xref: /openbmc/qemu/hw/char/ibex_uart.c (revision cfad709b)
1 /*
2  * QEMU lowRISC Ibex UART device
3  *
4  * Copyright (c) 2020 Western Digital
5  *
6  * For details check the documentation here:
7  *    https://docs.opentitan.org/hw/ip/uart/doc/
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "hw/char/ibex_uart.h"
30 #include "hw/irq.h"
31 #include "hw/qdev-clock.h"
32 #include "hw/qdev-properties.h"
33 #include "migration/vmstate.h"
34 #include "qemu/log.h"
35 #include "qemu/module.h"
36 
37 static void ibex_uart_update_irqs(IbexUartState *s)
38 {
39     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_TX_WATERMARK_MASK) {
40         qemu_set_irq(s->tx_watermark, 1);
41     } else {
42         qemu_set_irq(s->tx_watermark, 0);
43     }
44 
45     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_RX_WATERMARK_MASK) {
46         qemu_set_irq(s->rx_watermark, 1);
47     } else {
48         qemu_set_irq(s->rx_watermark, 0);
49     }
50 
51     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_TX_EMPTY_MASK) {
52         qemu_set_irq(s->tx_empty, 1);
53     } else {
54         qemu_set_irq(s->tx_empty, 0);
55     }
56 
57     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_RX_OVERFLOW_MASK) {
58         qemu_set_irq(s->rx_overflow, 1);
59     } else {
60         qemu_set_irq(s->rx_overflow, 0);
61     }
62 }
63 
64 static int ibex_uart_can_receive(void *opaque)
65 {
66     IbexUartState *s = opaque;
67 
68     if (s->uart_ctrl & R_CTRL_RX_ENABLE_MASK) {
69         return 1;
70     }
71 
72     return 0;
73 }
74 
75 static void ibex_uart_receive(void *opaque, const uint8_t *buf, int size)
76 {
77     IbexUartState *s = opaque;
78     uint8_t rx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_RXILVL_MASK)
79                             >> R_FIFO_CTRL_RXILVL_SHIFT;
80 
81     s->uart_rdata = *buf;
82 
83     s->uart_status &= ~R_STATUS_RXIDLE_MASK;
84     s->uart_status &= ~R_STATUS_RXEMPTY_MASK;
85 
86     if (size > rx_fifo_level) {
87         s->uart_intr_state |= R_INTR_STATE_RX_WATERMARK_MASK;
88     }
89 
90     ibex_uart_update_irqs(s);
91 }
92 
93 static gboolean ibex_uart_xmit(GIOChannel *chan, GIOCondition cond,
94                                void *opaque)
95 {
96     IbexUartState *s = opaque;
97     uint8_t tx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_TXILVL_MASK)
98                             >> R_FIFO_CTRL_TXILVL_SHIFT;
99     int ret;
100 
101     /* instant drain the fifo when there's no back-end */
102     if (!qemu_chr_fe_backend_connected(&s->chr)) {
103         s->tx_level = 0;
104         return FALSE;
105     }
106 
107     if (!s->tx_level) {
108         s->uart_status &= ~R_STATUS_TXFULL_MASK;
109         s->uart_status |= R_STATUS_TXEMPTY_MASK;
110         s->uart_intr_state |= R_INTR_STATE_TX_EMPTY_MASK;
111         s->uart_intr_state &= ~R_INTR_STATE_TX_WATERMARK_MASK;
112         ibex_uart_update_irqs(s);
113         return FALSE;
114     }
115 
116     ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_level);
117 
118     if (ret >= 0) {
119         s->tx_level -= ret;
120         memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_level);
121     }
122 
123     if (s->tx_level) {
124         guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
125                                         ibex_uart_xmit, s);
126         if (!r) {
127             s->tx_level = 0;
128             return FALSE;
129         }
130     }
131 
132     /* Clear the TX Full bit */
133     if (s->tx_level != IBEX_UART_TX_FIFO_SIZE) {
134         s->uart_status &= ~R_STATUS_TXFULL_MASK;
135     }
136 
137     /* Disable the TX_WATERMARK IRQ */
138     if (s->tx_level < tx_fifo_level) {
139         s->uart_intr_state &= ~R_INTR_STATE_TX_WATERMARK_MASK;
140     }
141 
142     /* Set TX empty */
143     if (s->tx_level == 0) {
144         s->uart_status |= R_STATUS_TXEMPTY_MASK;
145         s->uart_intr_state |= R_INTR_STATE_TX_EMPTY_MASK;
146     }
147 
148     ibex_uart_update_irqs(s);
149     return FALSE;
150 }
151 
152 static void uart_write_tx_fifo(IbexUartState *s, const uint8_t *buf,
