xref: /openbmc/qemu/hw/char/ibex_uart.c (revision fc8c745d)
1 /*
2  * QEMU lowRISC Ibex UART device
3  *
4  * Copyright (c) 2020 Western Digital
5  *
6  * For details check the documentation here:
7  *    https://docs.opentitan.org/hw/ip/uart/doc/
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "hw/char/ibex_uart.h"
30 #include "hw/irq.h"
31 #include "hw/qdev-clock.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/qdev-properties-system.h"
34 #include "migration/vmstate.h"
35 #include "qemu/log.h"
36 #include "qemu/module.h"
37 
38 REG32(INTR_STATE, 0x00)
39     FIELD(INTR_STATE, TX_WATERMARK, 0, 1)
40     FIELD(INTR_STATE, RX_WATERMARK, 1, 1)
41     FIELD(INTR_STATE, TX_EMPTY, 2, 1)
42     FIELD(INTR_STATE, RX_OVERFLOW, 3, 1)
43 REG32(INTR_ENABLE, 0x04)
44 REG32(INTR_TEST, 0x08)
45 REG32(CTRL, 0x0C)
46     FIELD(CTRL, TX_ENABLE, 0, 1)
47     FIELD(CTRL, RX_ENABLE, 1, 1)
48     FIELD(CTRL, NF, 2, 1)
49     FIELD(CTRL, SLPBK, 4, 1)
50     FIELD(CTRL, LLPBK, 5, 1)
51     FIELD(CTRL, PARITY_EN, 6, 1)
52     FIELD(CTRL, PARITY_ODD, 7, 1)
53     FIELD(CTRL, RXBLVL, 8, 2)
54     FIELD(CTRL, NCO, 16, 16)
55 REG32(STATUS, 0x10)
56     FIELD(STATUS, TXFULL, 0, 1)
57     FIELD(STATUS, RXFULL, 1, 1)
58     FIELD(STATUS, TXEMPTY, 2, 1)
59     FIELD(STATUS, RXIDLE, 4, 1)
60     FIELD(STATUS, RXEMPTY, 5, 1)
61 REG32(RDATA, 0x14)
62 REG32(WDATA, 0x18)
63 REG32(FIFO_CTRL, 0x1c)
64     FIELD(FIFO_CTRL, RXRST, 0, 1)
65     FIELD(FIFO_CTRL, TXRST, 1, 1)
66     FIELD(FIFO_CTRL, RXILVL, 2, 3)
67     FIELD(FIFO_CTRL, TXILVL, 5, 2)
68 REG32(FIFO_STATUS, 0x20)
69     FIELD(FIFO_STATUS, TXLVL, 0, 5)
70     FIELD(FIFO_STATUS, RXLVL, 16, 5)
71 REG32(OVRD, 0x24)
72 REG32(VAL, 0x28)
73 REG32(TIMEOUT_CTRL, 0x2c)
74 
75 static void ibex_uart_update_irqs(IbexUartState *s)
76 {
77     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_TX_WATERMARK_MASK) {
78         qemu_set_irq(s->tx_watermark, 1);
79     } else {
80         qemu_set_irq(s->tx_watermark, 0);
81     }
82 
83     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_RX_WATERMARK_MASK) {
84         qemu_set_irq(s->rx_watermark, 1);
85     } else {
86         qemu_set_irq(s->rx_watermark, 0);
87     }
88 
89     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_TX_EMPTY_MASK) {
90         qemu_set_irq(s->tx_empty, 1);
91     } else {
92         qemu_set_irq(s->tx_empty, 0);
93     }
94 
95     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_RX_OVERFLOW_MASK) {
96         qemu_set_irq(s->rx_overflow, 1);
97     } else {
98         qemu_set_irq(s->rx_overflow, 0);
99     }
100 }
101 
102 static int ibex_uart_can_receive(void *opaque)
103 {
104     IbexUartState *s = opaque;
105 
106     if ((s->uart_ctrl & R_CTRL_RX_ENABLE_MASK)
107            && !(s->uart_status & R_STATUS_RXFULL_MASK)) {
108         return 1;
109     }
110 
111     return 0;
112 }
113 
114 static void ibex_uart_receive(void *opaque, const uint8_t *buf, int size)
115 {
116     IbexUartState *s = opaque;
117     uint8_t rx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_RXILVL_MASK)
118                             >> R_FIFO_CTRL_RXILVL_SHIFT;
119 
120     s->uart_rdata = *buf;
121 
122     s->uart_status &= ~R_STATUS_RXIDLE_MASK;
123     s->uart_status &= ~R_STATUS_RXEMPTY_MASK;
124     /* The RXFULL is set after receiving a single byte
125      * as the FIFO buffers are not yet implemented.
