xref: /openbmc/qemu/hw/char/ibex_uart.c (revision 587adaca)
1 /*
2  * QEMU lowRISC Ibex UART device
3  *
4  * Copyright (c) 2020 Western Digital
5  *
6  * For details check the documentation here:
7  *    https://docs.opentitan.org/hw/ip/uart/doc/
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "hw/char/ibex_uart.h"
30 #include "hw/irq.h"
31 #include "hw/qdev-clock.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/qdev-properties-system.h"
34 #include "migration/vmstate.h"
35 #include "qemu/log.h"
36 #include "qemu/module.h"
37 
38 static void ibex_uart_update_irqs(IbexUartState *s)
39 {
40     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_TX_WATERMARK_MASK) {
41         qemu_set_irq(s->tx_watermark, 1);
42     } else {
43         qemu_set_irq(s->tx_watermark, 0);
44     }
45 
46     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_RX_WATERMARK_MASK) {
47         qemu_set_irq(s->rx_watermark, 1);
48     } else {
49         qemu_set_irq(s->rx_watermark, 0);
50     }
51 
52     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_TX_EMPTY_MASK) {
53         qemu_set_irq(s->tx_empty, 1);
54     } else {
55         qemu_set_irq(s->tx_empty, 0);
56     }
57 
58     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_RX_OVERFLOW_MASK) {
59         qemu_set_irq(s->rx_overflow, 1);
60     } else {
61         qemu_set_irq(s->rx_overflow, 0);
62     }
63 }
64 
65 static int ibex_uart_can_receive(void *opaque)
66 {
67     IbexUartState *s = opaque;
68 
69     if ((s->uart_ctrl & R_CTRL_RX_ENABLE_MASK)
70            && !(s->uart_status & R_STATUS_RXFULL_MASK)) {
71         return 1;
72     }
73 
74     return 0;
75 }
76 
77 static void ibex_uart_receive(void *opaque, const uint8_t *buf, int size)
78 {
79     IbexUartState *s = opaque;
80     uint8_t rx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_RXILVL_MASK)
81                             >> R_FIFO_CTRL_RXILVL_SHIFT;
82 
83     s->uart_rdata = *buf;
84 
85     s->uart_status &= ~R_STATUS_RXIDLE_MASK;
86     s->uart_status &= ~R_STATUS_RXEMPTY_MASK;
87     /* The RXFULL is set after receiving a single byte
88      * as the FIFO buffers are not yet implemented.
89      */
90     s->uart_status |= R_STATUS_RXFULL_MASK;
91     s->rx_level += 1;
92 
93     if (size > rx_fifo_level) {
94         s->uart_intr_state |= R_INTR_STATE_RX_WATERMARK_MASK;
95     }
96 
97     ibex_uart_update_irqs(s);
98 }
99 
100 static gboolean ibex_uart_xmit(GIOChannel *chan, GIOCondition cond,
101                                void *opaque)
102 {
103     IbexUartState *s = opaque;
104     uint8_t tx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_TXILVL_MASK)
105                             >> R_FIFO_CTRL_TXILVL_SHIFT;
106     int ret;
107 
108     /* instant drain the fifo when there's no back-end */
109     if (!qemu_chr_fe_backend_connected(&s->chr)) {
110         s->tx_level = 0;
111         return FALSE;
112     }
113 
114     if (!s->tx_level) {
115         s->uart_status &= ~R_STATUS_TXFULL_MASK;
116         s->uart_status |= R_STATUS_TXEMPTY_MASK;
117         s->uart_intr_state |= R_INTR_STATE_TX_EMPTY_MASK;
118         s->uart_intr_state &= ~R_INTR_STATE_TX_WATERMARK_MASK;
119         ibex_uart_update_irqs(s);
120         return FALSE;
121     }
122 
123     ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_level);
124 
125     if (ret >= 0) {
126         s->tx_level -= ret;