153                                int size)
154 {
155     uint64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
156     uint8_t tx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_TXILVL_MASK)
157                             >> R_FIFO_CTRL_TXILVL_SHIFT;
158 
159     if (size > IBEX_UART_TX_FIFO_SIZE - s->tx_level) {
160         size = IBEX_UART_TX_FIFO_SIZE - s->tx_level;
161         qemu_log_mask(LOG_GUEST_ERROR, "ibex_uart: TX FIFO overflow");
162     }
163 
164     memcpy(s->tx_fifo + s->tx_level, buf, size);
165     s->tx_level += size;
166 
167     if (s->tx_level > 0) {
168         s->uart_status &= ~R_STATUS_TXEMPTY_MASK;
169     }
170 
171     if (s->tx_level >= tx_fifo_level) {
172         s->uart_intr_state |= R_INTR_STATE_TX_WATERMARK_MASK;
173         ibex_uart_update_irqs(s);
174     }
175 
176     if (s->tx_level == IBEX_UART_TX_FIFO_SIZE) {
177         s->uart_status |= R_STATUS_TXFULL_MASK;
178     }
179 
180     timer_mod(s->fifo_trigger_handle, current_time +
181               (s->char_tx_time * 4));
182 }
183 
184 static void ibex_uart_reset(DeviceState *dev)
185 {
186     IbexUartState *s = IBEX_UART(dev);
187 
188     s->uart_intr_state = 0x00000000;
189     s->uart_intr_state = 0x00000000;
190     s->uart_intr_enable = 0x00000000;
191     s->uart_ctrl = 0x00000000;
192     s->uart_status = 0x0000003c;
193     s->uart_rdata = 0x00000000;
194     s->uart_fifo_ctrl = 0x00000000;
195     s->uart_fifo_status = 0x00000000;
196     s->uart_ovrd = 0x00000000;
197     s->uart_val = 0x00000000;
198     s->uart_timeout_ctrl = 0x00000000;
199 
200     s->tx_level = 0;
201 
202     s->char_tx_time = (NANOSECONDS_PER_SECOND / 230400) * 10;
203 
204     ibex_uart_update_irqs(s);
205 }
206 
207 static uint64_t ibex_uart_get_baud(IbexUartState *s)
208 {
209     uint64_t baud;
210 
211     baud = ((s->uart_ctrl & R_CTRL_NCO_MASK) >> 16);
212     baud *= clock_get_hz(s->f_clk);
213     baud >>= 20;
214 
215     return baud;
216 }
217 
218 static uint64_t ibex_uart_read(void *opaque, hwaddr addr,
219                                        unsigned int size)
220 {
221     IbexUartState *s = opaque;
222     uint64_t retvalue = 0;
223 
224     switch (addr >> 2) {
225     case R_INTR_STATE:
226         retvalue = s->uart_intr_state;
227         break;
228     case R_INTR_ENABLE:
229         retvalue = s->uart_intr_enable;
230         break;
231     case R_INTR_TEST:
232         qemu_log_mask(LOG_GUEST_ERROR,
233                       "%s: wdata is write only\n", __func__);
234         break;
235 
236     case R_CTRL:
237         retvalue = s->uart_ctrl;
238         break;
239     case R_STATUS:
240         retvalue = s->uart_status;
241         break;
242 
243     case R_RDATA:
244         retvalue = s->uart_rdata;
245         if (s->uart_ctrl & R_CTRL_RX_ENABLE_MASK) {
246             qemu_chr_fe_accept_input(&s->chr);
247 
248             s->uart_status |= R_STATUS_RXIDLE_MASK;
249             s->uart_status |= R_STATUS_RXEMPTY_MASK;
250         }
251         break;
252     case R_WDATA:
253         qemu_log_mask(LOG_GUEST_ERROR,
254                       "%s: wdata is write only\n", __func__);
255         break;
256 
257     case R_FIFO_CTRL:
258         retvalue = s->uart_fifo_ctrl;
259         break;
260     case R_FIFO_STATUS:
261         retvalue = s->uart_fifo_status;
262 
263         retvalue |= s->tx_level & 0x1F;
264 
265         qemu_log_mask(LOG_UNIMP,
266                       "%s: RX fifos are not supported\n", __func__);
267         break;
268 
269     case R_OVRD:
270         retvalue = s->uart_ovrd;
271         qemu_log_mask(LOG_UNIMP,
272                       "%s: ovrd is not supported\n", __func__);
273         break;
274     case R_VAL:
275         retvalue = s->uart_val;
276         qemu_log_mask(LOG_UNIMP,
277                       "%s: val is not supported\n", __func__);
278         break;
279     case R_TIMEOUT_CTRL:
280         retvalue = s->uart_timeout_ctrl;
281         qemu_log_mask(LOG_UNIMP,
282                       "%s: timeout_ctrl is not supported\n", __func__);
