1 /* 2 * QEMU lowRISC Ibex UART device 3 * 4 * Copyright (c) 2020 Western Digital 5 * 6 * For details check the documentation here: 7 * https://docs.opentitan.org/hw/ip/uart/doc/ 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a copy 10 * of this software and associated documentation files (the "Software"), to deal 11 * in the Software without restriction, including without limitation the rights 12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 13 * copies of the Software, and to permit persons to whom the Software is 14 * furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice shall be included in 17 * all copies or substantial portions of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 25 * THE SOFTWARE. 26 */ 27 28 #include "qemu/osdep.h" 29 #include "hw/char/ibex_uart.h" 30 #include "hw/irq.h" 31 #include "hw/qdev-clock.h" 32 #include "hw/qdev-properties.h" 33 #include "hw/qdev-properties-system.h" 34 #include "hw/registerfields.h" 35 #include "migration/vmstate.h" 36 #include "qemu/log.h" 37 #include "qemu/module.h" 38 39 REG32(INTR_STATE, 0x00) 40 FIELD(INTR_STATE, TX_WATERMARK, 0, 1) 41 FIELD(INTR_STATE, RX_WATERMARK, 1, 1) 42 FIELD(INTR_STATE, TX_EMPTY, 2, 1) 43 FIELD(INTR_STATE, RX_OVERFLOW, 3, 1) 44 REG32(INTR_ENABLE, 0x04) 45 REG32(INTR_TEST, 0x08) 46 REG32(ALERT_TEST, 0x0C) 47 REG32(CTRL, 0x10) 48 FIELD(CTRL, TX_ENABLE, 0, 1) 49 FIELD(CTRL, RX_ENABLE, 1, 1) 50 FIELD(CTRL, NF, 2, 1) 51 FIELD(CTRL, SLPBK, 4, 1) 52 FIELD(CTRL, LLPBK, 5, 1) 53 FIELD(CTRL, PARITY_EN, 6, 1) 54 FIELD(CTRL, PARITY_ODD, 7, 1) 55 FIELD(CTRL, RXBLVL, 8, 2) 56 FIELD(CTRL, NCO, 16, 16) 57 REG32(STATUS, 0x14) 58 FIELD(STATUS, TXFULL, 0, 1) 59 FIELD(STATUS, RXFULL, 1, 1) 60 FIELD(STATUS, TXEMPTY, 2, 1) 61 FIELD(STATUS, RXIDLE, 4, 1) 62 FIELD(STATUS, RXEMPTY, 5, 1) 63 REG32(RDATA, 0x18) 64 REG32(WDATA, 0x1C) 65 REG32(FIFO_CTRL, 0x20) 66 FIELD(FIFO_CTRL, RXRST, 0, 1) 67 FIELD(FIFO_CTRL, TXRST, 1, 1) 68 FIELD(FIFO_CTRL, RXILVL, 2, 3) 69 FIELD(FIFO_CTRL, TXILVL, 5, 2) 70 REG32(FIFO_STATUS, 0x24) 71 FIELD(FIFO_STATUS, TXLVL, 0, 5) 72 FIELD(FIFO_STATUS, RXLVL, 16, 5) 73 REG32(OVRD, 0x28) 74 REG32(VAL, 0x2C) 75 REG32(TIMEOUT_CTRL, 0x30) 76 77 static void ibex_uart_update_irqs(IbexUartState *s) 78 { 79 if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_TX_WATERMARK_MASK) { 80 qemu_set_irq(s->tx_watermark, 1); 81 } else { 82 qemu_set_irq(s->tx_watermark, 0); 83 } 84 85 if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_RX_WATERMARK_MASK) { 86 qemu_set_irq(s->rx_watermark, 1); 87 } else { 88 qemu_set_irq(s->rx_watermark, 0); 89 } 90 91 if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_TX_EMPTY_MASK) { 92 qemu_set_irq(s->tx_empty, 1); 93 } else { 94 qemu_set_irq(s->tx_empty, 0); 95 } 96 97 if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_RX_OVERFLOW_MASK) { 98 qemu_set_irq(s->rx_overflow, 1); 99 } else { 100 qemu_set_irq(s->rx_overflow, 0); 101 } 102 } 103 104 static int ibex_uart_can_receive(void *opaque) 105 { 106 IbexUartState *s = opaque; 107 108 if ((s->uart_ctrl & R_CTRL_RX_ENABLE_MASK) 109 && !