126      */
127     s->uart_status |= R_STATUS_RXFULL_MASK;
128     s->rx_level += 1;
129 
130     if (size > rx_fifo_level) {
131         s->uart_intr_state |= R_INTR_STATE_RX_WATERMARK_MASK;
132     }
133 
134     ibex_uart_update_irqs(s);
135 }
136 
137 static gboolean ibex_uart_xmit(GIOChannel *chan, GIOCondition cond,
138                                void *opaque)
139 {
140     IbexUartState *s = opaque;
141     uint8_t tx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_TXILVL_MASK)
142                             >> R_FIFO_CTRL_TXILVL_SHIFT;
143     int ret;
144 
145     /* instant drain the fifo when there's no back-end */
146     if (!qemu_chr_fe_backend_connected(&s->chr)) {
147         s->tx_level = 0;
148         return FALSE;
149     }
150 
151     if (!s->tx_level) {
152         s->uart_status &= ~R_STATUS_TXFULL_MASK;
153         s->uart_status |= R_STATUS_TXEMPTY_MASK;
154         s->uart_intr_state |= R_INTR_STATE_TX_EMPTY_MASK;
155         s->uart_intr_state &= ~R_INTR_STATE_TX_WATERMARK_MASK;
156         ibex_uart_update_irqs(s);
157         return FALSE;
158     }
159 
160     ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_level);
161 
162     if (ret >= 0) {
163         s->tx_level -= ret;
164         memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_level);
165     }
166 
167     if (s->tx_level) {
168         guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
169                                         ibex_uart_xmit, s);
170         if (!r) {
171             s->tx_level = 0;
172             return FALSE;
173         }
174     }
175 
176     /* Clear the TX Full bit */
177     if (s->tx_level != IBEX_UART_TX_FIFO_SIZE) {
178         s->uart_status &= ~R_STATUS_TXFULL_MASK;
179     }
180 
181     /* Disable the TX_WATERMARK IRQ */
182     if (s->tx_level < tx_fifo_level) {
183         s->uart_intr_state &= ~R_INTR_STATE_TX_WATERMARK_MASK;
184     }
185 
186     /* Set TX empty */
187     if (s->tx_level == 0) {
188         s->uart_status |= R_STATUS_TXEMPTY_MASK;
189         s->uart_intr_state |= R_INTR_STATE_TX_EMPTY_MASK;
190     }
191 
192     ibex_uart_update_irqs(s);
193     return FALSE;
194 }
195 
196 static void uart_write_tx_fifo(IbexUartState *s, const uint8_t *buf,
197                                int size)
198 {
199     uint64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
200     uint8_t tx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_TXILVL_MASK)
201                             >> R_FIFO_CTRL_TXILVL_SHIFT;
202 
203     if (size > IBEX_UART_TX_FIFO_SIZE - s->tx_level) {
204         size = IBEX_UART_TX_FIFO_SIZE - s->tx_level;
205         qemu_log_mask(LOG_GUEST_ERROR, "ibex_uart: TX FIFO overflow");
206     }
207 
208     memcpy(s->tx_fifo + s->tx_level, buf, size);
209     s->tx_level += size;
210 
211     if (s->tx_level > 0) {
212         s->uart_status &= ~R_STATUS_TXEMPTY_MASK;
213     }
214 
215     if (s->tx_level >= tx_fifo_level) {
216         s->uart_intr_state |= R_INTR_STATE_TX_WATERMARK_MASK;
217         ibex_uart_update_irqs(s);
218     }
219 
220     if (s->tx_level == IBEX_UART_TX_FIFO_SIZE) {
221         s->uart_status |= R_STATUS_TXFULL_MASK;
222     }
223 
224     timer_mod(s->fifo_trigger_handle, current_time +
225               (s->char_tx_time * 4));
226 }
227 
228 static void ibex_uart_reset(DeviceState *dev)
229 {
230     IbexUartState *s = IBEX_UART(dev);
231 
232     s->uart_intr_state = 0x00000000;
233     s->uart_intr_state = 0x00000000;
234     s->uart_intr_enable = 0x00000000;
235     s->uart_ctrl = 0x00000000;
236     s->uart_status = 0x0000003c;
237     s->uart_rdata = 0x00000000;
238     s->uart_fifo_ctrl = 0x00000000;