283         break;
284     default:
285         qemu_log_mask(LOG_GUEST_ERROR,
286                       "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
287         return 0;
288     }
289 
290     return retvalue;
291 }
292 
293 static void ibex_uart_write(void *opaque, hwaddr addr,
294                                   uint64_t val64, unsigned int size)
295 {
296     IbexUartState *s = opaque;
297     uint32_t value = val64;
298 
299     switch (addr >> 2) {
300     case R_INTR_STATE:
301         /* Write 1 clear */
302         s->uart_intr_state &= ~value;
303         ibex_uart_update_irqs(s);
304         break;
305     case R_INTR_ENABLE:
306         s->uart_intr_enable = value;
307         ibex_uart_update_irqs(s);
308         break;
309     case R_INTR_TEST:
310         s->uart_intr_state |= value;
311         ibex_uart_update_irqs(s);
312         break;
313 
314     case R_CTRL:
315         s->uart_ctrl = value;
316 
317         if (value & R_CTRL_NF_MASK) {
318             qemu_log_mask(LOG_UNIMP,
319                           "%s: UART_CTRL_NF is not supported\n", __func__);
320         }
321         if (value & R_CTRL_SLPBK_MASK) {
322             qemu_log_mask(LOG_UNIMP,
323                           "%s: UART_CTRL_SLPBK is not supported\n", __func__);
324         }
325         if (value & R_CTRL_LLPBK_MASK) {
326             qemu_log_mask(LOG_UNIMP,
327                           "%s: UART_CTRL_LLPBK is not supported\n", __func__);
328         }
329         if (value & R_CTRL_PARITY_EN_MASK) {
330             qemu_log_mask(LOG_UNIMP,
331                           "%s: UART_CTRL_PARITY_EN is not supported\n",
332                           __func__);
333         }
334         if (value & R_CTRL_PARITY_ODD_MASK) {
335             qemu_log_mask(LOG_UNIMP,
336                           "%s: UART_CTRL_PARITY_ODD is not supported\n",
337                           __func__);
338         }
339         if (value & R_CTRL_RXBLVL_MASK) {
340             qemu_log_mask(LOG_UNIMP,
341                           "%s: UART_CTRL_RXBLVL is not supported\n", __func__);
342         }
343         if (value & R_CTRL_NCO_MASK) {
344             uint64_t baud = ibex_uart_get_baud(s);
345 
346             s->char_tx_time = (NANOSECONDS_PER_SECOND / baud) * 10;
347         }
348         break;
349     case R_STATUS:
350         qemu_log_mask(LOG_GUEST_ERROR,
351                       "%s: status is read only\n", __func__);
352         break;
353 
354     case R_RDATA:
355         qemu_log_mask(LOG_GUEST_ERROR,
356                       "%s: rdata is read only\n", __func__);
357         break;
358     case R_WDATA:
359         uart_write_tx_fifo(s, (uint8_t *) &value, 1);
360         break;
361 
362     case R_FIFO_CTRL:
363         s->uart_fifo_ctrl = value;
364 
365         if (value & R_FIFO_CTRL_RXRST_MASK) {
366             qemu_log_mask(LOG_UNIMP,
367                           "%s: RX fifos are not supported\n", __func__);
368         }
369         if (value & R_FIFO_CTRL_TXRST_MASK) {
370             s->tx_level = 0;
371         }
372         break;
373     case R_FIFO_STATUS:
374         qemu_log_mask(LOG_GUEST_ERROR,
375                       "%s: fifo_status is read only\n", __func__);
376         break;
377 
378     case R_OVRD:
379         s->uart_ovrd = value;
380         qemu_log_mask(LOG_UNIMP,
381                       "%s: ovrd is not supported\n", __func__);
382         break;
383     case R_VAL:
384         qemu_log_mask(LOG_GUEST_ERROR,
385                       "%s: val is read only\n", __func__);
386         break;
387     case R_TIMEOUT_CTRL:
388         s->uart_timeout_ctrl = value;
389         qemu_log_mask(LOG_UNIMP,
390                       "%s: timeout_ctrl is not supported\n", __func__);
391         break;
392     default:
393         qemu_log_mask(LOG_GUEST_ERROR,
394                       "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
395     }
396 }
397 
398 static void ibex_uart_clk_update(void *opaque)
399 {
400     IbexUartState *s = opaque;
401 