(s->uart_status & R_STATUS_RXFULL_MASK)) { 110 return 1; 111 } 112 113 return 0; 114 } 115 116 static void ibex_uart_receive(void *opaque, const uint8_t *buf, int size) 117 { 118 IbexUartState *s = opaque; 119 uint8_t rx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_RXILVL_MASK) 120 >> R_FIFO_CTRL_RXILVL_SHIFT; 121 122 s->uart_rdata = *buf; 123 124 s->uart_status &= ~R_STATUS_RXIDLE_MASK; 125 s->uart_status &= ~R_STATUS_RXEMPTY_MASK; 126 /* The RXFULL is set after receiving a single byte 127 * as the FIFO buffers are not yet implemented. 128 */ 129 s->uart_status |= R_STATUS_RXFULL_MASK; 130 s->rx_level += 1; 131 132 if (size > rx_fifo_level) { 133 s->uart_intr_state |= R_INTR_STATE_RX_WATERMARK_MASK; 134 } 135 136 ibex_uart_update_irqs(s); 137 } 138 139 static gboolean ibex_uart_xmit(void *do_not_use, GIOCondition cond, 140 void *opaque) 141 { 142 IbexUartState *s = opaque; 143 uint8_t tx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_TXILVL_MASK) 144 >> R_FIFO_CTRL_TXILVL_SHIFT; 145 int ret; 146 147 /* instant drain the fifo when there's no back-end */ 148 if (!qemu_chr_fe_backend_connected(&s->chr)) { 149 s->tx_level = 0; 150 return FALSE; 151 } 152 153 if (!s->tx_level) { 154 s->uart_status &= ~R_STATUS_TXFULL_MASK; 155 s->uart_status |= R_STATUS_TXEMPTY_MASK; 156 s->uart_intr_state |= R_INTR_STATE_TX_EMPTY_MASK; 157 s->uart_intr_state &= ~R_INTR_STATE_TX_WATERMARK_MASK; 158 ibex_uart_update_irqs(s); 159 return FALSE; 160 } 161 162 ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_level); 163 164 if (ret >= 0) { 165 s->tx_level -= ret; 166 memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_level); 167 } 168 169 if (s->tx_level) { 170 guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP, 171 ibex_uart_xmit, s); 172 if (!r) { 173 s->tx_level = 0; 174 return FALSE; 175 } 176 } 177 178 /* Clear the TX Full bit */ 179 if (s->tx_level != IBEX_UART_TX_FIFO_SIZE) { 180 s->uart_status &= ~R_STATUS_TXFULL_MASK; 181 } 182 183 /* Disable the TX_WATERMARK IRQ */ 184 if (s->tx_level < tx_fifo_level) { 185 s->uart_intr_state &= ~R_INTR_STATE_TX_WATERMARK_MASK; 186 } 187 188 /* Set TX empty */ 189 if (s->tx_level == 0) { 190 s->uart_status |= R_STATUS_TXEMPTY_MASK; 191 s->uart_intr_state |= R_INTR_STATE_TX_EMPTY_MASK; 192 } 193 194 ibex_uart_update_irqs(s); 195 return FALSE; 196 } 197 198 static void uart_write_tx_fifo(IbexUartState *s, const uint8_t *buf, 199 int size) 200 { 201 uint64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 202 uint8_t tx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_TXILVL_MASK) 203 >> R_FIFO_CTRL_TXILVL_SHIFT; 204 205 if (size > IBEX_UART_TX_FIFO_SIZE - s->tx_level) { 206 size = IBEX_UART_TX_FIFO_SIZE - s->tx_level; 207 qemu_log_mask(LOG_GUEST_ERROR, "ibex_uart: TX FIFO overflow"); 208 } 209 210 memcpy(s->tx_fifo + s->tx_level, buf, size); 211 s->tx_level += size; 212 213 if (s->tx_level > 0) { 214 s->uart_status &= ~R_STATUS_TXEMPTY_MASK; 215 } 216 217 if (s->tx_level >= tx_fifo_level) { 218 s->uart_intr_state |= R_INTR_STATE_TX_WATERMARK_MASK; 219 ibex_uart_update_irqs(s); 220 } 221 222 if (s->tx_level == IBEX_UART_TX_FIFO_SIZE) { 223 s->uart_status |= R_STATUS_TXFULL_MASK; 224 } 225 