127         memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_level);
128     }
129 
130     if (s->tx_level) {
131         guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
132                                         ibex_uart_xmit, s);
133         if (!r) {
134             s->tx_level = 0;
135             return FALSE;
136         }
137     }
138 
139     /* Clear the TX Full bit */
140     if (s->tx_level != IBEX_UART_TX_FIFO_SIZE) {
141         s->uart_status &= ~R_STATUS_TXFULL_MASK;
142     }
143 
144     /* Disable the TX_WATERMARK IRQ */
145     if (s->tx_level < tx_fifo_level) {
146         s->uart_intr_state &= ~R_INTR_STATE_TX_WATERMARK_MASK;
147     }
148 
149     /* Set TX empty */
150     if (s->tx_level == 0) {
151         s->uart_status |= R_STATUS_TXEMPTY_MASK;
152         s->uart_intr_state |= R_INTR_STATE_TX_EMPTY_MASK;
153     }
154 
155     ibex_uart_update_irqs(s);
156     return FALSE;
157 }
158 
159 static void uart_write_tx_fifo(IbexUartState *s, const uint8_t *buf,
160                                int size)
161 {
162     uint64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
163     uint8_t tx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_TXILVL_MASK)
164                             >> R_FIFO_CTRL_TXILVL_SHIFT;
165 
166     if (size > IBEX_UART_TX_FIFO_SIZE - s->tx_level) {
167         size = IBEX_UART_TX_FIFO_SIZE - s->tx_level;
168         qemu_log_mask(LOG_GUEST_ERROR, "ibex_uart: TX FIFO overflow");
169     }
170 
171     memcpy(s->tx_fifo + s->tx_level, buf, size);
172     s->tx_level += size;
173 
174     if (s->tx_level > 0) {
175         s->uart_status &= ~R_STATUS_TXEMPTY_MASK;
176     }
177 
178     if (s->tx_level >= tx_fifo_level) {
179         s->uart_intr_state |= R_INTR_STATE_TX_WATERMARK_MASK;
180         ibex_uart_update_irqs(s);
181     }
182 
183     if (s->tx_level == IBEX_UART_TX_FIFO_SIZE) {
184         s->uart_status |= R_STATUS_TXFULL_MASK;
185     }
186 
187     timer_mod(s->fifo_trigger_handle, current_time +
188               (s->char_tx_time * 4));
189 }
190 
191 static void ibex_uart_reset(DeviceState *dev)
192 {
193     IbexUartState *s = IBEX_UART(dev);
194 
195     s->uart_intr_state = 0x00000000;
196     s->uart_intr_state = 0x00000000;
197     s->uart_intr_enable = 0x00000000;
198     s->uart_ctrl = 0x00000000;
199     s->uart_status = 0x0000003c;
200     s->uart_rdata = 0x00000000;
201     s->uart_fifo_ctrl = 0x00000000;
202     s->uart_fifo_status = 0x00000000;
203     s->uart_ovrd = 0x00000000;
204     s->uart_val = 0x00000000;
205     s->uart_timeout_ctrl = 0x00000000;
206 
207     s->tx_level = 0;
208     s->rx_level = 0;
209 
210     s->char_tx_time = (NANOSECONDS_PER_SECOND / 230400) * 10;
211 
212     ibex_uart_update_irqs(s);
213 }
214 
215 static uint64_t ibex_uart_get_baud(IbexUartState *s)
216 {
217     uint64_t baud;
218 
219     baud = ((s->uart_ctrl & R_CTRL_NCO_MASK) >> 16);
220     baud *= clock_get_hz(s->f_clk);
221     baud >>= 20;
222 
223     return baud;
224 }
225 
226 static uint64_t ibex_uart_read(void *opaque, hwaddr addr,
227                                        unsigned int size)
228 {
229     IbexUartState *s = opaque;
230     uint64_t retvalue = 0;
231 
232     switch (addr >> 2) {
233     case R_INTR_STATE:
234         retvalue = s->uart_intr_state;
235         break;
236     case R_INTR_ENABLE:
237         retvalue = s->uart_intr_enable;