239     s->uart_fifo_status = 0x00000000;
240     s->uart_ovrd = 0x00000000;
241     s->uart_val = 0x00000000;
242     s->uart_timeout_ctrl = 0x00000000;
243 
244     s->tx_level = 0;
245     s->rx_level = 0;
246 
247     s->char_tx_time = (NANOSECONDS_PER_SECOND / 230400) * 10;
248 
249     ibex_uart_update_irqs(s);
250 }
251 
252 static uint64_t ibex_uart_get_baud(IbexUartState *s)
253 {
254     uint64_t baud;
255 
256     baud = ((s->uart_ctrl & R_CTRL_NCO_MASK) >> 16);
257     baud *= clock_get_hz(s->f_clk);
258     baud >>= 20;
259 
260     return baud;
261 }
262 
263 static uint64_t ibex_uart_read(void *opaque, hwaddr addr,
264                                        unsigned int size)
265 {
266     IbexUartState *s = opaque;
267     uint64_t retvalue = 0;
268 
269     switch (addr >> 2) {
270     case R_INTR_STATE:
271         retvalue = s->uart_intr_state;
272         break;
273     case R_INTR_ENABLE:
274         retvalue = s->uart_intr_enable;
275         break;
276     case R_INTR_TEST:
277         qemu_log_mask(LOG_GUEST_ERROR,
278                       "%s: wdata is write only\n", __func__);
279         break;
280 
281     case R_CTRL:
282         retvalue = s->uart_ctrl;
283         break;
284     case R_STATUS:
285         retvalue = s->uart_status;
286         break;
287 
288     case R_RDATA:
289         retvalue = s->uart_rdata;
290         if ((s->uart_ctrl & R_CTRL_RX_ENABLE_MASK) && (s->rx_level > 0)) {
291             qemu_chr_fe_accept_input(&s->chr);
292 
293             s->rx_level -= 1;
294             s->uart_status &= ~R_STATUS_RXFULL_MASK;
295             if (s->rx_level == 0) {
296                 s->uart_status |= R_STATUS_RXIDLE_MASK;
297                 s->uart_status |= R_STATUS_RXEMPTY_MASK;
298             }
299         }
300         break;
301     case R_WDATA:
302         qemu_log_mask(LOG_GUEST_ERROR,
303                       "%s: wdata is write only\n", __func__);
304         break;
305 
306     case R_FIFO_CTRL:
307         retvalue = s->uart_fifo_ctrl;
308         break;
309     case R_FIFO_STATUS:
310         retvalue = s->uart_fifo_status;
311 
312         retvalue |= (s->rx_level & 0x1F) << R_FIFO_STATUS_RXLVL_SHIFT;
313         retvalue |= (s->tx_level & 0x1F) << R_FIFO_STATUS_TXLVL_SHIFT;
314 
315         qemu_log_mask(LOG_UNIMP,
316                       "%s: RX fifos are not supported\n", __func__);
317         break;
318 
319     case R_OVRD:
320         retvalue = s->uart_ovrd;
321         qemu_log_mask(LOG_UNIMP,
322                       "%s: ovrd is not supported\n", __func__);
323         break;
324     case R_VAL:
325         retvalue = s->uart_val;
326         qemu_log_mask(LOG_UNIMP,
327                       "%s: val is not supported\n", __func__);
328         break;
329     case R_TIMEOUT_CTRL:
330         retvalue = s->uart_timeout_ctrl;
331         qemu_log_mask(LOG_UNIMP,
332                       "%s: timeout_ctrl is not supported\n", __func__);
333         break;
334     default:
335         qemu_log_mask(LOG_GUEST_ERROR,
336                       "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
337         return 0;
338     }
339 
340     return retvalue;
341 }
342 
343 static void ibex_uart_write(void *opaque, hwaddr addr,
344                                   uint64_t val64, unsigned int size)
345 {
346     IbexUartState *s = opaque;
347     uint32_t value = val64;
348 
349     switch (addr >> 2) {
350     case R_INTR_STATE:
351         /* Write 1 clear */
352         s->uart_intr_state &= ~value;
353         ibex_uart_update_irqs(s);
354         break;
355     case R_INTR_ENABLE:
356         s->uart_intr_enable = value;
357         ibex_uart_update_irqs(s);
358         break;
359     case R_INTR_TEST:
360         s->uart_intr_state |= value;
361         ibex_uart_update_irqs(s);
362         break;
363 
364     case R_CTRL:
365         s->uart_ctrl = value;
366 
367         if (value & R_CTRL_NF_MASK) {
368             qemu_log_mask(LOG_UNIMP,
369                           "%s: UART_CTRL_NF is not supported\n", __func__);
370         }
371         if (value & R_CTRL_SLPBK_MASK) {
372             qemu_log_mask(LOG_UNIMP,
373                           "%s: UART_CTRL_SLPBK is not supported\n", __func__);
374         }
375         if (value & R_CTRL_LLPBK_MASK) {
376             qemu_log_mask(LOG_UNIMP,
377                           "%s: UART_CTRL_LLPBK is not supported\n", __func__);
378         }
379         if (value & R_CTRL_PARITY_EN_MASK) {
380             qemu_log_mask(LOG_UNIMP,
381                           "%s: UART_CTRL_PARITY_EN is not supported\n",
382                           __func__);
383         }
384         if (value & R_CTRL_PARITY_ODD_MASK) {
385             qemu_log_mask(LOG_UNIMP,
386                           "%s: UART_CTRL_PARITY_ODD is not supported\n",
387                           __func__);
388         }
389         if (value & R_CTRL_RXBLVL_MASK) {
390             qemu_log_mask(LOG_UNIMP,
391                           "%s: UART_CTRL_RXBLVL is not supported\n", __func__);
392         }
393         if (value & R_CTRL_NCO_MASK) {
394             uint64_t baud = ibex_uart_get_baud(s);
395 
396             s->char_tx_time = (NANOSECONDS_PER_SECOND / baud) * 10;
397         }
398         break;
399     case R_STATUS:
400         qemu_log_mask(LOG_GUEST_ERROR,
401                       "%s: status is read only\n", __func__);
402         break;
403 
404     case R_RDATA:
405         qemu_log_mask(LOG_GUEST_ERROR,
406                       "%s: rdata is read only\n", __func__);
407         break;
408     case R_WDATA:
409         uart_write_tx_fifo(s, (uint8_t *) &value, 1);
410         break;
411 
412     case R_FIFO_CTRL:
413         s->uart_fifo_ctrl = value;
414 
415         if (value & R_FIFO_CTRL_RXRST_MASK) {
416             s->rx_level = 0;
417             qemu_log_mask(LOG_UNIMP,
418                           "%s: RX fifos are not supported\n", __func__);
419         }
420         if (value & R_FIFO_CTRL_TXRST_MASK) {
421             s->tx_level = 0;
422         }
423         break;
424     case R_FIFO_STATUS:
425         qemu_log_mask(LOG_GUEST_ERROR,
426                       "%s: fifo_status is read only\n", __func__);
427         break;
428 
429     case R_OVRD:
430         s->uart_ovrd = value;
431         qemu_log_mask(LOG_UNIMP,
432                       "%s: ovrd is not supported\n", __func__);
433         break;
434     case R_VAL:
435         qemu_log_mask(LOG_GUEST_ERROR,
436                       "%s: val is read only\n", __func__);
437         break;
438     case R_TIMEOUT_CTRL:
439         s->uart_timeout_ctrl = value;
440         qemu_log_mask(LOG_UNIMP,
441                       "%s: timeout_ctrl is not supported\n", __func__);
442         break;
443     default:
444         qemu_log_mask(LOG_GUEST_ERROR,
445                       "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
446     }
447 }
448 
449 static void ibex_uart_clk_update(void *opaque, ClockEvent event)
450 {
451     IbexUartState *s = opaque;
452 
453     /* recompute uart's speed on clock change */
454     uint64_t baud = ibex_uart_get_baud(s);
455 
456     s->char_tx_time = (NANOSECONDS_PER_SECOND / baud) * 10;
457 }
458 
459 static void fifo_trigger_update(void *opaque)
460 {
461     IbexUartState *s = opaque;
462 
463     if (s->uart_ctrl & R_CTRL_TX_ENABLE_MASK) {
464         ibex_uart_xmit(NULL, G_IO_OUT, s);
465     }