226 timer_mod(s->fifo_trigger_handle, current_time + 227 (s->char_tx_time * 4)); 228 } 229 230 static void ibex_uart_reset(DeviceState *dev) 231 { 232 IbexUartState *s = IBEX_UART(dev); 233 234 s->uart_intr_state = 0x00000000; 235 s->uart_intr_state = 0x00000000; 236 s->uart_intr_enable = 0x00000000; 237 s->uart_ctrl = 0x00000000; 238 s->uart_status = 0x0000003c; 239 s->uart_rdata = 0x00000000; 240 s->uart_fifo_ctrl = 0x00000000; 241 s->uart_fifo_status = 0x00000000; 242 s->uart_ovrd = 0x00000000; 243 s->uart_val = 0x00000000; 244 s->uart_timeout_ctrl = 0x00000000; 245 246 s->tx_level = 0; 247 s->rx_level = 0; 248 249 s->char_tx_time = (NANOSECONDS_PER_SECOND / 230400) * 10; 250 251 ibex_uart_update_irqs(s); 252 } 253 254 static uint64_t ibex_uart_get_baud(IbexUartState *s) 255 { 256 uint64_t baud; 257 258 baud = ((s->uart_ctrl & R_CTRL_NCO_MASK) >> 16); 259 baud *= clock_get_hz(s->f_clk); 260 baud >>= 20; 261 262 return baud; 263 } 264 265 static uint64_t ibex_uart_read(void *opaque, hwaddr addr, 266 unsigned int size) 267 { 268 IbexUartState *s = opaque; 269 uint64_t retvalue = 0; 270 271 switch (addr >> 2) { 272 case R_INTR_STATE: 273 retvalue = s->uart_intr_state; 274 break; 275 case R_INTR_ENABLE: 276 retvalue = s->uart_intr_enable; 277 break; 278 case R_INTR_TEST: 279 qemu_log_mask(LOG_GUEST_ERROR, 280 "%s: wdata is write only\n", __func__); 281 break; 282 283 case R_CTRL: 284 retvalue = s->uart_ctrl; 285 break; 286 case R_STATUS: 287 retvalue = s->uart_status; 288 break; 289 290 case R_RDATA: 291 retvalue = s->uart_rdata; 292 if ((s->uart_ctrl & R_CTRL_RX_ENABLE_MASK) && (s->rx_level > 0)) { 293 qemu_chr_fe_accept_input(&s->chr); 294 295 s->rx_level -= 1; 296 s->uart_status &= ~R_STATUS_RXFULL_MASK; 297 if (s->rx_level == 0) { 298 s->uart_status |= R_STATUS_RXIDLE_MASK; 299 s->uart_status |= R_STATUS_RXEMPTY_MASK; 300 } 301 } 302 break; 303 case R_WDATA: 304 qemu_log_mask(LOG_GUEST_ERROR, 305 "%s: wdata is write only\n", __func__); 306 break; 307 308 case R_FIFO_CTRL: 309 retvalue = s->uart_fifo_ctrl; 310 break; 311 case R_FIFO_STATUS: 312 retvalue = s->uart_fifo_status; 313 314 retvalue |= (s->rx_level & 0x1F) << R_FIFO_STATUS_RXLVL_SHIFT; 315 retvalue |= (s->tx_level & 0x1F) << R_FIFO_STATUS_TXLVL_SHIFT; 316 317 qemu_log_mask(LOG_UNIMP, 318 "%s: RX fifos are not supported\n", __func__); 319 break; 320 321 case R_OVRD: 322 retvalue = s->uart_ovrd; 323 qemu_log_mask(LOG_UNIMP, 324 "%s: ovrd is not supported\n", __func__); 325 break; 326 case R_VAL: 327 retvalue = s->uart_val; 328 qemu_log_mask(LOG_UNIMP, 329 "%s: val is not supported\n", __func__); 330 break; 331 case R_TIMEOUT_CTRL: 332 retvalue = s->uart_timeout_ctrl; 333 qemu_log_mask(LOG_UNIMP, 334 "%s: timeout_ctrl is not supported\n", __func__); 335 break; 336 default: 337 qemu_log_mask(LOG_GUEST_ERROR, 338 "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr); 339 return 0; 340 } 341 342 return retvalue; 343 } 344 345 static void ibex_uart_write(void *opaque, hwaddr addr, 346 uint64_t val64, unsigned int size) 347 { 348 IbexUartState *s = opaque; 349 uint32_t value = val64; 350 351 switch (addr >> 2) { 352 case