xref: /openbmc/qemu/hw/char/ibex_uart.c (revision b14df228)
1 /*
2  * QEMU lowRISC Ibex UART device
3  *
4  * Copyright (c) 2020 Western Digital
5  *
6  * For details check the documentation here:
7  *    https://docs.opentitan.org/hw/ip/uart/doc/
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "hw/char/ibex_uart.h"
30 #include "hw/irq.h"
31 #include "hw/qdev-clock.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/qdev-properties-system.h"
34 #include "migration/vmstate.h"
35 #include "qemu/log.h"
36 #include "qemu/module.h"
37 
38 REG32(INTR_STATE, 0x00)
39     FIELD(INTR_STATE, TX_WATERMARK, 0, 1)
40     FIELD(INTR_STATE, RX_WATERMARK, 1, 1)
41     FIELD(INTR_STATE, TX_EMPTY, 2, 1)
42     FIELD(INTR_STATE, RX_OVERFLOW, 3, 1)
43 REG32(INTR_ENABLE, 0x04)
44 REG32(INTR_TEST, 0x08)
45 REG32(ALERT_TEST, 0x0C)
46 REG32(CTRL, 0x10)
47     FIELD(CTRL, TX_ENABLE, 0, 1)
48     FIELD(CTRL, RX_ENABLE, 1, 1)
49     FIELD(CTRL, NF, 2, 1)
50     FIELD(CTRL, SLPBK, 4, 1)
51     FIELD(CTRL, LLPBK, 5, 1)
52     FIELD(CTRL, PARITY_EN, 6, 1)
53     FIELD(CTRL, PARITY_ODD, 7, 1)
54     FIELD(CTRL, RXBLVL, 8, 2)
55     FIELD(CTRL, NCO, 16, 16)
56 REG32(STATUS, 0x14)
57     FIELD(STATUS, TXFULL, 0, 1)
58     FIELD(STATUS, RXFULL, 1, 1)
59     FIELD(STATUS, TXEMPTY, 2, 1)
60     FIELD(STATUS, RXIDLE, 4, 1)
61     FIELD(STATUS, RXEMPTY, 5, 1)
62 REG32(RDATA, 0x18)
63 REG32(WDATA, 0x1C)
64 REG32(FIFO_CTRL, 0x20)
65     FIELD(FIFO_CTRL, RXRST, 0, 1)
66     FIELD(FIFO_CTRL, TXRST, 1, 1)
67     FIELD(FIFO_CTRL, RXILVL, 2, 3)
68     FIELD(FIFO_CTRL, TXILVL, 5, 2)
69 REG32(FIFO_STATUS, 0x24)
70     FIELD(FIFO_STATUS, TXLVL, 0, 5)
71     FIELD(FIFO_STATUS, RXLVL, 16, 5)
72 REG32(OVRD, 0x28)
73 REG32(VAL, 0x2C)
74 REG32(TIMEOUT_CTRL, 0x30)
75 
76 static void ibex_uart_update_irqs(IbexUartState *s)
77 {
78     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_TX_WATERMARK_MASK) {
79         qemu_set_irq(s->tx_watermark, 1);
80     } else {
81         qemu_set_irq(s->tx_watermark, 0);
82     }
83 
84     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_RX_WATERMARK_MASK) {
85         qemu_set_irq(s->rx_watermark, 1);
86     } else {
87         qemu_set_irq(s->rx_watermark, 0);
88     }
89 
90     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_TX_EMPTY_MASK) {
91         qemu_set_irq(s->tx_empty, 1);
92     } else {
93         qemu_set_irq(s->tx_empty, 0);
94     }
95 
96     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_RX_OVERFLOW_MASK) {
97         qemu_set_irq(s->rx_overflow, 1);
98     } else {
99         qemu_set_irq(s->rx_overflow, 0);
100     }
101 }
102 
103 static int ibex_uart_can_receive(void *opaque)
104 {
105     IbexUartState *s = opaque;
106 
107     if ((s->uart_ctrl & R_CTRL_RX_ENABLE_MASK)
108            && !(s->uart_status & R_STATUS_RXFULL_MASK)) {
109         return 1;
110     }
111 
112     return 0;
113 }
114 
115 static void ibex_uart_receive(void *opaque, const uint8_t *buf, int size)
116 {
117     IbexUartState *s = opaque;
118     uint8_t rx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_RXILVL_MASK)
119                             >> R_FIFO_CTRL_RXILVL_SHIFT;
120 
121     s->uart_rdata = *buf;
122 
123     s->uart_status &= ~R_STATUS_RXIDLE_MASK;
124     s->uart_status &= ~R_STATUS_RXEMPTY_MASK;
125     /* The RXFULL is set after receiving a single byte
126      * as the FIFO buffers are not yet implemented.