466 }
467 
468 static const MemoryRegionOps ibex_uart_ops = {
469     .read = ibex_uart_read,
470     .write = ibex_uart_write,
471     .endianness = DEVICE_NATIVE_ENDIAN,
472     .impl.min_access_size = 4,
473     .impl.max_access_size = 4,
474 };
475 
476 static int ibex_uart_post_load(void *opaque, int version_id)
477 {
478     IbexUartState *s = opaque;
479 
480     ibex_uart_update_irqs(s);
481     return 0;
482 }
483 
484 static const VMStateDescription vmstate_ibex_uart = {
485     .name = TYPE_IBEX_UART,
486     .version_id = 1,
487     .minimum_version_id = 1,
488     .post_load = ibex_uart_post_load,
489     .fields = (VMStateField[]) {
490         VMSTATE_UINT8_ARRAY(tx_fifo, IbexUartState,
491                             IBEX_UART_TX_FIFO_SIZE),
492         VMSTATE_UINT32(tx_level, IbexUartState),
493         VMSTATE_UINT64(char_tx_time, IbexUartState),
494         VMSTATE_TIMER_PTR(fifo_trigger_handle, IbexUartState),
495         VMSTATE_UINT32(uart_intr_state, IbexUartState),
496         VMSTATE_UINT32(uart_intr_enable, IbexUartState),
497         VMSTATE_UINT32(uart_ctrl, IbexUartState),
498         VMSTATE_UINT32(uart_status, IbexUartState),
499         VMSTATE_UINT32(uart_rdata, IbexUartState),
500         VMSTATE_UINT32(uart_fifo_ctrl, IbexUartState),
501         VMSTATE_UINT32(uart_fifo_status, IbexUartState),
502         VMSTATE_UINT32(uart_ovrd, IbexUartState),
503         VMSTATE_UINT32(uart_val, IbexUartState),
504         VMSTATE_UINT32(uart_timeout_ctrl, IbexUartState),
505         VMSTATE_END_OF_LIST()
506     }
507 };
508 
509 static Property ibex_uart_properties[] = {
510     DEFINE_PROP_CHR("chardev", IbexUartState, chr),
511     DEFINE_PROP_END_OF_LIST(),
512 };
513 
514 static void ibex_uart_init(Object *obj)
515 {
516     IbexUartState *s = IBEX_UART(obj);
517 
518     s->f_clk = qdev_init_clock_in(DEVICE(obj), "f_clock",
519                                   ibex_uart_clk_update, s, ClockUpdate);
520     clock_set_hz(s->f_clk, IBEX_UART_CLOCK);
521 
522     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->tx_watermark);
523     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rx_watermark);
524     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->tx_empty);
525     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rx_overflow);
526 
527     memory_region_init_io(&s->mmio, obj, &ibex_uart_ops, s,
528                           TYPE_IBEX_UART, 0x400);
529     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
530 }
531 
532 static void ibex_uart_realize(DeviceState *dev, Error **errp)
533 {
534     IbexUartState *s = IBEX_UART(dev);
535 
536     s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
537                                           fifo_trigger_update, s);
538 
539     qemu_chr_fe_set_handlers(&s->chr, ibex_uart_can_receive,
540                              ibex_uart_receive, NULL, NULL,
541                              s, NULL, true);
542 }
543 
544 static void ibex_uart_class_init(ObjectClass *klass, void *data)
545 {
546     DeviceClass *dc = DEVICE_CLASS(klass);
547 
548     dc->reset = ibex_uart_reset;
549     dc->realize = ibex_uart_realize;
550     dc->vmsd = &vmstate_ibex_uart;
551     device_class_set_props(dc, ibex_uart_properties);
552 }
553 
554 static const TypeInfo ibex_uart_info = {
555     .name          = TYPE_IBEX_UART,
556     .parent        = TYPE_SYS_BUS_DEVICE,
557     .instance_size = sizeof(IbexUartState),
558     .instance_init = ibex_uart_init,
559     .class_init    = ibex_uart_class_init,
560 };
561 
562 static void ibex_uart_register_types(void)
563 {
564     type_register_static(&ibex_uart_info);
565 }
566 
567 type_init(ibex_uart_register_types)
568