R_INTR_STATE: 353 /* Write 1 clear */ 354 s->uart_intr_state &= ~value; 355 ibex_uart_update_irqs(s); 356 break; 357 case R_INTR_ENABLE: 358 s->uart_intr_enable = value; 359 ibex_uart_update_irqs(s); 360 break; 361 case R_INTR_TEST: 362 s->uart_intr_state |= value; 363 ibex_uart_update_irqs(s); 364 break; 365 366 case R_CTRL: 367 s->uart_ctrl = value; 368 369 if (value & R_CTRL_NF_MASK) { 370 qemu_log_mask(LOG_UNIMP, 371 "%s: UART_CTRL_NF is not supported\n", __func__); 372 } 373 if (value & R_CTRL_SLPBK_MASK) { 374 qemu_log_mask(LOG_UNIMP, 375 "%s: UART_CTRL_SLPBK is not supported\n", __func__); 376 } 377 if (value & R_CTRL_LLPBK_MASK) { 378 qemu_log_mask(LOG_UNIMP, 379 "%s: UART_CTRL_LLPBK is not supported\n", __func__); 380 } 381 if (value & R_CTRL_PARITY_EN_MASK) { 382 qemu_log_mask(LOG_UNIMP, 383 "%s: UART_CTRL_PARITY_EN is not supported\n", 384 __func__); 385 } 386 if (value & R_CTRL_PARITY_ODD_MASK) { 387 qemu_log_mask(LOG_UNIMP, 388 "%s: UART_CTRL_PARITY_ODD is not supported\n", 389 __func__); 390 } 391 if (value & R_CTRL_RXBLVL_MASK) { 392 qemu_log_mask(LOG_UNIMP, 393 "%s: UART_CTRL_RXBLVL is not supported\n", __func__); 394 } 395 if (value & R_CTRL_NCO_MASK) { 396 uint64_t baud = ibex_uart_get_baud(s); 397 398 s->char_tx_time = (NANOSECONDS_PER_SECOND / baud) * 10; 399 } 400 break; 401 case R_STATUS: 402 qemu_log_mask(LOG_GUEST_ERROR, 403 "%s: status is read only\n", __func__); 404 break; 405 406 case R_RDATA: 407 qemu_log_mask(LOG_GUEST_ERROR, 408 "%s: rdata is read only\n", __func__); 409 break; 410 case R_WDATA: 411 uart_write_tx_fifo(s, (uint8_t *) &value, 1); 412 break; 413 414 case R_FIFO_CTRL: 415 s->uart_fifo_ctrl = value; 416 417 if (value & R_FIFO_CTRL_RXRST_MASK) { 418 s->rx_level = 0; 419 qemu_log_mask(LOG_UNIMP, 420 "%s: RX fifos are not supported\n", __func__); 421 } 422 if (value & R_FIFO_CTRL_TXRST_MASK) { 423 s->tx_level = 0; 424 } 425 break; 426 case R_FIFO_STATUS: 427 qemu_log_mask(LOG_GUEST_ERROR, 428 "%s: fifo_status is read only\n", __func__); 429 break; 430 431 case R_OVRD: 432 s->uart_ovrd = value; 433 qemu_log_mask(LOG_UNIMP, 434 "%s: ovrd is not supported\n", __func__); 435 break; 436 case R_VAL: 437 qemu_log_mask(LOG_GUEST_ERROR, 438 "%s: val is read only\n", __func__); 439 break; 440 case R_TIMEOUT_CTRL: 441 s->uart_timeout_ctrl = value; 442 qemu_log_mask(LOG_UNIMP, 443 "%s: timeout_ctrl is not supported\n", __func__); 444 break; 445 default: 446 qemu_log_mask(LOG_GUEST_ERROR, 447 "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr); 448 } 449 } 450 451 static void ibex_uart_clk_update(void *opaque, ClockEvent event) 452 { 453 IbexUartState *s = opaque; 454 455 /* recompute uart's speed on clock change */ 456 uint64_t baud = ibex_uart_get_baud(s); 457 458 s->char_tx_time = (NANOSECONDS_PER_SECOND / baud) * 10; 459 } 460 461 static void fifo_trigger_update(void *opaque) 462 { 463 IbexUartState *s = opaque; 464 465 if (s->uart_ctrl & R_CTRL_TX_ENABLE_MASK) { 466 ibex_uart_xmit(NULL, G_IO_OUT, s); 467 } 468 } 469 470 static const MemoryRegionOps ibex_uart_ops = { 471 .read = ibex_uart_read, 472 .write = ibex_uart_write, 473 .endianness = DEVICE_NATIVE_ENDIAN, 474 .impl.min_access_size = 4, 475 .impl.max_access_size = 4, 476 }; 477 478 static int ibex_uart_post_load(void *opaque, int version_id) 479 { 480 IbexUartState *s = opaque; 481 482 ibex_uart_update_irqs(s); 483 return 0; 484 } 485 486 static const VMStateDescription vmstate_ibex_uart = { 487 .name = TYPE_IBEX_UART, 488 .version_id = 1, 489 .minimum_version_id = 1, 490 .post_load = ibex_uart_post_load, 491 .fields = (VMStateField[]) { 492 VMSTATE_UINT8_ARRAY(tx_fifo, IbexUartState, 493 IBEX_UART_TX_FIFO_SIZE), 494 VMSTATE_UINT32(tx_level, IbexUartState), 495 VMSTATE_UINT64(char_tx_time, IbexUartState), 496 VMSTATE_TIMER_PTR(fifo_trigger_handle, IbexUartState), 497 VMSTATE_UINT32(uart_intr_state, IbexUartState), 498 VMSTATE_UINT32(uart_intr_enable, IbexUartState), 499 VMSTATE_UINT32(uart_ctrl, IbexUartState), 500 VMSTATE_UINT32(uart_status, IbexUartState), 501 VMSTATE_UINT32(uart_rdata, IbexUartState), 502 VMSTATE_UINT32(uart_fifo_ctrl, IbexUartState), 503 VMSTATE_UINT32(uart_fifo_status, IbexUartState), 504 VMSTATE_UINT32(uart_ovrd, IbexUartState), 505 VMSTATE_UINT32(uart_val, IbexUartState), 506 VMSTATE_UINT32(uart_timeout_ctrl, IbexUartState), 507 VMSTATE_END_OF_LIST() 508 } 509 }; 510 511 static Property ibex_uart_properties[] = { 512 DEFINE_PROP_CHR("chardev", IbexUartState, chr), 513 DEFINE_PROP_END_OF_LIST(), 514 }; 515 516 static void ibex_uart_init(Object *obj) 517 { 518 IbexUartState *s = IBEX_UART(obj); 519 520 s->f_clk = qdev_init_clock_in(DEVICE(obj), "f_clock", 521 ibex_uart_clk_update, s, ClockUpdate); 522 clock_set_hz(s->f_clk, IBEX_UART_CLOCK); 523 524 sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->tx_watermark); 525 sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rx_watermark); 526 sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->tx_empty); 527 sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rx_overflow); 528 529 memory_region_init_io(&s->mmio, obj, &ibex_uart_ops, s, 530 TYPE_IBEX_UART, 0x400); 531 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio); 532 } 533 534 static void ibex_uart_realize(DeviceState *dev, Error **errp) 535 { 536 IbexUartState *s = IBEX_UART(dev); 537 538 s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL, 539 fifo_trigger_update, s); 540 541 qemu_chr_fe_set_handlers(&s->chr, ibex_uart_can_receive, 542 ibex_uart_receive, NULL, NULL, 543 s, NULL, true); 544 } 545 546 static void ibex_uart_class_init(ObjectClass *klass, void *data) 547 { 548 DeviceClass *dc = DEVICE_CLASS(klass); 549 550 dc->reset = ibex_uart_reset; 551 dc->realize = ibex_uart_realize; 552 dc->vmsd = &vmstate_ibex_uart; 553 device_class_set_props(dc, ibex_uart_properties); 554 set_bit(DEVICE_CATEGORY_INPUT, dc->categories); 555 } 556 557 static const TypeInfo ibex_uart_info = { 558 .name = TYPE_IBEX_UART, 559 .parent = TYPE_SYS_BUS_DEVICE, 560 .instance_size = sizeof(IbexUartState), 561 .instance_init = ibex_uart_init, 562 .class_init = ibex_uart_class_init, 563 }; 564 565 static void ibex_uart_register_types(void) 566 { 567 type_register_static(&ibex_uart_info); 568 } 569 570 type_init(ibex_uart_register_types) 571