238         break;
239     case R_INTR_TEST:
240         qemu_log_mask(LOG_GUEST_ERROR,
241                       "%s: wdata is write only\n", __func__);
242         break;
243 
244     case R_CTRL:
245         retvalue = s->uart_ctrl;
246         break;
247     case R_STATUS:
248         retvalue = s->uart_status;
249         break;
250 
251     case R_RDATA:
252         retvalue = s->uart_rdata;
253         if ((s->uart_ctrl & R_CTRL_RX_ENABLE_MASK) && (s->rx_level > 0)) {
254             qemu_chr_fe_accept_input(&s->chr);
255 
256             s->rx_level -= 1;
257             s->uart_status &= ~R_STATUS_RXFULL_MASK;
258             if (s->rx_level == 0) {
259                 s->uart_status |= R_STATUS_RXIDLE_MASK;
260                 s->uart_status |= R_STATUS_RXEMPTY_MASK;
261             }
262         }
263         break;
264     case R_WDATA:
265         qemu_log_mask(LOG_GUEST_ERROR,
266                       "%s: wdata is write only\n", __func__);
267         break;
268 
269     case R_FIFO_CTRL:
270         retvalue = s->uart_fifo_ctrl;
271         break;
272     case R_FIFO_STATUS:
273         retvalue = s->uart_fifo_status;
274 
275         retvalue |= (s->rx_level & 0x1F) << R_FIFO_STATUS_RXLVL_SHIFT;
276         retvalue |= (s->tx_level & 0x1F) << R_FIFO_STATUS_TXLVL_SHIFT;
277 
278         qemu_log_mask(LOG_UNIMP,
279                       "%s: RX fifos are not supported\n", __func__);
280         break;
281 
282     case R_OVRD:
283         retvalue = s->uart_ovrd;
284         qemu_log_mask(LOG_UNIMP,
285                       "%s: ovrd is not supported\n", __func__);
286         break;
287     case R_VAL:
288         retvalue = s->uart_val;
289         qemu_log_mask(LOG_UNIMP,
290                       "%s: val is not supported\n", __func__);
291         break;
292     case R_TIMEOUT_CTRL:
293         retvalue = s->uart_timeout_ctrl;
294         qemu_log_mask(LOG_UNIMP,
295                       "%s: timeout_ctrl is not supported\n", __func__);
296         break;
297     default:
298         qemu_log_mask(LOG_GUEST_ERROR,
299                       "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
300         return 0;
301     }
302 
303     return retvalue;
304 }
305 
306 static void ibex_uart_write(void *opaque, hwaddr addr,
307                                   uint64_t val64, unsigned int size)
308 {
309     IbexUartState *s = opaque;
310     uint32_t value = val64;
311 
312     switch (addr >> 2) {
313     case R_INTR_STATE:
314         /* Write 1 clear */
315         s->uart_intr_state &= ~value;
316         ibex_uart_update_irqs(s);
317         break;
318     case R_INTR_ENABLE:
319         s->uart_intr_enable = value;
320         ibex_uart_update_irqs(s);
321         break;
322     case R_INTR_TEST:
323         s->uart_intr_state |= value;
324         ibex_uart_update_irqs(s);
325         break;
326 
327     case R_CTRL:
328         s->uart_ctrl = value;
329 
330         if (value & R_CTRL_NF_MASK) {
331             qemu_log_mask(LOG_UNIMP,
332                           "%s: UART_CTRL_NF is not supported\n", __func__);
333         }
334         if (value & R_CTRL_SLPBK_MASK) {
335             qemu_log_mask(LOG_UNIMP,
336                           "%s: UART_CTRL_SLPBK is not supported\n", __func__);
337         }
338         if (value & R_CTRL_LLPBK_MASK) {
339             qemu_log_mask(LOG_UNIMP,