402     /* recompute uart's speed on clock change */
403     uint64_t baud = ibex_uart_get_baud(s);
404 
405     s->char_tx_time = (NANOSECONDS_PER_SECOND / baud) * 10;
406 }
407 
408 static void fifo_trigger_update(void *opaque)
409 {
410     IbexUartState *s = opaque;
411 
412     if (s->uart_ctrl & R_CTRL_TX_ENABLE_MASK) {
413         ibex_uart_xmit(NULL, G_IO_OUT, s);
414     }
415 }
416 
417 static const MemoryRegionOps ibex_uart_ops = {
418     .read = ibex_uart_read,
419     .write = ibex_uart_write,
420     .endianness = DEVICE_NATIVE_ENDIAN,
421     .impl.min_access_size = 4,
422     .impl.max_access_size = 4,
423 };
424 
425 static int ibex_uart_post_load(void *opaque, int version_id)
426 {
427     IbexUartState *s = opaque;
428 
429     ibex_uart_update_irqs(s);
430     return 0;
431 }
432 
433 static const VMStateDescription vmstate_ibex_uart = {
434     .name = TYPE_IBEX_UART,
435     .version_id = 1,
436     .minimum_version_id = 1,
437     .post_load = ibex_uart_post_load,
438     .fields = (VMStateField[]) {
439         VMSTATE_UINT8_ARRAY(tx_fifo, IbexUartState,
440                             IBEX_UART_TX_FIFO_SIZE),
441         VMSTATE_UINT32(tx_level, IbexUartState),
442         VMSTATE_UINT64(char_tx_time, IbexUartState),
443         VMSTATE_TIMER_PTR(fifo_trigger_handle, IbexUartState),
444         VMSTATE_UINT32(uart_intr_state, IbexUartState),
445         VMSTATE_UINT32(uart_intr_enable, IbexUartState),
446         VMSTATE_UINT32(uart_ctrl, IbexUartState),
447         VMSTATE_UINT32(uart_status, IbexUartState),
448         VMSTATE_UINT32(uart_rdata, IbexUartState),
449         VMSTATE_UINT32(uart_fifo_ctrl, IbexUartState),
450         VMSTATE_UINT32(uart_fifo_status, IbexUartState),
451         VMSTATE_UINT32(uart_ovrd, IbexUartState),
452         VMSTATE_UINT32(uart_val, IbexUartState),
453         VMSTATE_UINT32(uart_timeout_ctrl, IbexUartState),
454         VMSTATE_END_OF_LIST()
455     }
456 };
457 
458 static Property ibex_uart_properties[] = {
459     DEFINE_PROP_CHR("chardev", IbexUartState, chr),
460     DEFINE_PROP_END_OF_LIST(),
461 };
462 
463 static void ibex_uart_init(Object *obj)
464 {
465     IbexUartState *s = IBEX_UART(obj);
466 
467     s->f_clk = qdev_init_clock_in(DEVICE(obj), "f_clock",
468                                   ibex_uart_clk_update, s);
469     clock_set_hz(s->f_clk, IBEX_UART_CLOCK);
470 
471     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->tx_watermark);
472     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rx_watermark);
473     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->tx_empty);
474     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rx_overflow);
475 
476     memory_region_init_io(&s->mmio, obj, &ibex_uart_ops, s,
477                           TYPE_IBEX_UART, 0x400);
478     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
479 }
480 
481 static void ibex_uart_realize(DeviceState *dev, Error **errp)
482 {
483     IbexUartState *s = IBEX_UART(dev);
484 
485     s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
486                                           fifo_trigger_update, s);
487 
488     qemu_chr_fe_set_handlers(&s->chr, ibex_uart_can_receive,
489                              ibex_uart_receive, NULL, NULL,
490                              s, NULL, true);
491 }
492 
493 static void ibex_uart_class_init(ObjectClass *klass, void *data)
494 {
495     DeviceClass *dc = DEVICE_CLASS(klass);
496 
497     dc->reset = ibex_uart_reset;
498     dc->realize = ibex_uart_realize;
499     dc->vmsd = &vmstate_ibex_uart;
500     device_class_set_props(dc, ibex_uart_properties);
501 }
502 
503 static const TypeInfo ibex_uart_info = {
504     .name          = TYPE_IBEX_UART,
505     .parent        = TYPE_SYS_BUS_DEVICE,
506     .instance_size = sizeof(IbexUartState),
507     .instance_init = ibex_uart_init,
508     .class_init    = ibex_uart_class_init,
509 };
510 
511 static void ibex_uart_register_types(void)
512 {
513     type_register_static(&ibex_uart_info);
514 }
515 
516 type_init(ibex_uart_register_types)
517