STRUCT_ARRAY(ch, IPOctalState, N_CHANNELS, 1, 159 vmstate_scc2698_channel, SCC2698Channel), 160 VMSTATE_STRUCT_ARRAY(blk, IPOctalState, N_BLOCKS, 1, 161 vmstate_scc2698_block, SCC2698Block), 162 VMSTATE_UINT8(irq_vector, IPOctalState), 163 VMSTATE_END_OF_LIST() 164 } 165 }; 166 167 /* data[10] is 0x0C, not 0x0B as the doc says */ 168 static const uint8_t id_prom_data[] = { 169 0x49, 0x50, 0x41, 0x43, 0xF0, 0x22, 170 0xA1, 0x00, 0x00, 0x00, 0x0C, 0xCC 171 }; 172 173 static void update_irq(IPOctalState *dev, unsigned block) 174 { 175 /* Blocks A and B interrupt on INT0#, C and D on INT1#. 176 Thus, to get the status we have to check two blocks. */ 177 SCC2698Block *blk0 = &dev->blk[block]; 178 SCC2698Block *blk1 = &dev->blk[block^1]; 179 unsigned intno = block / 2; 180 181 if ((blk0->isr & blk0->imr) || (blk1->isr & blk1->imr)) { 182 qemu_irq_raise(dev->dev.irq[intno]); 183 } else { 184 qemu_irq_lower(dev->dev.irq[intno]); 185 } 186 } 187 188 static void write_cr(IPOctalState *dev, unsigned channel, uint8_t val) 189 { 190 SCC2698Channel *ch = &dev->ch[channel]; 191 SCC2698Block *blk = &dev->blk[channel / 2]; 192 193 DPRINTF("Write CR%c %u: ", channel + 'a', val); 194 195 /* The lower 4 bits are used to enable and disable Tx and Rx */ 196 if (val & CR_ENABLE_RX) { 197 DPRINTF2("Rx on, "); 198 ch->rx_enabled = true; 199 } 200 if (val & CR_DISABLE_RX) { 201 DPRINTF2("Rx off, "); 202 ch->rx_enabled = false; 203 } 204 if (val & CR_ENABLE_TX) { 205 DPRINTF2("Tx on, "); 206 ch->sr |= SR_TXRDY | SR_TXEMT; 207 blk->isr |= ISR_TXRDY(channel); 208 } 209 if (val & CR_DISABLE_TX) { 210 DPRINTF2("Tx off, "); 211 ch->sr &= ~(SR_TXRDY | SR_TXEMT); 212 blk->isr &= ~ISR_TXRDY(channel); 213 } 214 215 DPRINTF2("cmd: "); 216 217 /* The rest of the bits implement different commands */ 218 switch (CR_CMD(val)) { 219 case CR_NO_OP: 220 DPRINTF2("none"); 221 break; 222 case CR_RESET_MR: 223 DPRINTF2("reset MR"); 224 ch->mr_idx = 0; 225 break; 226 case CR_RESET_RX: 227 DPRINTF2("reset Rx"); 228 ch->rx_enabled = false; 229 ch->rx_pending = 0; 230 ch->sr &= ~SR_RXRDY; 231 blk->isr &= ~ISR_RXRDY(channel); 232 break; 233 case CR_RESET_TX: 234 DPRINTF2("reset Tx"); 235 ch->sr &= ~(SR_TXRDY | SR_TXEMT); 236 blk->isr &= ~ISR_TXRDY(channel); 237 break; 238 case CR_RESET_ERR: 239 DPRINTF2("reset err"); 240 ch->sr &= ~(SR_OVERRUN | SR_PARITY | SR_FRAMING | SR_BREAK); 241 break; 242 case CR_RESET_BRKINT: 243 DPRINTF2("reset brk ch int"); 244 blk->isr &= ~(ISR_BREAKA | ISR_BREAKB); 245 break; 246 default: 247 DPRINTF2("unsupported 0x%x", CR_CMD(val)); 248 } 249 250 DPRINTF2("\n"); 251 } 252 253 static uint16_t io_read(IPackDevice *ip, uint8_t addr) 254 { 255 IPOctalState *dev = IPOCTAL(ip); 256 uint16_t ret = 0; 257 /* addr[7:6]: block (A-D) 258 addr[7:5]: channel (a-h) 259 addr[5:0]: register */ 260 unsigned block = addr >> 5; 261 unsigned channel = addr >> 4; 262 /* Big endian, accessed using 8-bit bytes at odd locations */ 263 unsigned offset = (addr & 0x1F) ^ 1; 264 SCC2698Channel *ch = &dev->ch[channel]; 265 SCC2698Block *blk = &dev->blk[block]; 266 uint8_t old_isr = blk->isr; 267 268 switch (offset) { 269 270 case REG_MRa: 271 case REG_MRb: 272 ret = ch->mr[ch->mr_idx]; 273 DPRINTF("Read MR%u%c: 0x%x\n", ch->mr_idx + 1, channel + 'a', ret); 274 ch->mr_idx = 1; 275 break; 276 277 case REG_SRa: 278 case REG_SRb: 279 ret = ch->sr; 280 DPRINTF("Read SR%c: 0x%x\n", channel + 'a', ret); 281 break; 282 283 case REG_RHRa: 284 case REG_RHRb: 285 ret = ch->rhr[ch->rhr_idx]; 286 if (ch->rx_pending > 0) { 287 ch->rx_pending--; 288 if (ch->rx_pending == 0) { 289 ch->sr &= ~SR_RXRDY; 290 blk->isr &= ~ISR_RXRDY(channel); 291 if (ch->dev) { 292 qemu_chr_accept_input(ch->dev); 293 } 294 } else { 295 ch->rhr_idx = (ch->rhr_idx + 1) % RX_FIFO_SIZE; 296 } 297 if (ch->sr & SR_BREAK) { 298 ch->sr &= ~SR_BREAK; 299 blk->isr |= ISR_BREAK(channel); 300 } 301 } 302 DPRINTF("Read RHR%c (0x%x)\n", channel + 'a', ret); 303 break; 304 305 case REG_ISR: 306 ret = blk->isr; 307 DPRINTF("Read ISR%c: 0x%x\n", block + 'A', ret); 308 break; 309 310 default: 311 DPRINTF("Read unknown/unsupported register 0x%02x\n", offset); 312 } 313 314 if (old_isr != blk->isr) { 315 update_irq(dev, block); 316 } 317 318 return ret; 319 } 320 321 static void io_write(IPackDevice *ip, uint8_t addr, uint16_t val) 322 { 323 IPOctalState *dev = IPOCTAL(ip); 324 unsigned reg = val & 0xFF; 325 /* addr[7:6]: block (A-D) 326 addr[7:5]: channel (a-h) 327 addr[5:0]: register */ 328 unsigned block = addr >> 5; 329 unsigned channel = addr >> 4; 330 /* Big endian, accessed using 8-bit bytes at odd locations */ 331 unsigned offset = (addr & 0x1F) ^ 1; 332 SCC2698Channel *ch = &dev->ch[channel]; 333 SCC2698Block *blk = &dev->blk[block]; 334 uint8_t old_isr = blk->isr; 335 uint8_t old_imr = blk->imr; 336 337 switch (offset) { 338 339 case REG_MRa: 340 case REG_MRb: 341 ch->mr[ch->mr_idx] = reg; 342 DPRINTF("Write MR%u%c 0x%x\n", ch->mr_idx + 1, channel + 'a', reg); 343 ch->mr_idx = 1; 344 break; 345 346 /* Not implemented */ 347 case REG_CSRa: 348 case REG_CSRb: 349 DPRINTF("Write CSR%c: 0x%x\n", channel + 'a', reg); 350 break; 351 352 case REG_CRa: 353 case REG_CRb: 354 write_cr(dev, channel, reg); 355 break; 356 357 case REG_THRa: 358 case REG_THRb: 359 if (ch->sr & SR_TXRDY) { 360 DPRINTF("Write THR%c (0x%x)\n", channel + 'a', reg); 361 if (ch->dev) { 362 uint8_t thr = reg; 363 qemu_chr_fe_write(ch->dev, &thr, 1); 364 } 365 } else { 366 DPRINTF("Write THR%c (0x%x), Tx disabled\n", channel + 'a', reg); 367 } 368 break; 369 370 /* Not implemented */ 371 case REG_ACR: 372 DPRINTF("Write ACR%c 0x%x\n", block + 'A', val); 373 break; 374 375 case REG_IMR: 376 DPRINTF("Write IMR%c 0x%x\n", block + 'A', val); 377 blk->imr = reg; 378 break; 379 380 /* Not implemented */ 381 case REG_OPCR: 382 DPRINTF("Write OPCR%c 0x%x\n", block + 'A', val); 383 break; 384 385 default: 386 DPRINTF("Write unknown/unsupported register 0x%02x %u\n", offset, val); 387 } 388 389 if (old_isr != blk->isr || old_imr != blk->imr) { 