340                           "%s: UART_CTRL_LLPBK is not supported\n", __func__);
341         }
342         if (value & R_CTRL_PARITY_EN_MASK) {
343             qemu_log_mask(LOG_UNIMP,
344                           "%s: UART_CTRL_PARITY_EN is not supported\n",
345                           __func__);
346         }
347         if (value & R_CTRL_PARITY_ODD_MASK) {
348             qemu_log_mask(LOG_UNIMP,
349                           "%s: UART_CTRL_PARITY_ODD is not supported\n",
350                           __func__);
351         }
352         if (value & R_CTRL_RXBLVL_MASK) {
353             qemu_log_mask(LOG_UNIMP,
354                           "%s: UART_CTRL_RXBLVL is not supported\n", __func__);
355         }
356         if (value & R_CTRL_NCO_MASK) {
357             uint64_t baud = ibex_uart_get_baud(s);
358 
359             s->char_tx_time = (NANOSECONDS_PER_SECOND / baud) * 10;
360         }
361         break;
362     case R_STATUS:
363         qemu_log_mask(LOG_GUEST_ERROR,
364                       "%s: status is read only\n", __func__);
365         break;
366 
367     case R_RDATA:
368         qemu_log_mask(LOG_GUEST_ERROR,
369                       "%s: rdata is read only\n", __func__);
370         break;
371     case R_WDATA:
372         uart_write_tx_fifo(s, (uint8_t *) &value, 1);
373         break;
374 
375     case R_FIFO_CTRL:
376         s->uart_fifo_ctrl = value;
377 
378         if (value & R_FIFO_CTRL_RXRST_MASK) {
379             s->rx_level = 0;
380             qemu_log_mask(LOG_UNIMP,
381                           "%s: RX fifos are not supported\n", __func__);
382         }
383         if (value & R_FIFO_CTRL_TXRST_MASK) {
384             s->tx_level = 0;
385         }
386         break;
387     case R_FIFO_STATUS:
388         qemu_log_mask(LOG_GUEST_ERROR,
389                       "%s: fifo_status is read only\n", __func__);
390         break;
391 
392     case R_OVRD:
393         s->uart_ovrd = value;
394         qemu_log_mask(LOG_UNIMP,
395                       "%s: ovrd is not supported\n", __func__);
396         break;
397     case R_VAL:
398         qemu_log_mask(LOG_GUEST_ERROR,
399                       "%s: val is read only\n", __func__);
400         break;
401     case R_TIMEOUT_CTRL:
402         s->uart_timeout_ctrl = value;
403         qemu_log_mask(LOG_UNIMP,
404                       "%s: timeout_ctrl is not supported\n", __func__);
405         break;
406     default:
407         qemu_log_mask(LOG_GUEST_ERROR,
408                       "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
409     }
410 }
411 
412 static void ibex_uart_clk_update(void *opaque, ClockEvent event)
413 {
414     IbexUartState *s = opaque;
415 
416     /* recompute uart's speed on clock change */
417     uint64_t baud = ibex_uart_get_baud(s);
418 
419     s->char_tx_time = (NANOSECONDS_PER_SECOND / baud) * 10;
420 }
421 
422 static void fifo_trigger_update(void *opaque)
423 {
424     IbexUartState *s = opaque;
425 
426     if (s->uart_ctrl & R_CTRL_TX_ENABLE_MASK) {
427         ibex_uart_xmit(NULL, G_IO_OUT, s);
428     }
429 }
430 
431 static const MemoryRegionOps ibex_uart_ops = {
432     .read = ibex_uart_read,
433     .write = ibex_uart_write,
434     .endianness = DEVICE_NATIVE_ENDIAN,
435     .impl.min_access_size = 4,
436     .impl.max_access_size = 4,
437 };
438 
439 static int ibex_uart_post_load(void *opaque, int version_id)