127      */
128     s->uart_status |= R_STATUS_RXFULL_MASK;
129     s->rx_level += 1;
130 
131     if (size > rx_fifo_level) {
132         s->uart_intr_state |= R_INTR_STATE_RX_WATERMARK_MASK;
133     }
134 
135     ibex_uart_update_irqs(s);
136 }
137 
138 static gboolean ibex_uart_xmit(void *do_not_use, GIOCondition cond,
139                                void *opaque)
140 {
141     IbexUartState *s = opaque;
142     uint8_t tx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_TXILVL_MASK)
143                             >> R_FIFO_CTRL_TXILVL_SHIFT;
144     int ret;
145 
146     /* instant drain the fifo when there's no back-end */
147     if (!qemu_chr_fe_backend_connected(&s->chr)) {
148         s->tx_level = 0;
149         return FALSE;
150     }
151 
152     if (!s->tx_level) {
153         s->uart_status &= ~R_STATUS_TXFULL_MASK;
154         s->uart_status |= R_STATUS_TXEMPTY_MASK;
155         s->uart_intr_state |= R_INTR_STATE_TX_EMPTY_MASK;
156         s->uart_intr_state &= ~R_INTR_STATE_TX_WATERMARK_MASK;
157         ibex_uart_update_irqs(s);
158         return FALSE;
159     }
160 
161     ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_level);
162 
163     if (ret >= 0) {
164         s->tx_level -= ret;
165         memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_level);
166     }
167 
168     if (s->tx_level) {
169         guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
170                                         ibex_uart_xmit, s);
171         if (!r) {
172             s->tx_level = 0;
173             return FALSE;
174         }
175     }
176 
177     /* Clear the TX Full bit */
178     if (s->tx_level != IBEX_UART_TX_FIFO_SIZE) {
179         s->uart_status &= ~R_STATUS_TXFULL_MASK;
180     }
181 
182     /* Disable the TX_WATERMARK IRQ */
183     if (s->tx_level < tx_fifo_level) {
184         s->uart_intr_state &= ~R_INTR_STATE_TX_WATERMARK_MASK;
185     }
186 
187     /* Set TX empty */
188     if (s->tx_level == 0) {
189         s->uart_status |= R_STATUS_TXEMPTY_MASK;
190         s->uart_intr_state |= R_INTR_STATE_TX_EMPTY_MASK;
191     }
192 
193     ibex_uart_update_irqs(s);
194     return FALSE;
195 }
196 
197 static void uart_write_tx_fifo(IbexUartState *s, const uint8_t *buf,
198                                int size)
199 {
200     uint64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
201     uint8_t tx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_TXILVL_MASK)
202                             >> R_FIFO_CTRL_TXILVL_SHIFT;
203 
204     if (size > IBEX_UART_TX_FIFO_SIZE - s->tx_level) {
205         size = IBEX_UART_TX_FIFO_SIZE - s->tx_level;
206         qemu_log_mask(LOG_GUEST_ERROR, "ibex_uart: TX FIFO overflow");
207     }
208 
209     memcpy(s->tx_fifo + s->tx_level, buf, size);
210     s->tx_level += size;
211 
212     if (s->tx_level > 0) {
213         s->uart_status &= ~R_STATUS_TXEMPTY_MASK;
214     }
215 
216     if (s->tx_level >= tx_fifo_level) {
217         s->uart_intr_state |= R_INTR_STATE_TX_WATERMARK_MASK;
218         ibex_uart_update_irqs(s);
219     }
220 
221     if (s->tx_level == IBEX_UART_TX_FIFO_SIZE) {
222         s->uart_status |= R_STATUS_TXFULL_MASK;
223     }
224 
225     timer_mod(s->fifo_trigger_handle, current_time +
226               (s->char_tx_time * 4));
227 }
228 
229 static void ibex_uart_reset(DeviceState *dev)
230 {
231     IbexUartState *s = IBEX_UART(dev);
232 
233     s->uart_intr_state = 0x00000000;
234     s->uart_intr_state = 0x00000000;
235     s->uart_intr_enable = 0x00000000;
236     s->uart_ctrl = 0x00000000;
237     s->uart_status = 0x0000003c;
238     s->uart_rdata = 0x00000000;
239     s->uart_fifo_ctrl = 0x00000000;
240     s->uart_fifo_status = 0x00000000;