390 update_irq(dev, block); 391 } 392 } 393 394 static uint16_t id_read(IPackDevice *ip, uint8_t addr) 395 { 396 uint16_t ret = 0; 397 unsigned pos = addr / 2; /* The ID PROM data is stored every other byte */ 398 399 if (pos < ARRAY_SIZE(id_prom_data)) { 400 ret = id_prom_data[pos]; 401 } else { 402 DPRINTF("Attempt to read unavailable PROM data at 0x%x\n", addr); 403 } 404 405 return ret; 406 } 407 408 static void id_write(IPackDevice *ip, uint8_t addr, uint16_t val) 409 { 410 IPOctalState *dev = IPOCTAL(ip); 411 if (addr == 1) { 412 DPRINTF("Write IRQ vector: %u\n", (unsigned) val); 413 dev->irq_vector = val; /* Undocumented, but the hw works like that */ 414 } else { 415 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr); 416 } 417 } 418 419 static uint16_t int_read(IPackDevice *ip, uint8_t addr) 420 { 421 IPOctalState *dev = IPOCTAL(ip); 422 /* Read address 0 to ACK INT0# and address 2 to ACK INT1# */ 423 if (addr != 0 && addr != 2) { 424 DPRINTF("Attempt to read from 0x%x\n", addr); 425 return 0; 426 } else { 427 /* Update interrupts if necessary */ 428 update_irq(dev, addr); 429 return dev->irq_vector; 430 } 431 } 432 433 static void int_write(IPackDevice *ip, uint8_t addr, uint16_t val) 434 { 435 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr); 436 } 437 438 static uint16_t mem_read16(IPackDevice *ip, uint32_t addr) 439 { 440 DPRINTF("Attempt to read from 0x%x\n", addr); 441 return 0; 442 } 443 444 static void mem_write16(IPackDevice *ip, uint32_t addr, uint16_t val) 445 { 446 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr); 447 } 448 449 static uint8_t mem_read8(IPackDevice *ip, uint32_t addr) 450 { 451 DPRINTF("Attempt to read from 0x%x\n", addr); 452 return 0; 453 } 454 455 static void mem_write8(IPackDevice *ip, uint32_t addr, uint8_t val) 456 { 457 IPOctalState *dev = IPOCTAL(ip); 458 if (addr == 1) { 459 DPRINTF("Write IRQ vector: %u\n", (unsigned) val); 460 dev->irq_vector = val; 461 } else { 462 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr); 463 } 464 } 465 466 static int hostdev_can_receive(void *opaque) 467 { 468 SCC2698Channel *ch = opaque; 469 int available_bytes = RX_FIFO_SIZE - ch->rx_pending; 470 return ch->rx_enabled ? available_bytes : 0; 471 } 472 473 static void hostdev_receive(void *opaque, const uint8_t *buf, int size) 474 { 475 SCC2698Channel *ch = opaque; 476 IPOctalState *dev = ch->ipoctal; 477 unsigned pos = ch->rhr_idx + ch->rx_pending; 478 int i; 479 480 assert(size + ch->rx_pending <= RX_FIFO_SIZE); 481 482 /* Copy data to the RxFIFO */ 483 for (i = 0; i < size; i++) { 484 pos %= RX_FIFO_SIZE; 485 ch->rhr[pos++] = buf[i]; 486 } 487 488 ch->rx_pending += size; 489 490 /* If the RxFIFO was empty raise an interrupt */ 491 if (!