440 {
441     IbexUartState *s = opaque;
442 
443     ibex_uart_update_irqs(s);
444     return 0;
445 }
446 
447 static const VMStateDescription vmstate_ibex_uart = {
448     .name = TYPE_IBEX_UART,
449     .version_id = 1,
450     .minimum_version_id = 1,
451     .post_load = ibex_uart_post_load,
452     .fields = (VMStateField[]) {
453         VMSTATE_UINT8_ARRAY(tx_fifo, IbexUartState,
454                             IBEX_UART_TX_FIFO_SIZE),
455         VMSTATE_UINT32(tx_level, IbexUartState),
456         VMSTATE_UINT64(char_tx_time, IbexUartState),
457         VMSTATE_TIMER_PTR(fifo_trigger_handle, IbexUartState),
458         VMSTATE_UINT32(uart_intr_state, IbexUartState),
459         VMSTATE_UINT32(uart_intr_enable, IbexUartState),
460         VMSTATE_UINT32(uart_ctrl, IbexUartState),
461         VMSTATE_UINT32(uart_status, IbexUartState),
462         VMSTATE_UINT32(uart_rdata, IbexUartState),
463         VMSTATE_UINT32(uart_fifo_ctrl, IbexUartState),
464         VMSTATE_UINT32(uart_fifo_status, IbexUartState),
465         VMSTATE_UINT32(uart_ovrd, IbexUartState),
466         VMSTATE_UINT32(uart_val, IbexUartState),
467         VMSTATE_UINT32(uart_timeout_ctrl, IbexUartState),
468         VMSTATE_END_OF_LIST()
469     }
470 };
471 
472 static Property ibex_uart_properties[] = {
473     DEFINE_PROP_CHR("chardev", IbexUartState, chr),
474     DEFINE_PROP_END_OF_LIST(),
475 };
476 
477 static void ibex_uart_init(Object *obj)
478 {
479     IbexUartState *s = IBEX_UART(obj);
480 
481     s->f_clk = qdev_init_clock_in(DEVICE(obj), "f_clock",
482                                   ibex_uart_clk_update, s, ClockUpdate);
483     clock_set_hz(s->f_clk, IBEX_UART_CLOCK);
484 
485     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->tx_watermark);
486     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rx_watermark);
487     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->tx_empty);
488     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rx_overflow);
489 
490     memory_region_init_io(&s->mmio, obj, &ibex_uart_ops, s,
491                           TYPE_IBEX_UART, 0x400);
492     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
493 }
494 
495 static void ibex_uart_realize(DeviceState *dev, Error **errp)
496 {
497     IbexUartState *s = IBEX_UART(dev);
498 
499     s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
500                                           fifo_trigger_update, s);
501 
502     qemu_chr_fe_set_handlers(&s->chr, ibex_uart_can_receive,
503                              ibex_uart_receive, NULL, NULL,
504                              s, NULL, true);
505 }
506 
507 static void ibex_uart_class_init(ObjectClass *klass, void *data)
508 {
509     DeviceClass *dc = DEVICE_CLASS(klass);
510 
511     dc->reset = ibex_uart_reset;
512     dc->realize = ibex_uart_realize;
513     dc->vmsd = &vmstate_ibex_uart;
514     device_class_set_props(dc, ibex_uart_properties);
515 }
516 
517 static const TypeInfo ibex_uart_info = {
518     .name          = TYPE_IBEX_UART,
519     .parent        = TYPE_SYS_BUS_DEVICE,
520     .instance_size = sizeof(IbexUartState),
521     .instance_init = ibex_uart_init,
522     .class_init    = ibex_uart_class_init,
523 };
524 
525 static void ibex_uart_register_types(void)
526 {
527     type_register_static(&ibex_uart_info);
528 }
529 
530 type_init(ibex_uart_register_types)
531