241     s->uart_ovrd = 0x00000000;
242     s->uart_val = 0x00000000;
243     s->uart_timeout_ctrl = 0x00000000;
244 
245     s->tx_level = 0;
246     s->rx_level = 0;
247 
248     s->char_tx_time = (NANOSECONDS_PER_SECOND / 230400) * 10;
249 
250     ibex_uart_update_irqs(s);
251 }
252 
253 static uint64_t ibex_uart_get_baud(IbexUartState *s)
254 {
255     uint64_t baud;
256 
257     baud = ((s->uart_ctrl & R_CTRL_NCO_MASK) >> 16);
258     baud *= clock_get_hz(s->f_clk);
259     baud >>= 20;
260 
261     return baud;
262 }
263 
264 static uint64_t ibex_uart_read(void *opaque, hwaddr addr,
265                                        unsigned int size)
266 {
267     IbexUartState *s = opaque;
268     uint64_t retvalue = 0;
269 
270     switch (addr >> 2) {
271     case R_INTR_STATE:
272         retvalue = s->uart_intr_state;
273         break;
274     case R_INTR_ENABLE:
275         retvalue = s->uart_intr_enable;
276         break;
277     case R_INTR_TEST:
278         qemu_log_mask(LOG_GUEST_ERROR,
279                       "%s: wdata is write only\n", __func__);
280         break;
281 
282     case R_CTRL:
283         retvalue = s->uart_ctrl;
284         break;
285     case R_STATUS:
286         retvalue = s->uart_status;
287         break;
288 
289     case R_RDATA:
290         retvalue = s->uart_rdata;
291         if ((s->uart_ctrl & R_CTRL_RX_ENABLE_MASK) && (s->rx_level > 0)) {
292             qemu_chr_fe_accept_input(&s->chr);
293 
294             s->rx_level -= 1;
295             s->uart_status &= ~R_STATUS_RXFULL_MASK;
296             if (s->rx_level == 0) {
297                 s->uart_status |= R_STATUS_RXIDLE_MASK;
298                 s->uart_status |= R_STATUS_RXEMPTY_MASK;
299             }
300         }
301         break;
302     case R_WDATA:
303         qemu_log_mask(LOG_GUEST_ERROR,
304                       "%s: wdata is write only\n", __func__);
305         break;
306 
307     case R_FIFO_CTRL:
308         retvalue = s->uart_fifo_ctrl;
309         break;
310     case R_FIFO_STATUS:
311         retvalue = s->uart_fifo_status;
312 
313         retvalue |= (s->rx_level & 0x1F) << R_FIFO_STATUS_RXLVL_SHIFT;
314         retvalue |= (s->tx_level & 0x1F) << R_FIFO_STATUS_TXLVL_SHIFT;
315 
316         qemu_log_mask(LOG_UNIMP,
317                       "%s: RX fifos are not supported\n", __func__);
318         break;
319 
320     case R_OVRD:
321         retvalue = s->uart_ovrd;
322         qemu_log_mask(LOG_UNIMP,
323                       "%s: ovrd is not supported\n", __func__);
324         break;
325     case R_VAL:
326         retvalue = s->uart_val;
327         qemu_log_mask(LOG_UNIMP,
328                       "%s: val is not supported\n", __func__);
329         break;
330     case R_TIMEOUT_CTRL:
331         retvalue = s->uart_timeout_ctrl;
332         qemu_log_mask(LOG_UNIMP,
333                       "%s: timeout_ctrl is not supported\n", __func__);
334         break;
335     default:
336         qemu_log_mask(LOG_GUEST_ERROR,
337                       "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
338         return 0;
339     }
340 
341     return retvalue;
342 }
343 
344 static void ibex_uart_write(void *opaque, hwaddr addr,
345                                   uint64_t val64, unsigned int size)
346 {
347     IbexUartState *s = opaque;
348     uint32_t value = val64;
349 
350     switch (addr >> 2) {
351     case R_INTR_STATE:
352         /* Write 1 clear */
353         s->uart_intr_state &= ~value;
354         ibex_uart_update_irqs(s);
355         break;
356     case R_INTR_ENABLE:
357         s->uart_intr_enable = value;
358         ibex_uart_update_irqs(s);
359         break;
360     case R_INTR_TEST:
361         s->uart_intr_state |= value;