(ch->sr & SR_RXRDY)) { 492 unsigned block, channel = 0; 493 /* Find channel number to update the ISR register */ 494 while (&dev->ch[channel] != ch) { 495 channel++; 496 } 497 block = channel / 2; 498 dev->blk[block].isr |= ISR_RXRDY(channel); 499 ch->sr |= SR_RXRDY; 500 update_irq(dev, block); 501 } 502 } 503 504 static void hostdev_event(void *opaque, int event) 505 { 506 SCC2698Channel *ch = opaque; 507 switch (event) { 508 case CHR_EVENT_OPENED: 509 DPRINTF("Device %s opened\n", ch->dev->label); 510 break; 511 case CHR_EVENT_BREAK: { 512 uint8_t zero = 0; 513 DPRINTF("Device %s received break\n", ch->dev->label); 514 515 if (!(ch->sr & SR_BREAK)) { 516 IPOctalState *dev = ch->ipoctal; 517 unsigned block, channel = 0; 518 519 while (&dev->ch[channel] != ch) { 520 channel++; 521 } 522 block = channel / 2; 523 524 ch->sr |= SR_BREAK; 525 dev->blk[block].isr |= ISR_BREAK(channel); 526 } 527 528 /* Put a zero character in the buffer */ 529 hostdev_receive(ch, &zero, 1); 530 } 531 break; 532 default: 533 DPRINTF("Device %s received event %d\n", ch->dev->label, event); 534 } 535 } 536 537 static int ipoctal_init(IPackDevice *ip) 538 { 539 IPOctalState *s = IPOCTAL(ip); 540 unsigned i; 541 542 for (i = 0; i < N_CHANNELS; i++) { 543 SCC2698Channel *ch = &s->ch[i]; 544 ch->ipoctal = s; 545 546 /* Redirect IP-Octal channels to host character devices */ 547 if (ch->dev) { 548 qemu_chr_add_handlers(ch->dev, hostdev_can_receive, 549 hostdev_receive, hostdev_event, ch); 550 DPRINTF("Redirecting channel %u to %s\n", i, ch->dev->label); 551 } else { 552 DPRINTF("Could not redirect channel %u, no chardev set\n", i); 553 } 554 } 555 556 return 0; 557 } 558 559 static Property ipoctal_properties[] = { 560 DEFINE_PROP_CHR("chardev0", IPOctalState, ch[0].dev), 561 DEFINE_PROP_CHR("chardev1", IPOctalState, ch[1].dev), 562 DEFINE_PROP_CHR("chardev2", IPOctalState, ch[2].dev), 563 DEFINE_PROP_CHR("chardev3", IPOctalState, ch[3].dev), 564 DEFINE_PROP_CHR("chardev4", IPOctalState, ch[4].dev), 565 DEFINE_PROP_CHR("chardev5", IPOctalState, ch[5].dev), 566 DEFINE_PROP_CHR("chardev6", IPOctalState, ch[6].dev), 567 DEFINE_PROP_CHR("chardev7", IPOctalState, ch[7].dev), 568 DEFINE_PROP_END_OF_LIST(), 569 }; 570 571 static void ipoctal_class_init(ObjectClass *klass, void *data) 572 { 573 DeviceClass *dc = DEVICE_CLASS(klass); 574 IPackDeviceClass *ic = IPACK_DEVICE_CLASS(klass); 575 576 ic->init = ipoctal_init; 577 ic->io_read = io_read; 578 ic->io_write = io_write; 579 ic->id_read = id_read; 580 ic->id_write = id_write; 581 ic->int_read = int_read; 582 ic->int_write = int_write; 583 ic->mem_read16 = mem_read16; 584 ic->mem_write16 = mem_write16; 585 ic->mem_read8 = mem_read8; 586 ic->mem_write8 = mem_write8; 587 588 set_bit(DEVICE_CATEGORY_INPUT, dc->categories); 589 dc->desc = "GE IP-Octal 232 8-channel RS-232 IndustryPack"; 590 dc->props = ipoctal_properties; 591 dc->vmsd = &vmstate_ipoctal; 592 } 593 594 static const TypeInfo ipoctal_info = { 595 .name = TYPE_IPOCTAL, 596 .parent = TYPE_IPACK_DEVICE, 597 .instance_size = sizeof(IPOctalState), 598 .class_init = ipoctal_class_init, 599 }; 600 601 static void ipoctal_register_types(void) 602 { 603 type_register_static(&ipoctal_info); 604 } 605 606 type_init(ipoctal_register_types) 607