362         ibex_uart_update_irqs(s);
363         break;
364 
365     case R_CTRL:
366         s->uart_ctrl = value;
367 
368         if (value & R_CTRL_NF_MASK) {
369             qemu_log_mask(LOG_UNIMP,
370                           "%s: UART_CTRL_NF is not supported\n", __func__);
371         }
372         if (value & R_CTRL_SLPBK_MASK) {
373             qemu_log_mask(LOG_UNIMP,
374                           "%s: UART_CTRL_SLPBK is not supported\n", __func__);
375         }
376         if (value & R_CTRL_LLPBK_MASK) {
377             qemu_log_mask(LOG_UNIMP,
378                           "%s: UART_CTRL_LLPBK is not supported\n", __func__);
379         }
380         if (value & R_CTRL_PARITY_EN_MASK) {
381             qemu_log_mask(LOG_UNIMP,
382                           "%s: UART_CTRL_PARITY_EN is not supported\n",
383                           __func__);
384         }
385         if (value & R_CTRL_PARITY_ODD_MASK) {
386             qemu_log_mask(LOG_UNIMP,
387                           "%s: UART_CTRL_PARITY_ODD is not supported\n",
388                           __func__);
389         }
390         if (value & R_CTRL_RXBLVL_MASK) {
391             qemu_log_mask(LOG_UNIMP,
392                           "%s: UART_CTRL_RXBLVL is not supported\n", __func__);
393         }
394         if (value & R_CTRL_NCO_MASK) {
395             uint64_t baud = ibex_uart_get_baud(s);
396 
397             s->char_tx_time = (NANOSECONDS_PER_SECOND / baud) * 10;
398         }
399         break;
400     case R_STATUS:
401         qemu_log_mask(LOG_GUEST_ERROR,
402                       "%s: status is read only\n", __func__);
403         break;
404 
405     case R_RDATA:
406         qemu_log_mask(LOG_GUEST_ERROR,
407                       "%s: rdata is read only\n", __func__);
408         break;
409     case R_WDATA:
410         uart_write_tx_fifo(s, (uint8_t *) &value, 1);
411         break;
412 
413     case R_FIFO_CTRL:
414         s->uart_fifo_ctrl = value;
415 
416         if (value & R_FIFO_CTRL_RXRST_MASK) {
417             s->rx_level = 0;
418             qemu_log_mask(LOG_UNIMP,
419                           "%s: RX fifos are not supported\n", __func__);
420         }
421         if (value & R_FIFO_CTRL_TXRST_MASK) {
422             s->tx_level = 0;
423         }
424         break;
425     case R_FIFO_STATUS:
426         qemu_log_mask(LOG_GUEST_ERROR,
427                       "%s: fifo_status is read only\n", __func__);
428         break;
429 
430     case R_OVRD:
431         s->uart_ovrd = value;
432         qemu_log_mask(LOG_UNIMP,
433                       "%s: ovrd is not supported\n", __func__);
434         break;
435     case R_VAL:
436         qemu_log_mask(LOG_GUEST_ERROR,
437                       "%s: val is read only\n", __func__);
438         break;
439     case R_TIMEOUT_CTRL:
440         s->uart_timeout_ctrl = value;
441         qemu_log_mask(LOG_UNIMP,
442                       "%s: timeout_ctrl is not supported\n", __func__);
443         break;
444     default:
445         qemu_log_mask(LOG_GUEST_ERROR,
446                       "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
447     }
448 }
449 
450 static void ibex_uart_clk_update(void *opaque, ClockEvent event)
451 {
452     IbexUartState *s = opaque;
453 
454     /* recompute uart's speed on clock change */
455     uint64_t baud = ibex_uart_get_baud(s);
456 
457     s->char_tx_time = (NANOSECONDS_PER_SECOND / baud) * 10;
458 }
459 
460 static void fifo_trigger_update(void *opaque)
461 {
462     IbexUartState *s = opaque;
463 
464     if (s->uart_ctrl & R_CTRL_TX_ENABLE_MASK) {
465         ibex_uart_xmit(NULL, G_IO_OUT, s);
466     }
467 }
468 
469 static const MemoryRegionOps ibex_uart_ops = {
470     .read = ibex_uart_read,
471     .write = ibex_uart_write,
472     .endianness = DEVICE_NATIVE_ENDIAN,
473     .impl.min_access_size = 4,
474     .impl.max_access_size = 4,
475 };
476 
477 static int ibex_uart_post_load(void *opaque, int version_id)
478 {
479     IbexUartState *s = opaque;
480 
481     ibex_uart_update_irqs(s);
482     return 0;
483 }
484 
485 static const VMStateDescription vmstate_ibex_uart = {
486     .name = TYPE_IBEX_UART,
487     .version_id = 1,
488     .minimum_version_id = 1,
489     .post_load = ibex_uart_post_load,
490     .fields = (VMStateField[]) {
491         VMSTATE_UINT8_ARRAY(tx_fifo, IbexUartState,
492                             IBEX_UART_TX_FIFO_SIZE),
493         VMSTATE_UINT32(tx_level, IbexUartState),
494         VMSTATE_UINT64(char_tx_time, IbexUartState),
495         VMSTATE_TIMER_PTR(fifo_trigger_handle, IbexUartState),
496         VMSTATE_UINT32(uart_intr_state, IbexUartState),
497         VMSTATE_UINT32(uart_intr_enable, IbexUartState),
498         VMSTATE_UINT32(uart_ctrl, IbexUartState),
499         VMSTATE_UINT32(uart_status, IbexUartState),
500         VMSTATE_UINT32(uart_rdata, IbexUartState),
501         VMSTATE_UINT32(uart_fifo_ctrl, IbexUartState),
502         VMSTATE_UINT32(uart_fifo_status, IbexUartState),
503         VMSTATE_UINT32(uart_ovrd, IbexUartState),
504         VMSTATE_UINT32(uart_val, IbexUartState),
505         VMSTATE_UINT32(uart_timeout_ctrl, IbexUartState),
506         VMSTATE_END_OF_LIST()
507     }
508 };
509 
510 static Property ibex_uart_properties[] = {
511     DEFINE_PROP_CHR("chardev", IbexUartState, chr),
512     DEFINE_PROP_END_OF_LIST(),
513 };
514 
515 static void ibex_uart_init(Object *obj)
516 {
517     IbexUartState *s = IBEX_UART(obj);
518 
519     s->f_clk = qdev_init_clock_in(DEVICE(obj), "f_clock",
520                                   ibex_uart_clk_update, s, ClockUpdate);
521     clock_set_hz(s->f_clk, IBEX_UART_CLOCK);
522 
523     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->tx_watermark);
524     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rx_watermark);
525     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->tx_empty);
526     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rx_overflow);
527 
528     memory_region_init_io(&s->mmio, obj, &ibex_uart_ops, s,
529                           TYPE_IBEX_UART, 0x400);
530     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
531 }
532 
533 static void ibex_uart_realize(DeviceState *dev, Error **errp)
534 {
535     IbexUartState *s = IBEX_UART(dev);
536 
537     s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
538                                           fifo_trigger_update, s);
539 
540     qemu_chr_fe_set_handlers(&s->chr, ibex_uart_can_receive,
541                              ibex_uart_receive, NULL, NULL,
542                              s, NULL, true);
543 }
544 
545 static void ibex_uart_class_init(ObjectClass *klass, void *data)
546 {
547     DeviceClass *dc = DEVICE_CLASS(klass);
548 
549     dc->reset = ibex_uart_reset;
550     dc->realize = ibex_uart_realize;
551     dc->vmsd = &vmstate_ibex_uart;
552     device_class_set_props(dc, ibex_uart_properties);
553     set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
554 }
555 
556 static const TypeInfo ibex_uart_info = {
557     .name          = TYPE_IBEX_UART,
558     .parent        = TYPE_SYS_BUS_DEVICE,
559     .instance_size = sizeof(IbexUartState),
560     .instance_init = ibex_uart_init,
561     .class_init    = ibex_uart_class_init,
562 };
563 
564 static void ibex_uart_register_types(void)
565 {
566     type_register_static(&ibex_uart_info);
567 }
568 
569 type_init(ibex_uart_register_types)
570